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Abstract: Researchers and industrial practitioners are now interested in combining machine learning 
(ML) and operations research and management science to develop prescriptive analytics frameworks. 
By and large, a single value or a discrete distribution with a finite number of scenarios is predicted 
using an ML model with an unknown parameter; the value or distribution is then fed into an 
optimization model with the unknown parameter to prescribe an optimal decision. In this paper, we 
prove a deficiency of prescriptive analytics, i.e., that no perfect predicted value or perfect predicted 
distribution exists in some cases. To illustrate this phenomenon, we consider three different 
frameworks of prescriptive analytics, namely, the predict-then-optimize framework, smart predict-
then-optimize framework and weighted sample average approximation (w-SAA) framework. For these 
three frameworks, we use examples to show that prescriptive analytics may not be able to prescribe a 
full-information optimal decision, i.e., the optimal decision under the assumption that the distribution 
of the unknown parameter is given. Based on this finding, for practical prescriptive analytics problems, 
we suggest comparing the prescribed results among different frameworks to determine the most 
appropriate one. 
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1. Introduction  

With the advancement of ML technologies and the accessibility of rich data, recent studies in 
data-driven optimization have illustrated the advantages of using rich feature data to reduce uncertainty 
in decision-making problems with uncertain parameters and thus improve the decision making 
performance [1,2]. Following the formulation of Bertsimas and Kallus [1], consider an optimization 
problem with a given cost function ( ; )c y z  , where ydy Y    denotes the uncertain parameter 

vector affecting the value of the cost function and zdz Z   denotes the decision vector. Assume 
that there is an observation of auxiliary data 0 xdx  X  , which is associated with y  and will be 
used to predict y . The optimization problem can be mathematically formulated as follows: 

* 0 0( ) arg min [ ( ; ) | ]y
z

z x c y z x x


 
Z

E .                          (1) 

To solve Optimization problem (1), a historical dataset denoted as 1{( , )}i i n
ix y   is made accessible, 

where ix X   is the historical auxiliary data vector, and iy Y   is the corresponding historical 
realization of y . 

To solve Optimization problem (1), the traditional method is to first use 1{( , )}i i n
ix y   to build an 

ML model and then use the ML model to predict the value of y  from the new example 0x  [1, 3]. 
That is, for every x , the ML model generates a predicted y , as denoted by ˆ( )y x . A commonly used 

loss function to train the ML model with a continuous prediction target is the mean squared error (MSE) 
loss, which is expressed as follows: 

2

1

1
ˆ( ( ))

n
i i

MSE
i

L y y x
n 

  .                              (2) 

After obtaining the predicted 0ˆ( )y x , we then solve 

0ˆmin ( ( ); )
z

c y x z
Z

                                  (3) 

to prescribe an optimal decision. This method is generally termed a predict-then-optimize (PO) 
framework or a two-stage framework [3].  

Nonetheless, a good prediction may not lead to a good decision [1]. This is because Eq (2) does 
not consider the impact of ˆ( )y x  on the downstream optimization problem. As a result, a more natural 

and appropriate method is to plug the optimization problem into the training of the ML model. That is, 
instead of focusing on minimizing the prediction error, we train the ML model by minimizing the 
decision error. This method is generally termed a smart PO (SPO) framework, an end-to-end learning 
framework, or a decision-focused learning framework [3,4]. A commonly used loss function, for ML 
models under these frameworks, namely, SPO loss, can be formulated as follows: 

1

1
ˆ[ ( ; ( )) ( ; ( ))]

n
i i i i

SPO
i

L c y z y c y z y
n 

  ,                       (4) 

where the first term in square brackets represents the cost derived from the decision 
ˆ ˆ( ) arg min ( ; )i i

z

z y c y z



Z

 and the second term in square brackets denotes the cost of the full-information 

optimal decision ( ) arg min ( ; )i i

z

z y c y z



Z

 . However, training ML models using SPO loss might be 
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impossible computationally because of the nonconvex and discontinuous characteristics of the SPO 
loss function for combinatorial optimization problems. 

In a recent study, Bertsimas and Kallus [1] considered another approach to take the uncertainty 
of y  into account when solving Eq (1). In their method, they claimed that, for many traditional ML 

methods, predicting y  from a new example 0x  can take the following form: 

0 0

1

ˆ( ) ( , ) ,
n

i i

i

y x w x x y


                                (5) 

where 0( , )iw x x  measures the similarity (closeness) between Example ix  in the historical data and 

the new example 0x ; and, its format depends on the ML model used (i.e., random forest, k-nearest 
neighbor (kNN)) [5]. For example, if we use a kNN model, 0( , ) 1/iw x x k  if ix  is a kNN of 0x , 

and 0( , ) 0iw x x   otherwise. This is because 0( , )iw x x  can be regarded as an approximation of the 

conditional distribution of y   given 0x x  , i.e., the approximate distribution of y   has n  

scenarios 1,..., ny y   with probabilities 1 0 0( , ),..., ( , )nw x x w x x   (and it is very likely that some 
probabilities are 0, meaning that the approximate distribution of y   has less than n   scenarios). 

Bertsimas and Kallus [1] then used 

0

1

min ( , ) ( ; )
n

i i

z
i

w x x c y z

                               (6) 

as an approximation of Eq (1) [5]. This method has been formally termed as a weighted sample average 
approximation (w-SAA) framework by Notz and Pibernik [6] because it combines local predictive ML 
methods (i.e., kNN) and traditional techniques for data-driven optimization (i.e., SAA). 

For these prescriptive analytics frameworks, the main aim is to predict a perfect value of y  (i.e., 

using a PO framework and an SPO framework) or approximate a perfect conditional distribution of 
y  (i.e., using a w-SAA framework) to minimize the uncertain cost ( ; )c y z  after observing 0x x . 

In other words, we hope to prescribe a perfect decision that, ideally, ought to be the same as the full-
information optimal decision * 0( )z x   if we can predict a perfect 0ˆ( )y x   or a perfect conditional 

distribution of y   given 0x  . However, does the perfect predicted value or the perfect predicted 

distribution really exist? In this paper, we aim to answer this question by proving a surprising fact: 
No perfect predicted value exists in PO and SPO frameworks, and no perfect predicted 

distribution exists in a w-SAA framework. 
To illustrate this phenomenon, we first design two examples under the PO framework and the 

SPO framework in Section 2. We then design two examples under the w-SAA framework in Section 3 
and show that the w-SAA framework may perform better than the PO/SPO framework. At last, 
Section 4 concludes this paper.   

2. Deficiency of PO and SPO frameworks 

For most uncertain optimization problems with auxiliary data, a commonly used PO framework 
entails first predicting the value of uncertain parameters and then plugging predictions into the 
optimization problem to derive optimal decisions. As this method does not consider the impact of 
predictions on the downstream decisions, it may lead to sub-optimal decisions. Hence, Elmachtoub 
and Grigas [3] proposed an SPO framework for a broad class of decision-making problems with 
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uncertainty to deal with this issue. Either under the PO framework or the SPO framework, the aim is 
to predict a perfect uncertain parameter with the use of auxiliary data, so as to prescribe a full-
information optimal decision if the perfect full information (i.e., the marginal distribution) of the 
uncertain parameter is known. However, it is possible that no perfect predicted value exists in PO and 
SPO frameworks, which shall be illustrated using two examples. We first show that this deficiency 
exists in a classification task under the PO/SPO framework. 
Example 1. Consider that we have an odd number n  of historical records (examples) in the auxiliary 
dataset 1{( , )}i i n

ix y  . Suppose that the features of all examples are identical (i.e., 1 ... nx x  ). For 

example, ix   indicates whether it is a work day, where 1ix    indicates that it is a work day and 
0ix    otherwise, thus, {0,1}ix   . Additionally, suppose that the uncertain parameter {0,1}y  

follows a discrete uniform distribution independent of x  and that the optimization problem with the 
cost function ( ; )c y z  is as follows: 

1 2
1 2

1 , 1
min [( 0.7) ( 0.3) ]

z z
y z y z

  
   ,                          (7) 

where 1 2( , )z z z  is the decision vector.  

Suppose 0 1 ... nx x x   . After observing 0x , the resulting decision problem is  

1 2

0
1 2

1 , 1
min [( 0.7) ( 0.3) | ]y

z z
y z y z x x

  
   E .                    (8) 

If we know in advance that the uncertain parameter y  follows a discrete uniform distribution with 

two values 0 and 1 independent of x , the above model can be written as: 

 
1 2

1 2 1 2
1 , 1
min 0.5[(1 0.7) (1 0.3) ] 0.5[(0 0.7) (0 0.3) ]

z z
z z z z

  
       .         (9) 

Therefore, the unique full-information optimal decision for Optimization problem (8) is 
* 0 * 0 * 0

1 2( ) ( ( ), ( )) (1, 1)z x z x z x   . 

Suppose we use a classification ML model to predict the value of y  (0 or 1) given the new 

example 0x  . Since we have n   records satisfying 0 1 ... nx x x     and n   is an odd number, if 

1 1

I( 1) I( 0)
n n

i i

i i

y y
 

    (where I( )q  is an indicator function which takes the value of 1 if Condition 

q  is true and 0 if Condition q  is false), we can obtain ˆ 1y   for the new example 0x  by using a 
classification ML model. This is because predicting y  to be 1 for all examples in the historical dataset 

can minimize Loss function (2) under the PO framework and minimize Loss function (4) under the 
SPO framework. Given that ˆ 1y  , Optimization model (7) can be written as: 

1 2
1 2

1 , 1
min [(1 0.7) (1 0.3) ]

z z
z z

  
   ,                          (10) 

and the prescribed optimal decision is * * *
1 2ˆ ˆ ˆ( ) ( ( ), ( )) ( 1, 1)z y z y z y     . Similarly, if 

1 1

I( 0) I( 1)
n n

i i
i i

y y
 

     , we can obtain ˆ 0y    for the new example 0x  . Given that ˆ 0y   , 

Optimization model (7) can be written as 

1 2
1 2

1 , 1
min [(0 0.7) (0 0.3) ]

z z
z z

  
   ,                          (11) 
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and the prescribed optimal decision is * * *
1 2ˆ ˆ ˆ( ) ( ( ), ( )) (1,1)z y z y z y  . So, for this optimization problem, 

* 0 * ˆ( ) ( )z x z y , which means that we can never predict a perfect ŷ  to prescribe the full-information 

optimal decision * 0( ) (1, 1)z x   . 

From Example 1, we find that under the PO/SPO framework, we may not be able to predict a 
perfect value to prescribe a full-information optimal decision with a classification ML model. This 
phenomenon can also be seen in a regression task, as illustrated in the following example. 
Example 2. Suppose that we have an odd number n  of historical records (examples) in the auxiliary 
dataset 1{( , )}i i n

ix y  . Suppose that the features of all examples are identical (i.e., 1 ... nx x  ). For 

example, ix   indicates whether it is a work day and {0,1}ix   . Additionally, suppose that the 
uncertain parameter y  is a real number following a uniform distribution independent of x  with the 

following probability density function: 

 
1

( ) ,
2

f y b y b
b

    ,                           (12) 

where b   is a positive real value. The optimization problem with the cost function ( ; )c y z   is 

established as follows: 

     
1 2

1 2
1 , 1
min [(I( 0) 0.7) (I( 0) 0.3) ]

z z
y z y z

  
     ,                   (13) 

where 1 2( , )z z z  is the decision vector.  

Suppose that 0 1 ... nx x x   . After observing 0x , the resulting decision problem is  

1 2

0
1 2

1 , 1
min [(I( 0) 0.7) (I( 0) 0.3) | ]y

z z
y z y z x x

  
     E .              (14) 

If we know in advance that the uncertain parameter y  follows a uniform distribution independent of 

x  and that its probability density function is as shown in Eq (12), the above model can be written as: 

1 2
1 2 1 2

1 , 1
min 0.5[(1 0.7) (1 0.3) ] 0.5[(0 0.7) (0 0.3) ]

z z
z z z z

  
       ,           (15) 

and the unique full-information optimal decision for Optimization problem (14) is 
* 0 * 0 * 0

1 2( ) ( ( ), ( )) (1, 1)z x z x z x   .  

Suppose we use a regression ML model to predict the value of y  (a real number) given the new 

example 0x  . Since we have n   records satisfying 0 1 ... nx x x     and n   is an odd number, if 

1 1

I( 0) I( 0)
n n

i i
i i

y y
 

    , we can obtain ˆ 0y   for the new example 0x  by using a regression ML 

model. This is because predicting y  to be bigger than 0 for all examples in the historical dataset can 

minimize Loss function (2) under the PO framework and minimize Loss function (4) under the SPO 
framework. Given that ˆ 0y  , Optimization model (7) can be written as: 

1 2
1 2

1 , 1
min [(1 0.7) (1 0.3) ]

z z
z z

  
   ,                        (16) 

and the prescribed optimal decision is * * *
1 2ˆ ˆ ˆ( ) ( ( ), ( )) ( 1, 1)z y z y z y     . Similarly, if 

1 1

I( 0) I( 0)
n n

i i
i i

y y
 

     , we can obtain ˆ 0y    for the new example 0x  . Given that ˆ 0y   , 
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Optimization model (7) can be written as: 

1 2
1 2

1 , 1
min [(0 0.7) (0 0.3) ]

z z
z z

  
   ,                         (17) 

and the prescribed optimal decision is * * *
1 2ˆ ˆ ˆ( ) ( ( ), ( )) (1,1)z y z y z y  . So, for this optimization problem, 

* 0 * ˆ( ) ( )z x z y , which means that we can never predict a perfect ŷ  to prescribe the full-information 

optimal decision * 0( ) (1, 1)z x   . 

From Examples 1 and 2, we have proved that, under the PO/SPO framework for both regression 
and classification tasks, there may not be a perfect predicted value that will prescribe the full-
information optimal solution. There are, of course, situations in which there is a perfect predicted value 
that will prescribe a full-information optimal solution, which is shown in Proposition 1, as follows.  
Proposition 1. If ( ; )c y z  is linear in y , then there exists a perfect predicted value that will prescribe 

a full-information optimal solution if y  can take any value in yd  in the predictive ML model. 
Proof: If ( ; )c y z   is linear in y  , the model given by Eq (1) can be represented by 

0 0min [ ( ; ) | ] min [ | ]y y
z z

c y z x x y x x z
 

  
Z Z

E E  . Hence, 0ˆ [ | ]y y x x E   can lead to the full-

information optimal decision.  
If there exists a perfect predicted value that will prescribe a full-information optimal solution, the 

perfect predicted value is not necessarily the conditional mean value, which is shown in Proposition 2, 
as follows. 
Proposition 2. In the traditional newsvendor problem with a continuous order quantity (denoted by 
z ) and demand quantity (denoted by y ) [7,8],  

( ; ) max( ,0) max( ,0)c y z o z y u y z                      (18) 

is the random cost, where o   and u   are the overage cost and underage cost, respectively. If the 
marginal demand distribution of y   (with a given 0x  , e.g., whether it is a workday) is known in 

advance and is denoted as 0x
F  , the full-information optimal decision is 0

* 0 1( / (( ) ))
x

z ux F u o   . 

Hence, the predicted value 0

1( / ( ))ˆ
x

u uy F o    will prescribe a full-information optimal solution. 

Furthermore, in the traditional newsvendor problem with an integer demand quantity and integer order 
quantity, the predicted value ŷ  , which is the smallest integer satisfying 0 ˆ) /( ( )

x
F y u u o   , will 

prescribe a full-information optimal solution. 

3. Deficiency of w-SAA method 

In Section 2, we presented two examples to show the deficiency of PO and SPO frameworks, 
demonstrating that it might be impossible to predict a perfect value to prescribe a full-information 
optimal decision. A similar phenomenon also exists in the w-SAA framework. The w-SAA framework 
was initially proposed by Bertsimas and Kallus [1], and it is based on the idea of deriving weights from 
features by developing local predictive ML methods and optimizing the decision against a reweighting 
of the data [6]. According to the format of Eq (5), this method aims to estimate the conditional 
distribution of y  given the new example 0x . Taking the kNN method as an example, we assume that 
the predicted target ŷ   follows a discrete uniform distribution with no more than K   values 
(neighbors). Here, K  is not an infinite positive number. However, with full information, the real y  

may either follow a discrete distribution with more than K  values, or a continuous distribution. Then, 
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given the above information, we use the following example to show that a deficiency of the w-SAA 
framework also exists, that is, no perfect predicted distribution exists under the w-SAA framework. 
Example 3. Consider that we have an auxiliary dataset 1{( , )}i i n

ix y  . Suppose that the features of all 

historical data are identical (i.e., 1 ... nx x  ). For example, ix  indicates whether it is a work day 
and {0,1}ix  . Additionally, suppose that the uncertain parameter y  is a real number following a 
discrete uniform distribution independent of x  and {1,2,3,..., 1}y K  . Let 0 1  , which is a 

parameter used to formulate the following optimization problem. The optimization problem with the 
cost function ( ; )c y z  is established as follows: 

,1 ,2
,1 ,2

1 , 1
1,..., 1

(1 ) (1 )
min (I( ) ) (I( ) )

1 1k k
k k

z z
k K

y k z y k z
K K

 
  

 

           .            (19) 

Suppose that 0 1 ... nx x x   . After observing 0x , the resulting decision problem is  

,1 ,2

0
,1 ,2

1 , 1
1,..., 1

(1 ) (1 )
min (I( ) ) (I( ) ) |

1 1k k
y k k

z z
k K

y k z y k z x x
K K

 
  

 

              
E .       (20) 

If we know in advance that the uncertain parameter y  follows a discrete uniform distribution, the 

above model can be written as: 

,1 ,2

,1 ,1

1 , 1
1,..., 1

,2 ,2

1 (1 ) (1 )
(1 ) (0 )

1 1 1 1min
1 (1 ) (1 )

(1 ) (0 )
1 1 1 1

k k

k k

z z
k K

k k

K
z z

K K K K
K

z z
K K K K

 

   
 

         
      
      

 ,              (21) 

and the unique full-information optimal decision for Optimization problem (20) is 
* 0

,1( ) 1,  1,..., 1kz x k K     and * 0
,2 ( ) 1,  1,..., 1kz x k K     . 

Suppose we use the w-SAA framework with a kNN model to predict a conditional distribution of 
y   with no more than K   values given the new example 0x  . These values are denoted by 

1,..., ,...,k Ky y y  and each value has a weight ( ) 1/ ,  1,...,kw y K k K    . For other data examples 

that do not have a target value in 1{ ,..., ,..., }k Ky y y , they will be assigned a weight of 0. In order to 

obtain the full-information optimal decision, the following condition must be satisfied when we solve 

Optimization problem (6): 1,..., 1k K   , 
{ }

1 1
( )

1 1
k

k
k y k

w y
K K

 




 

 
 

  . However, since ky   only 

has no more than K   values, the above condition cannot be met because 

{ }

1,..., 1,  ( ) 0
k

k
k y k

k K w y



 

     . That is, we are not able to prescribe a decision, which, ideally, 

ought to be the same as the full-information optimal decision in the w-SAA framework. Similarly, this 
phenomenon can be extended when the uncertain parameter y  follows a continuous distribution. 

Note that the prediction of a single value in the PO/SPO framework can be considered as a special 
case of the w-SAA framework that involves applying a single scenario to approximate the marginal 
distribution. Based on this insight, the following Example 4 shows that the w-SAA framework can 
prescribe better solutions than the PO/SPO framework. 
Example 4. (Example 3 continued) Suppose we set 2K    for Example 3, that is, the uncertain 
parameter y  is a real number following a discrete uniform distribution where {1,2,3}y ; then, we 
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conduct a three-class classification task. Suppose that 0 1 ... nx x x   . After observing 0x , the full-
information optimal decision for Optimization problem (19) is * 0

,1( ) 1,  1, 2,3kz x k     and 
* 0

,2 ( ) 1,  1, 2,3kz x k    . 

Let us use the w-SAA framework with a kNN model to find the nearest two examples of the new 
example 0x     denoted by 2

1{( , )}j j jx y   . These two examples are assigned a weight of 

1/ 2,  1, 2iw i    , and the rest of the examples ( , ),  3,...,j jx y j n    are assigned a weight of 0. 

There are six possible combinations for 1 2( , )y y , which are (1,1) , (2,2) , (3,3) , (1,2) , (1,3)  and 

(2,3)  . For the first three combinations, following the same procedures shown in Example 3, the 

prescribed cost will be 0. Similarly, for the last three combinations, the prescribed cost will be 
(4 / 3) . 

If we use a PO/SPO framework to predict the value of y , there are three possible outcomes, i.e., 
ˆ 1y  , ˆ 2y  , and ˆ 3y  . No matter under which outcome, if we plug the prediction into Optimization 

problem (19), the prescribed cost will be 0. Since 0 0  and (4 / 3) 0  , it shows that the w-SAA 

framework can prescribe a better solution. 
Note further that the w-SAA framework approximates the conditional distribution of y   in a local 

manner (i.e., by using a portion of the training data). Wang and Yan [9,10] proposed two methods to 
approximate the conditional distribution of y   in a global manner (i.e., by using all of the training 

data). Similarly, we can show that there are cases for which no perfect predicted distribution exists 
under the conditions of the methods proposed by Wang and Yan [9,10]. 

From the above examples, we have shown that it is possible that prescriptive analytics cannot 
predict a perfect value or a perfect discrete distribution for finite scenarios. Nonetheless, different 
frameworks may prescribe solutions with different qualities, and our aim is to find a better framework 
that can prescribe a near-optimal solution.  

4. Conclusions 

Using abundant auxiliary data and ML models, researchers and industrial practitioners can make 
better decisions. However, using current prescriptive analytics frameworks, we may not be able to 
prescribe a full-information optimal decision. This paper thus makes the following contributions. First, 
this paper proves a deficiency of prescriptive analytics, i.e., that no perfect predicted value or predicted 
distribution exists; this was demonstrated by presenting three examples under different frameworks, 
namely the PO framework, SPO framework, and w-SAA framework. From these three examples, we 
show that prescriptive analytics may not be able to prescribe a perfect decision which ideally ought to 
be the same as the full-information optimal decision.  

Second, this paper inspires researchers and practitioners to check the existence of the perfect 
predicted value or the perfect predicted distribution while using prescriptive analytics frameworks. 
If there is no perfect predicted value or predicted distribution for an uncertain optimization problem, 
we may need to try more than one framework and compare the prescribed results obtained from 
different frameworks. As indicated by Example 4, it is possible for us to prescribe a better solution 
by using a w-SAA framework rather than a PO/SPO framework. To summarize, our research 
demonstrates that neither PO/SPO nor w-SAA is perfect, and that, consequently, more efforts should 
be devoted to the field of prescriptive analytics. 

There are several limitations to this research. First, this paper only includes a theoretical analysis, 
as the available practical data are insufficient. In the future, practical problems with real data can be 
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used to verify the deficiency demonstrated in this paper. Second, when analyzing the superiority of 
different prescriptive analytics frameworks, it should be taken into consideration that this paper does 
not prove a theoretical gap between their decision-making qualities, which should be explored further 
in the future. 
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