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Abstract: Since the first work on Ulam-Hyers stabilities of differential equation solutions to date,
many important and relevant papers have been published, both in the sense of integer order and
fractional order differential equations. However, when we enter the field of fractional calculus, in
particular, involving fractional differential equations, the path that is still long to be traveled, although
there is a range of published works. In this sense, in this paper, we investigate the Ulam-Hyers and
Ulam-Hyers-Rassias stabilities of mild solutions for fractional nonlinear abstract Cauchy problem in
the intervals [0,T ] and [0,∞) using Banach fixed point theorem.
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1. Introduction

One of the most active themes of differential equations has been the Ulam-Hyers stability. The
theme came in 1940 by Ulam in a lecture on unresolved issues at the University of Wisconsin [1, 2].
The issue raised by Ulam was partially answered the following year by Hyers in the case of the Banach
spaces. Thus, on the theory of stabilities, came to be called Ulam-Hyers. However, in 1978 [3], Rassias
presented a generalization of the version presented by Hyers. In this sense, due to this breakthrough
and novelty in mathematical analysis, many researchers have investigated the stability of solutions
of functional differential equations. The idea of Ulam-Hyers stability for functional equations, is the
substitution of the functional equation for a given inequality that acts as a perturbation of the equation.
We suggest some monographs and papers that allow a more thorough search of the subjects [4–7].

With the beginning of the fractional calculus and over the years his theory being well consolidated
and grounded, many researchers began to look in a different way for the area, especially researchers
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working with differential equations [8–14]. In this sense, today it is more than proven that investigating
and analyzing certain physical problems, through fractional derivatives, ensures more accurate and
consistent results with reality. On the other hand, moving to a more theoretical side, investigating
the existence, uniqueness and Ulam-Hyers stability of solution for fractional differential equations has
gained increasing prominence in the scientific community, although there are a range of works, the
theory is still being built with good results [15–18].

In 2020, Inc et al. [19] investigated the solution of the fractional Burger-Huxley equation in the
Caputo fractional derivative sense. In this sense, some examples were presented in order to elucidate
the investigated results. On the other hand, we can also highlight the interesting work carried out by
Ahmad et al. [20], on the new analyzing technique for nonlinear time-fractional Cauchy
reaction-diffusion model equations. The present work aims to investigate numerical solutions of
equations of the nonlinear fractional order Cauchy reaction-diffusion model in time. Interestingly, the
approach discussed in this work can be used without the use of any transformation, Adomian
polynomials, small perturbations, discretization or linearization. In this sense, solutions numerically
are compared with exact solutions. In 2021, Chu et al. [21], evaluated a fractional Cauchy
diffusion-reaction equation via the homotopy perturbation transform and iterative transform method.
In this sense, the authors concluded that by the current investigated technique, they indicate that the
approach is easy to implement and accurate. Other interesting works, in particular, with a numerical
approach see [22–26] and the references therein.

In 2012, Wang and Zhou [15], investigated several kind of stabilities of mild solution for fractional
evolution equation in Banach space, namely: Mittag-Leffler-Ulam stability,
Mittag-Leffler-Ulam-Leffler-Ulam-Hyers stability, Mittag-Leffler-Ulam-Hyers-Rassias stability and
generalized Mittag-Leffler-Ulam-Hyers-Rassias stability. In 2014, Abbas [27] investigated the
existence, uniqueness and stability of mild solution for integrodifferential equation with nonlocal
conditions through Holder inequality, Schauder fixed point theorem, and Gronwall inequality in
Banach space. On the other hand, Zhou and Jiao [11], using fractional operators and some fixed point
theorems, investigated the existence and uniqueness of mild solutions for fractional neutral evolution
equations and made some applications in order to elucidate the obtained results. In this sense, Saadati
et al. [28], presented results on the existence of mild solutions for fractional abstract equations with
non-instantaneous impulses. In order to obtain such results, the authors used non-compactness
measure and the Darbo-Sadovskii and Tychonoff fixed point theorems. See too [12, 29–35] and the
references therein.

In 2017, Zhou et al. [36] investigated sufficient conditions for the existence of non-oscillatory
solutions for a neutral functional differential equation. We can also highlight the important work
addressed by Wang et al. [37], on the existence and Ulam stability of the new class for fractional order
differential switched systems with coupled nonlocal initial and impulsive conditions in Rn.

Although we are faced with a significant amount of work dealing with solution properties of
fractional differential equations, there is still much work to be done. In order to propose new results
and provide new materials on Ulam-Hyers stability in order to contribute positively to the area, the
present paper has as main purpose to investigate some Ulam-Hyers stabilities in the intervals [0,T ]
and [0,∞).
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So, we consider the fractional nonlinear abstract Cauchy problem given by{ HDα,β0+ ξ(t) = Aξ(t) + u(t)H(t, ξ(t)), t ∈ I
I1−γ
0+ ξ(0) = ξ0

(1.1)

where HDα,β0+ (·) is the Hilfer fractional derivative of order 0 < α ≤ 1 and type 0 ≤ β ≤ 1, I = [0,T ]
or [0,∞), ξ ∈ Ω, Ω Banach space, t ∈ I, : Ω → Ω is the infinitesimal generator of a C0-semigroup
(S(t))t≥0 andH : I ×Ω→ Ω is a given continuous function.

We highlight below the main points that motivated us to investigate the mild solution stability for
the fractional abstract Cauchy problem:

1) A new class of Ulam-Hyers type stabilities for fractional abstract Cauchy problem;
2) At the limit of β → 1 in the mild solution for abstract Cauchy problem with 0 < α < 1, we have

a sub-class of Ulam-Hyers stabilities for the Riemann-Liouville fractional derivative;
3) At the limit of β → 0 in the mild solution for abstract Cauchy problem with 0 < α < 1, we have

a sub-class of Ulam-Hyers stabilities for the Caputo fractional derivative;
4) When α = 1, we have as particular case, the integer version;
5) An important consequence of the obtained results are the possible future applications through the

Ulam-Hyers stabilities in engineering, biology and especially in mathematics;

The paper is organized as follows. In Section 2 we introduce the ξ-Riemann-Liouville fractional
integral, the ξ-Hilfer fractional derivative and fundamental concept of the operator (α, β)-resolvent. In
this sense, it is presented the mild solution for fractional Cauchy problem as well as the Ulam-Hyers
stability. In Section 3, it is directed to the first result of this paper, that is, we investigate the Ulam-Hyers
and Ulam-Hyers-Rassias stabilities in the interval [0,T ] and discuss some particular cases. In Section
4, we discuss the Ulam-Hyers and Ulam-Hyers-Rassias stabilities in the interval [0,∞). Concluding
remarks close the paper.

2. Preliminaries

In this Section, we introduce some important definitions and results in order to assist in the
development of this paper.

Let T > 0 be a given positive real number. The weighted space of continuous functions ξ ∈ I1 =

(0,T ] and I = [0,T ] is given by reference [38]

C1−γ(I1,Ω) =
{
ξ ∈ C(I1,Ω), t1−γξ(t) ∈ C(I1,Ω)

}
where 0 ≤ γ ≤ 1, with norm

||ξ||C1−γ = sup
t∈I
||ξ(t)||C1−γ

and
||ξ − φ||C1−γ = d1−γ(ξ, φ) := sup

t∈I
||ξ(t) − φ(t)||C1−γ ·

Let (Ω, || · ||C1−γ) be a given Banach space and I = [0,+∞) or I = [0,T ] where T and L (Ω) the set
of bounded linear maps from Ω to Ω.
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Let (a, b) (−∞ ≤ a < b ≤ ∞) be a finite interval (or infinite) of the real line R and let α > 0. Also let
ψ (x) be an increasing and positive monotone function on (a, b] , having a continuous derivative ψ′ (x)

(we denote first derivative as
d
dx
ψ(x) = ψ′(x)) on (a, b). The left-sided fractional integral of a function

f with respect to a function ψ on [a, b] is defined by references [8, 38]

I
α;ψ
a+ f (x) =

1
Γ (α)

∫ x

a
ψ′ (s) (ψ (x) − ψ (s))α−1 f (s) ds. (2.1)

On the other hand, let n − 1 < α < n with n ∈ N, let J = [a, b] be an interval such that −∞ ≤ a <
b ≤ ∞ and let f , ψ ∈ Cn [a, b] be two functions such that ψ is increasing and ψ′ (x) , 0, for all x ∈ J.
The left-sided ψ−Hilfer fractional derivative HDα,β;ψ

a+ (·) of a function f of order α and type 0 ≤ β ≤ 1,
is defined by references [8, 9]

HDα,β;ψ
a+ f (x) = I

β(n−α);ψ
a+

(
1

ψ′ (x)
d
dx

)n

I
(1−β)(n−α);ψ
a+ f (x) . (2.2)

Next, we present the definition of the operator (α, β)-resolvent, fundamental in the construction of
mild solution for fractional abstract Cauchy problem Eq (1.1).

Definition 2.1. Let α > 0 and β ≥ 0 [34]. A function Sα,β : R+ → L (Ω) is called a β-times integrated
α-resolvent operator function of an (α, β)-resolvent operator function (ROF) if the following conditions
are satisfied:

1) Sα,β(·) is strongly continuous on R+ and Sα,β(0) = gβ+1(0)I;
2) Sα,β(s)Sα,β(t) = Sα,β(t)Sα,β(s) for all t, s ≥ 0;
3) The function equation Sα,β(s)Iαt Sα,β(t)− Iαs Sα,β(s)Sα,β(t) = gβ+1(s)Iαt Sα,β(t)− gβ+1(t)Iαs Sα,β(s) for all

t, s ≥ 0.

The generatorA of Sα,β is defined by

D(A) :=
{

x ∈ Ω : lim
t→0+

Sα,β(t) x − gβ+1(t) x
gα+β+1(t)

exists
}

(2.3)

and

A x := lim
t→0+

Sα,β(t) x − gβ+1(t) x
gα+β+1(t)

, x ∈ D(A), (2.4)

where gα+β+1(t) :=
tα+β

Γ(α + β)
(α + β > 0).

An (α, β)-ROF Sα,β is said to be exponentially bounded if there exist constants δ ≥ 1, w ≥ 0 such
that ||Tα(t)||C1−γ ≤ δ ewt and ||Sα,β(t)||C1−γ ≤ δ ewt, t ≥ 0·.

Now, we consider the continuous function given H : I × Ω → Ω such that, for almost all t ∈ I,
yields

||H(t, x) −H(t, y)||C1−γ ≤ `(t)||x − y||C1−γ , x, y ∈ Ω (2.5)

where ` : [0,T ]→ R+ and u : [0,T ]→ R are two given measurable functions such that `, u and `u are
locally integrable on I.
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The following is the definition of the Mainardi function, fundamental in mild solution of Eq (1.1).
Then, the Wright function, denoted by Mα(Q), is defined by references [39, 40]

Mα(Q) =

∞∑
n=1

(−Q)n−1

(n − 1)!Γ(1 − αn)
, 0 < α < 1, Q ∈ C

satisfying the relation ∫ ∞

0
θδMα(θ) dθ =

Γ(1 + δ)

Γ(1 + αδ)
, for θ, δ ≥ 0·

Lemma 2.2. The fractional nonlinear differential equation [39, 40], Eq (1.1), is equivalent to the
integral equation

ξ(t) =
tγ−1

Γ(γ)
ξ(0) +

1
Γ(α)

∫ t

0
(t − s)α−1 [

Aξ(s) + u(s)H(s, ξ(s))
]

ds , t ∈ [0,T ]· (2.6)

A function ξ ∈ C1−γ(I,Ω) is called a mild solution of Eq (1.1), if the integral equation, Eq (2.6)
holds, yields

ξ(t) = Sα,β(t)ξ(0) +

∫ t

0
Tα(t − s)u(s)H(s, ξ(s)) ds , t ∈ I (2.7)

where Tα(t) = tα−1Gα(t), Gα(t) =

∫ ∞

0
αθMα(θ)S(tαθ) dθ and Sα,β(t) = I

β(1−α)
0 Tβ(t).

For a given ξ0 ∈ Ω and any ξ ∈ C1−γ(I,Ω), we set

Λ(ξ)(t) := Sα,β(t)ξ0 +

∫ t

0
Tα(t − s)u(s)H(s, ξ(s)) ds (2.8)

for all t ∈ I.
For the procedure in this paper, `, u are measurable functions such that `, u and the product `u are

locally integrable. Moreover, it is easy to see that the application ξ → Λ(ξ) is a self-mapping of the
space C1−γ(I,Ω).

On the other hand, for ξ0 ∈ Ω and ε, we consider

ξ(t) = Λ(ξ(t)), t ∈ I (2.9)

and the following inequalities
||ξ(t) − Λ(ξ(t))||C1−γ ≤ ε , t ∈ I (2.10)

and
||ξ(t) − Λ(ξ(t))||C1−γ ≤ G(t) , t ∈ I (2.11)

where ξ ∈ C1−γ(I,Ω) and G ∈ C1−γ(I, (0,+∞)).
The following are the definitions of the main results to be investigated in this paper. The definitions

were adapted to the problem version of fractional differential equations.

Definition 2.3. The Eq (2.9) is Ulam-Hyers stable if there exists a real number c > 0 such that for each
ε > 0 and for each solution ξ ∈ C1−γ(I,Ω) of Eq (2.9) such that [15, 41]

||ξ(t) − v(t)||C1−γ ≤ ε , t ∈ I· (2.12)
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Definition 2.4. The Eq (2.9) is generalized Ulam-Hyers stable if there exists
θ ∈ C1−γ([0,+∞), [0,+∞)), θ(0) = 0, such that for each ε > 0 and for each solution ξ ∈ C1−γ(I,Ω) of
Eq (2.10) there exists a solutions v ∈ C1−γ(I,Ω) of Eq (2.9) such that [15, 41]

||ξ(t) − v(t)||C1−γ ≤ θ(ε) , t ∈ I· (2.13)

Definition 2.5. The Eq (2.9) is generalized Ulam-Hyers-Rassias stable with respect to
G ∈ C1−γ([0,+∞), [0,+∞)), if there exists cG > 0 such that for each solution ξ ∈ C1−γ(I,Ω) of Eq
(2.11) there exists a solution v ∈ C1−γ(I,Ω) of Eq (2.9) such that [15, 41]

||ξ(t) − v(t)||C1−γ ≤ cGG(t) , t ∈ I· (2.14)

3. Ulam-Hyers and Ulam-Hyers-Rassias stabilities of mild on [0,T ].

In this Section, we investigate the first of the main results of this paper, i.e., the Ulam-Hyers and
Ulam-Hyers-Rassias stabilities of Eq (2.9) in the interval [0,T ] using the Banach fixed point theorem.

Let
(
Sα,β(t)

)
t≥0

the (α, β)-resolvent operator function on a Banach space (Ω, || · ||C1−γ) and the
continuous function ξ : [0,T ]→ Ω, given by

Λ(ξ)(t) := Sα,β(t)ξ0 +

∫ t

0
Tα(t − s)u(s)H(s, ξ(s)) ds , t ∈ [0,T ) (3.1)

for ξ0 ∈ Ω fixed.

Then, we have the theorem that gives certain conditions, guarantees the Ulam-Hyers stability to Eq
(2.9) on the finite interval [0,T ].

Theorem 3.1. Let
(
Sα,β(t)

)
t≥0

the (α, β)-resolvent operator function on a Banach space (Ω, || · ||C1−γ),
with 0 ≤ γ ≤ 1 and let T > 0 be a positive real number. We set

λ̃ := δ

∫ T

0
ew(T−s)|u(s)|`(s) ds· (3.2)

If λ̃ < 1, then the Eq (2.9) is stable in the Ulam-Hyers sense.
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Proof. Admit that λ̃ < 1 and let ε > 0 be given. For φ, ξ ∈ C1−γ(I,Ω), yields

||(Λφ)(t) − (Λξ)(t)||C1−γ =

∣∣∣∣∣∣
∣∣∣∣∣∣Sα,β(t)ξ0 +

∫ t

0
Tα(t − s)u(s)H(s, φ(s)) ds

− Sα,β(t)ξ0 −

∫ t

0
Tα(t − s)u(s)H(s, ξ(s)) ds

∣∣∣∣∣∣
∣∣∣∣∣∣
C1−γ

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ t

0
Tα(t − s)u(s) (H(s, φ(s)) −H(s, ξ(s))) ds

∣∣∣∣∣∣
∣∣∣∣∣∣
C1−γ

≤

∫ t

0
||Tα(t − s)||C1−γ |u(s)|||H(s, φ(s)) −H(s, ξ(s))||C1−γ ds

≤

∫ t

0
||Tα(t − s)||C1−γ |u(s)| `(s) ||φ(s) − ξ(s)||C1−γ ds

≤

∫ T

0
δ ew(T−s)|u(s)| `(s) ||φ(s) − ξ(s)||C1−γ ||φ(s) − ξ(s)||C1−γ ds

= δ

∫ T

0
ew(T−s)|u(s)| `(s) ds ||φ(s) − ξ(s)||C1−γ

= λ̃||φ − ξ||C1−γ , t ∈ [0,T ]·

So, one has
d1−γ(Λφ,Λξ) ≤ λ̃ d1−γ(ξ, ξ).

What implies, that Λ is a contradiction. On the other hand, consider θ, φ ∈ C1−γ(I,Ω), such that

d1−γ(Λθ, θ) ≤ ε ·

and
d1−γ(φ, ξ) ≤

ε

1 − λ̃
.

Thus, we obtain
d1−γ(Λφ, θ) ≤ d1−γ(θ,Λθ) + d1−γ(Λθ,Λφ)

≤ ε +
ε

1 − λ̃
≤

ε

1 − λ̃
·

In this sense, we have that the ball closed BC1−γ

(
θ,

ε

1 − λ̃

)
of the Banach space C1−γ(I,Ω) is invariant

by the map Λ, that is,

Λ

(
BC1−γ

(
θ,

ε

1 − λ̃

))
⊂ BC1−γ

(
θ,

ε

1 − λ̃

)
·

Then, applying the Banach fixed point theorem in the Λ acting BC1−γ

(
θ,

ε

1 − λ̃

)
, we have that there

is only one element such that ξ = Λ(ξ). So we have to ξ is a solution of Eq (2.9), which satisfies

d1−γ = ||θ(t) − ξ(t)||C1−γ ≤ c ε , t ∈ [0,T ]

where c := 1/(1 − λ̃). Thus, we conclude that the integral equation (2.9) is stable in the Ulam-Hyers
sense . �
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Thus, we conclude the first part of the result. Next, we will investigate the Ulam-Hyers-Rassias
stability by completing the first purpose of this paper.

Theorem 3.2. Let (Ω, || · ||C1−γ) be a Banach space and let (Sα,β(t))t≥0 be a (α, β)-resolvent operator
function on Ω. Let δ ≥ 1, w ≥ 0 be constants such that

||Sα,β(t)||C1−γ ≤ δ ewt and ||Tα(t)||C1−γ ≤ δ ewt (3.3)

for all t ≥ 0. Let ξ0 ∈ Ω, T > 0 and G : [0,T ]→ (0,∞) be a continuous function.
Suppose that a continuous function f : [0,T ]→ Ω satisfies∣∣∣∣∣∣

∣∣∣∣∣∣ f (t) − Sα,β(t)ξ0 −

∫ t

0
Tα(t − s)u(s)H(s, f (s)) ds

∣∣∣∣∣∣
∣∣∣∣∣∣
C1−γ

≤ G(t) (3.4)

for all t ∈ [0,T ].
Suppose that there exists a positive constant ρ such that

`(s)|u(s)|ew(T−s) ≤ ρ (3.5)

for almost all s ∈ [0,T ]. Then, ∃CG > 0 (constant) and a unique continuous function v : [0,T ]→→ Ω

such that

v(t) = Sα,β(t)ξ0 +

∫ t

0
Tα(t − s)u(s)H(s, v(s)) ds , t ∈ [0,T ] (3.6)

and
|| f (t) − v(t)||C1−γ ≤ CGG(t) , t ∈ [0,T ] · (3.7)

Proof. Consider K > 0 be such that Kδρ < 1 and continuous function φ : [0,T ]→ (0,∞) as follows,∫ t

0
φ(s) ds ≤ K φ(t) , t ∈ [0,T ]. (3.8)

Now let, f , G satisfy the inequality (3.4) and α̃G, β̃G > 0 such that

α̃Gφ(t) ≤ G(t) ≤ β̃Gφ(t) , t ∈ [0,T ] · (3.9)

On the other hand, for all h, g ∈ C1−γ(I,Ω), consider the following set

dφ,1−γ(h, g) := inf
{
C ∈ [0,∞) : ||h(t) − g(t)||C1−γ ≤ Cφ(t) , t ∈ [0,T ]

}
·

It is easy to see that (C1−γ(I,Ω), dφ,1−γ) is a metric and that (C1−γ(I,Ω), dφ,1−γ) is a complete metric
space.

Now, consider the operator Λ : C1−γ(I,Ω)→ C1−γ(I,Ω) defined by

(Λh)(t) := Sα,β(t)ξ0 +

∫ t

0
Tα(t − s)u(s)H(s, h(s)) ds , t ∈ [0,T ]·

The next step is to show that Λ is a contraction in the metric space C1−γ(I,Ω) induced by metric
dφ,1−γ. Then, let h, g ∈ C1−γ(I,Ω) and C(h, g) ∈ [0,∞) a constant such that

||h(t) − g(t)||C1−γ ≤ C(h, g)φ(t) , t ∈ [0,T ] ·
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Then, using Eqs (3.3), (3.5) and (3.8), we obtain

||(Λh)(t) − (Λg)(t)||C1−γ =

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ t

0
Tα(t − s)u(s) (H(s, h(s)) −H(s, g(s))) ds

∣∣∣∣∣∣
∣∣∣∣∣∣
C1−γ

≤

∫ t

0
||Tα(t − s)||C1−γ |u(s)|||H(s, h(s)) −H(s, g(s))||C1−γ ds

≤

∫ t

0
δ ew(t−s)|u(s)|`(s)||h(s)) − g(s||C1−γ ds

≤ δC(h, g)
∫ t

0
ew(t−s)φ(s)|u(s)|`(s) ds

≤ δC(h, g)ρ
∫ t

0
φ(s) ds ≤ δC(h, g)ρKφ(t)

= C(h, g)δρKφ(t) , t ∈ [0,T ]·

Therefore, we have dφ,1−γ(Λ(h),Λ(g)) ≤ δρKC(h, g) from which we deduce that

dφ,1−γ(Λ(h),Λ(g)) ≤ δρKdφ,1−γ(h, g) ·

Using the fact that δρK < 1, we have that Λ is a contraction in (C1−γ(I,Ω), dφ,1−γ). In this sense,
through Banach fixed point theorem, we have that there is a unique function v ∈ C1−γ(I,Ω) such that
v = Λ(v). Now, using By the triangle inequality, yields

dφ,1−γ( f , v) ≤ dφ,1−γ( f ,Λ( f )) + dφ,1−γ(Λ( f ),Λ(v))
≤ βG + δρKdφ,1−γ( f , v)

which implies that

dφ,1−γ( f , v) ≤
βG

1 − δρK
. (3.10)

Which in turn, one has

|| f (t) − v(t)||C1−γ ≤
βG

1 − δρK
φ(t)

≤
βG

1 − δρK
G(t)
αG

= CGG(t) , t ∈ [0,T ]

(3.11)

where CG :=
βG

(1 − δρK)αG
, which is the desired inequality (3.7). �

Remark 3.3. From Theorem 3.1 and Theorem 3.2, we have some particular cases, that is, by taking
the boundaries with β → 1 and β → 0. Also, we have the whole case when α = 1. So we have the
following versions:

(1) For β → 0 in Theorem 3.1, we have the particular case in the sense of the Riemann-Liouville
fractional derivative, given by:

Theorem 3.4. Let
(
Sα,0 (t)

)
t≥0 the (α, 0)− resolvent operator function on Banach space

(
Ω, ‖·‖Cα

)
with

and let T > 0 be a positive real number. We set

λ̃ := δ

∫ T

0
eω(T−s)

|u (s)| ` (s) ds.

If λ̃ < 1 them Eq (2.9) is stable in the Ulam-Hyers sense.
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(2) Taking limit β → 1 in Eq (2.9), we have the version of Theorem 3.1 for the Caputo fractional
derivative, ensuring that Eq (2.9) is Ulam-Hyers stable.

(3) Taking limit β → 1 in Eq (2.9), we have as particular case the version of Theorem 3.2 for the
Caputo fractional derivative given by the following theorem (Ulam-Hyers-Rassias):

Theorem 3.5. Let (Ω, ‖·‖) be a Banach space and
(
Sα,1 (t)

)
t≥0 be (α, 1)− resolvent operator function

on Ω. Let δ ≥ 1, ω ≥ 0 be constants such that
∥∥∥Sα,1 (t)

∥∥∥ ≤ δeωt and ‖Tα (t)‖ ≤ δeωt for all t ≥ 0. Let
ξ0 ∈ Ω be fixed, T > 0 and G : [0,T ] → (0,∞) be a continuous function. Suppose that a continuous
function f : [0,T ]→ Ω satisfies∥∥∥∥∥∥ f (t) − Sα,1 (t) ξ0 −

∫ t

0
Tα (t − s) u (s) H (s, f (s)) ds

∥∥∥∥∥∥ ≤ G (t)

for all t ∈ [0,T ].
Suppose that exists a positive constant ρ such that

` (s) |u (s)| eω(T−s)
≤ ρ

for almost all s ∈ [0,T ]. Then, exist the constant CG > 0 and a unique continuous functions v :
[0,T ]→ Ω such that

v (t) = Sα,1 (t) ξ0 +

∫ t

0
Tα (t − s) u (s) H (s, f (s)) ds, t ∈ [0,T ]

and
‖ f (t) − v (t)‖ ≤ CGG (t) , ∀t ∈ [0,T ] .

(4) Taking limit β → 1 or β → 0 and choosing α = 1, we have the version of the Theorem 3.1 and
Theorem 3.2, for integer case.

4. Ulam-Hyers and Ulam-Hyers-Rassias stabilities of mild solution on [0,+∞)

As in Section 3, we investigate the Ulam-Hyers and Ulam-Hyers-Rassias stabilities in the interval
[0,+∞], in fact completing the main results investigated in this paper. So we start with the following
theorem:

Theorem 4.1. Let ξ0 ∈ Ω be fixed and let ε > 0 be a given positive number. Suppose that a continuous
function f : [0,+∞)→ Ω satisfies∣∣∣∣∣∣

∣∣∣∣∣∣ f (t) − Sα,β(t)ξ0 −

∫ t

0
Tα(t − s)u(s)H(s, f (s)) ds

∣∣∣∣∣∣
∣∣∣∣∣∣
C1−γ

≤ ε (4.1)

for all t ∈ [0,+∞).
Suppose that

λ̃α,1−γ = sup
t≥0

∫ t

0
`(s)|u(s)|||Tα(t − s)||C1−γ ds < 1 (4.2)

with 0 < α ≤ 1 and 0 ≤ γ ≤ 1.
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Then, there exists a unique continuous function v : [0,+∞)→ Ω such that

v(t) = Sα,β(t)ξ0 +

∫ t

0
u(s)Tα(t − s)H(s, v(s)) ds , t ∈ [0,+∞) (4.3)

and
|| f (t) − v(t)||C1−γ ≤

ε

1 − λ̃α,1−γ
, t ∈ [0,+∞) · (4.4)

Proof. Consider that λ̃α,1−γ < 1, ε > 0 be given and f ∈ C1−γ([0,+∞),Ω) satisfy the inequality (4.1).
On the other hand, we consider the set Ẽ f ,1−γ, given by

Ẽ f ,1−γ :=
{

g ∈ C1−γ([0,+∞),Ω); sup
t≥0
||g(t) − f (t)||C1−γ < +∞

}
. (4.5)

The set Ẽ f ,1−γ is no-empty, because it contains f and Λ( f ). Now, consider the functions h, g ∈ Ẽ f ,1−γ,
such that

d1−γ(h, g) := sup
t≥0
||h(t) − g(t)||C1−γ .

Then, d1−γ is a distance and the metric space (Ẽ f ,1−γ, d1−γ) is complete.
For any functions h, g ∈ Ẽ f ,1−γ, yields

||(Λh)(t) − (Λg)(t)||C1−γ =

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ t

0
u(s)Tα(t − s)

[
H(s, h(s)) −H(s, g(s))

]
ds

∣∣∣∣∣∣
∣∣∣∣∣∣
C1−γ

≤

∫ t

0
||Tα(t − s)||C1−γ |u(s)|||H(s, h(s)) −H(s, g(s))||C1−γ ds

≤

∫ t

0
||Tα(t − s)||C1−γ |u(s)|`(s)||h(s) − g(s)||C1−γ ds

≤

∫ t

0
||Tα(t − s)||C1−γ |u(s)|`(s) ds d1−γ(h, g)

≤ λ̃α,1−γd1−γ(h, g) , t ∈ [0,+∞).

Therefore, follows that
d1−γ(Λh,Λg) ≤ λ̃α,1−γd1−γ(h, g).

Moreover, it is easy to show that Λ(h) ∈ Ẽ f ,1−γ for any function h ∈ Ẽ f ,1−γ. Thus, we have Λ is a
contraction in (Ẽ f ,1−γ, d1−γ). In this sense, by Banach fixed point theorem, we have that there is only
one element v ∈ Ẽ f ,1−γ such that v = Λ(v). By the triangle inequality, yields

d1−γ( f , v) ≤ ≤ d1−γ( f ,Λ( f )) + d1−γ(Λ( f ),Λ(v))
≤ ε + λ̃α,1−γd1−γ( f , v)

that implies
d1−γ( f , v) ≤

ε

1 − λ̃α,1−γ
,

this is,
|| f (t) − v(t)||C1−γ ≤ c ε , t ∈ [0,+∞) (4.6)
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where c :=
1

1 − λ̃α,1−γ
.

The inequality (4.6) shows that the Eq (2.9) is Ulam-Hyers stable. �

With the following result aimed at investigating the Ulam-Hyers-Rassias stability, complete the
second main result of this paper.

Theorem 4.2. Let Ω be a Banach space, (Sα,β(t))t≥0 be a (α, β)-resolvent operator function on Ω and
φ0 ∈ Ω be fixed. Let K > 0 be given and φ : [0,+∞)→ (0,+∞) be a continuous function such that∫ t

0
φ(s) ds ≤ K φ(t) , t ∈ [0,+∞)· (4.7)

Suppose that a continuous function f : [0,+∞)→ Ω satisfies∣∣∣∣∣∣
∣∣∣∣∣∣ f (t) − Sα,β(t)ξ0 −

∫ t

0
u(s)Tα(t − s)H(s, f (s)) ds

∣∣∣∣∣∣
∣∣∣∣∣∣
C1−γ

≤ φ(t) (4.8)

for all t ∈ [0,+∞).
Suppose that there exists a positive constant ρ > 0 such that

`(s)|u(s)|||Tα(t − s)||C1−γ ≤ ρ (4.9)

for almost all (s, t) ∈ [0,+∞) with 0 ≤ s ≤ t and suppose that

Kρ < 1· (4.10)

Then, there exists a unique continuous function v : [0,+∞)→ ω such that

v(t) = Sα,β(t)ξ0 +

∫ t

0
u(s)Tα(t − s)H(s, v(s)) ds , t ∈ [0,+∞) (4.11)

and
|| f (t) − v(t)||C1−γ ≤

1
1 − Kρ

φ(t) , t ∈ [0,+∞)· (4.12)

Proof. Let f ∈ C1−γ([0,+∞)) satisfy the inequality (4.8) and the following set, defined by

Ẽ f ,1−γ :=
{
g ∈ C1−γ([0,+∞),Ω) : ∃C ≥ 0 : ||g(t) − f (t)||C1−γ ≤ Cφ(t) , t ∈ [0,+∞)

}
.

The set Ẽ f ,1−γ is not empty, because it contains f and Λ( f ).
Now, for h, g ∈ Ẽ f ,1−γ, we define the following set

dφ,1−γ(h, g) := inf
{
C ∈ [0,+∞) : ||h(t) − g(t)||C1−γ ≤ Cφ(t) , t ∈ [0,+∞)

}
.

Note that it is easy to see that (Ẽ f ,1−γ, dφ,1−γ) is a complete metric space satisfying Λ(Ẽ f ,1−γ) ⊂ Ẽ f ,1−γ,
where Λ : Ẽ f ,1−γ → Ẽ f ,1−γ is defined by

(Λh)(t) := Sα,β(t)ξ0 +

∫ t

0
u(s)Tα(t − s)H(s, h(s)) ds , t ∈ [0,+∞).
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The idea is to prove that in fact the Λ application is a contraction on the metric space (Ẽ f ,1−γ, dφ,1−γ).
Then, let h, g ∈ Ẽ f ,1−γ and C(h, g) ∈ [0,+∞) be an arbitrary constant such that

||h(t) − g(t)||C1−γ ≤ C(h, g)φ(t) , t ∈ [0,+∞).

In this sense, we have the following inequality

||(Λh)(t) − (Λg)(t)||C1−γ =

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ t

0
u(s)Tα(t − s) (H(s, h(s)) −H(s, g(s))) ds

∣∣∣∣∣∣
∣∣∣∣∣∣
C1−γ

≤

∫ t

0
|u(s)|||Tα(t − s)||C1−γ ||H(s, h(s)) −H(s, g(s))||C1−γ ds

≤

∫ t

0
|u(s)|||Tα(t − s)||C1−γ`(s)||h(s)) − g(s||C1−γ ds

≤ C(h, g)
∫ t

0
|u(s)|`(s)||Tα(t − s)||C1−γφ(s) ds

≤ C(h, g)d
∫ t

0
φ(s) ds

≤ C(h, g)dKφ(t) , t ∈ [0,T ]·

Therefore, yields dφ,1−γ(Λ(h),Λ(g)) ≤ C(h, g)ρK, that implies in

dφ,1−γ(Λ(h),Λ(g)) ≤ ρKdφ,1−γ(h, g).

Using the fact that ρK < 1, we get Λ is strictly contractive on the (Ẽ f ,1−γ, dφ,1−γ). Thus, through the
Banach fixed point theorem, there is a unique function v ∈ Ẽ f ,1−γ such that v = Λ(v). Using the triangle
inequality, yields

dφ,1−γ( f , v) ≤ dφ,1−γ( f ,Λ( f )) + dφ,1−γ(Λ( f ),Λ(v))
≤ 1 + ρKdφ,1−γ( f , v)

which implies that

dφ,1−γ ≤
1

1 − ρK
.

Therefore, we conclude that

|| f (t) − v(t)||C1−γ ≤ Cφφ(t) , t ∈ [0,+∞)

where Cφ :=
1

1 − ρK
. �

Remark 4.3. In the same way that we highlight the particular cases for Theorem 3.1 and Theorem 3.2,
here also the remark made according to Remark 3.3 is valid.

5. Conclusions

We conclude this paper with the objectives achieved, i.e., we investigate the Ulam-Hyers and Ulam-
Hyers-Rassias stabilities of mild solution for fractional nonlinear abstract nonlinear Cauchy problem:
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the first part was destined to the bounded interval [0,T ] and the second part to the interval [0,∞). It is
important to emphasize the fundamental role of the Banach fixed point theorem in the results obtained.

Although, the results presented here, contribute to the growth of the theory; some questions still
need to be answered. The first question is about the possibility of investigating the existence and
uniqueness of mild solutions for fractional differential equations formulated via ψ-Hilfer fractional
derivative. Consequently, the second allows us to question the Ulam-Hyers stabilities.

As highlighted in the introduction, the Ulam-Hyers stabilities theory is indeed interesting and of
paramount importance for the theory of fractional differential equations, and that there are still open
problems, in particular as highlighted above. Certainly, the results investigated here contribute to the
area, since the limited number of works involving more general fractional derivatives are still little
addressed. We are working on other work on the existence and controllability of mild solutions to
fractional differential equations, in particular involving the ψ-Hilfer fractional derivative.
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