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Abstract: The core of the demonstration of this paper is to interpret the forward propagation process
of machine learning as a parameter estimation problem of nonlinear dynamical systems. This process
is to establish a connection between the Recurrent Neural Network and the discrete differential equa-
tion, so as to construct a new network structure: ODE-RU. At the same time, under the inspiration of
the theory of ordinary differential equations, we propose a new forward propagation mode. In a large
number of simulations and experiments, the forward propagation not only shows the trainability of the
new architecture, but also achieves a low training error on the basis of main-taining the stability of the
network. For the problem requiring long-term memory, we specifically study the obstacle shape recon-
struction problem using the backscattering far-field features data set, and demonstrate the effectiveness
of the proposed architecture using the data set. The results show that the network can effectively reduce
the sensitivity to small changes in the input feature. And the error generated by the ordinary differential
equation cyclic unit network in inverting the shape and position of obstacles is less than 10−2.

Keywords: ordinary differential equation; stability; obstacle inversion; recurrent neural network;
gated cell structure

1. Introduction

Gated recurrent neural networks, which have proven to be very effective against machine learning
tasks involving continuous data. This network architecture allows feature information to be transferred
from any previous time node to the end node of the network more easily, and can solve the problem
of partial gradient disappearance [1], such as long short-term memory networks (LSTM) [2] and gated
recurrent units (GRU) [3]. In addition, other problems of machine learning arise from the potential
instability in the forward propagation process, especially when the feature data is propagated through
the deep neural network (DNN), the noise of the original feature data will affect the stability of the
network output [4].

In 2019, the antisymmetric recurrent neural network (AntisymmetricRNN) proposed by Chang et
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al. [5] and the semiimplicit method IMEXnet through adaptation of partial differential equations pro-
posed by Haber et al. [6], are neural network structures with stability, so this kind of network can
weaken the problem of gradient disappearance or even gradient explosion. The main idea of construct-
ing this type of network comes from the machine learning method based on a dynamic system proposed
by Weinan E in 2017 [7], this method regards the residual neural network as a high-dimensional non-
linear function and establishes a connection with the dynamic system. Subsequently, Lu et al. proved
that many convolutional networks could be interpreted as different numerical discrete forms of differ-
ential equations, and combined the multi-step architecture (LM-architecture) with the residual neural
network to form the LM-ResNet and LM-ResNeXt [8] (i.e., the networks obtained by applying the
LM-architecture on ResNet and ResNeXt respectively).

In 2018, Chen et al. constructed a new neural network structure based on ordinary differential
equations:ODE-NET [9], this shows that neural networks can not only be explained by differential
equations but also can use differential equations to construct neural networks satisfying certain condi-
tions.

An improved recurrent neural network with stability is proposed in this paper. Our network is
based on simple but effective changes in the popular RNN architecture and is driven by the discrete
form of ordinary differential equations. Within the time step, the input vector is transmitted to the
network unit node by node, and the extracted feature data is finally output .The network driven by
differential equations can make the network stable during operation, reduce the number of parameters
and computational complexity, and have nonlinear mapping capabilities. The network is applied to
typical ill-posed problems such as wave inverse scattering [10–17], and the shape reconstruction of a
single obstacle in the acoustic wave field is discussed. Use the ODE-RU network to solve the obstacle
shape inversion problem, use the nonlinear mapping ability of the neural network to fit the relationship
between the data, and then reconstruct the obstacle shape.

The paper is structured as follows. In Section 2, we construct the recurrent unit network of ordinary
differential equations (ODE-RU) based on the differential equations, and the stability of the network
is proved in the sense of Lyapunov stability. In Section 3, we conduct numerical experiments on a
synthetic dataset that is constructed to demonstrate the advantages and limitations of the method. We
summarize the paper in Section 4.

2. Ordinary differential equations recurrent unit network

We briefly review recurrent neural networks(RNN) and outline their contact in terms of differential
equations and RNN. Based on the basic recurrent neural network structure, borrowing the ideas of gated
neural network GRU and LSTM and the stable differential equation form, the recurrent neural network
is improved and a new recurrent neural network is constructed. Finally, we analyze the improved
stability of our network.

2.1. RNN and ordinary differential equations

Recurrent Neural Network (RNN) was first applied in the field of natural language processing and
can be modeled according to the characteristics of a language. The state value ht of RNN hidden layer
depends not only on the current node input xt, but also on the output value of the previous hidden
layer ht−1, and the value of the weight matrix W,U on each hidden layer is shared with each other. Its
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network structure is shown in Figure 1.
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Figure 1. recurrent neural network structure diagram.

On the t-th node,propagates the features ht as follows:

ht = f (Uxt + Wht−1 + b) (2.1)

here, f (x) is the activation function. In general, the hyperbolic tangent function is selected.
It can be seen from Eq (2.1) that the output ht of each hidden layer node is a function of the output

ht−1 at the time of last t − 1, namely:

ht = f (ht−1, θ) = f (Uxt + Wht−1 + b) (2.2)

Equation (2.2) can also be regarded as the expression of a nonlinear discrete dynamical system of
RNN, where f is a nonlinear vector function, θ = [W,U, x] is the parameter vector.

Consider a first-order ordinary differential equation containing only one time variable t:

h′(t) = F(h(t − 1)), t ≥ 0 (2.3)

where h(t) ∈ Rn and F : Rn → Rn. For most ordinary differential equations, the approximate solution
of the equation can be calculated using discretized numerical methods. Here the difference quotient
ht−ht−1

ε
is used to replace the derivative of the left end of the Eq (2.3). The corresponding difference

equation can be written as:

ht − ht−1

ε
= F(ht−1).

In order to be approximately valid, by the definition of the derivative, ε > 0 and ε are small enough.
Assuming that F(h) satisfies Lipschitz continuity on h and the eigenvalue of the corresponding Jacobi
matrix has a negative real part, then the result of such a discrete equation is stable.

Given a forward Euler discrete equation with initial values:

ht = ht−1 + εF(ht−1),
ht0 = h(0)

(2.4)
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Geometrically, each iteration step of the forward Euler advances from ht−1 along the tangent equation
by a step size ε. The iterative formula (2.3) can be replaced by the finite difference form and written
into a discrete form such as the difference Eq (2.4). There is an approximate equivalence relationship
between the two.

The above equation can also be summarized into the following discrete dynamic system form, and
f is a vector function, θ is a parameter vector.

ht = f (ht−1, θ), ht0 = h(0) (2.5)

According to Eq (2.2), the forward propagation process of RNN is equivalent to that of the dynamic
system (2.5).

In this paper, ordinary differential equations with ideal properties is designed by using the theory of
dynamical systems, so that the generated recurrent neural network can inherit these properties. Stability
is one of the important properties to be considered in network construction, and we will discuss the
form of recurrent neural networks with stability in the next section.

2.2. Ordinary differential equations recurrent unit network

Based on the basic recurrent neural network Eq (2.2) formula, we can get

h′(t) = H(h(t − 1), η) − h(t − 1) (2.6)

where, H(h(t − 1), η) represents the functional relationship between the variable h(t − 1) and the pa-
rameter vector η under the action of nonlinear function. The forward Euler method is used to express
the Eq (2.6) in an approximate iterative form: ht = ht−1 + ε · (H(ht−1, η) − ht−1).

The function H(ht−1, η) = tanh(tanh(Qxt−1 + Wht−1) � ht−1 + Mxt−1 + b2), the expression of the
improved network can be obtained:

ht = ht−1 + ε · (tanh(tanh(Qxt−1 + Wht−1) � ht−1 + Mxt−1 + b2) − ht−1). (2.7)

RNNs usually use a gated machanism, Each gate is often modeled as a single layer network taking
the previous hidden state ht−1 and data xt as inputs, followed by a sigmoid activation. As an example,
LSTM cells make use of three gates, a forget gate, an input gate, and an output gate, GRU cells
is simplified to update gate and reset gate, these gates provide the main support for good network
performance.

In order to increase the operational performance of the network, a gating mechanism is added to the
recurrent unit network of ordinary differential equations. On the basis of Eq (2.7), input gate zt ∈ R

m×1

is added to regulate the feature selection process from the input layer to hidden layer, then ODE-RU
with gated structure can be written as:

zt = σ(V xt + Uht),
ht = ht−1 + ε � zt−1 � (tanh(tanh(Qxt−1 + Wht−1) � ht−1 + Mxt−1 + b2) − ht−1

(2.8)

where xt ∈ R
n and ht ∈ R

m represent the input vector and the state vector of the hidden layer at the
t node respectively, V,Q,M ∈ Rm×n and U,W ∈ Rm×m are weight matrices, σ denotes the sigmoid
function and � denotes the Hadamard product, ε > 0 is a hyperparameter that represents the step size.
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The structure of the operation unit is as follows:

Figure 2. ODE-RU unit.

2.3. Stability of the methods

In the cyclic neural network, the state of t node changes as the state of t − 1 node changes. If
there exists a state ht∗ such that ht∗ = f (ht∗ , θ), this state is called fixed point(zero solution) h∗. If the
parameter vector θ in the function f changes, the state of the end node still converges to h∗, and this
property is called stability [18,19]. If the real parts of the eigenvalues of the Jacobi matrix at the fixed-
point h∗ are all negative, then the fixed points are stable. If there is an eigenvalue in the Jacobi matrix
whose real part is zero, then the eigenvalue cannot be used to determine whether it is stable or not.

The network structure proposed in this paper is improved on the basis of differential equations.
Therefore, to obtain the stability of ODE-RU network, it is necessary to study the stability of the
differential equations first. The stability theorem of differential equations can be found in reference
[20], Among them, Lemma 1 gives the stability theorem for the solution of linear differential equations,
and Lemma 2 gives the stability relationship between linear equations and their approximate nonlinear
equations. And the discrete Eq (2.4) has a corresponding relationship with the network structure in this
paper, then the network studied in this paper can inherit the stability of the discrete equation.

Proposition 2.1. An ordinary differential equation is stable when the eigenvalues of the equation’s
Jacobi matrix satisfy

max
i=1,2,...,n

Re(λi(J(t))) < 0, ∀t ≥ 0

where Re is the real part of the complex number.

Lemma 1. If the zero solution of the linear stationary system (the singularity) will satisfy the following
properties according to the properties of the characteristic equation roots: If the characteristic equa-
tion has a repeated root λ, then the singularity is usually a degenerate node. When λ < 0, both types
of nodes are stable, while the zero solution is asymptotically stable. At λ > 0, both the singularity and
the corresponding zero solution are unstable.

Lemma 2. If the characteristic equation does not have zero roots or zero real part roots, the stability
state of the zero solution of the corresponding nonlinear equation is consistent with the stability state
of the zero solution of the linear approximation equation.
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In other words, when the roots of the characteristic equation all have negative real parts, the zero
solution of the nonlinear equation is asymptotically stable, and when the roots of the characteristic
equation have positive real parts, the zero solution is unstable.

Relying on stability alone is not enough for them to capture long term dependencies. As Haber
and Ruthotto point out in the literature. Re(λi(J(t))) � 0 results in a lossy system, where the energy
or signal in the initial state is dissipated over time. Using such an ODE as the underlying dynamical
system of a recurrent network will lead to catastrophic forgetting of the past inputs during the forward
propagation [21]. To this end, Chang et al. proposed that under standard critical conditions,

max
i=1,2,...,n

Re(λi(J(t))) ≈ 0 ∀i = 1, 2, ..., n,

the system preserves the long-term dependencies of the inputs while being stable [22].
To discuss the influence of the choice of weight matrix on the stability of the network, it is necessary

to reduce the complexity of network computation and study the properties of the network without input
data. Therefore, the forward propagation formula (2.8) of ODE-RU network is written as follows, and
study its stability.

ht = ht−1 + ε · σ(Uht−1) � (tanh(tanh(Wht−1) � ht−1 + b2) − ht−1) (2.9)

This can also be viewed as an ordinary differential equation.Then Eq (2.10) can be regarded as the
forward Euler discrete form of the following ordinary differential equation:

h′ = σ(Uh) � (tanh(tanh(Wh) � h) − h). (2.10)

The right end of Eq (2.9) is the state vector studied in the same node. For this reason, Eq (2.10) can be
abbreviated to the form without node number.

This network can inherit the stability of the solution of the differential equation. Therefore, for
ODE-RU, the following theorem holds:

Theorem 2.1. For any weighted matrix W,U, the ordinary differential equations (2.9) is asymptotically
stable at the singularity h = 0.

proof of Theorem 2.1. First, consider the two-dimensional first-order stationary differential equations:
dh′

dh1
= P(h1, h2) = σ(U1h) � (tanh(tanh(Wh) � h1) − h1),

dh′

dh2
= Q(h1, h2) = σ(U2h) � (tanh(tanh(Wh) � h2) − h2)

(2.11)

The point (x∗, y∗) which simultaneously satisfies P(x, y) = 0,Q(x, y) = 0 is the singularity of the
system of differential equations (2.11), x = x∗, y = y∗ is the solution of the equation. Obviously, (0, 0)
is the only singularity of this equation. λ1, λ2 represents the root of the characteristic equation of the
corresponding square matrix. The Jacobi matrix corresponding to Eq (2.10) is

J =

[
λ1 0
0 λ2

]
=

[1
2 0
0 1

2

]
.
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At this time, λ1 = λ2 = −1
2 . According to the matritized Jordan canonical form theory, when the

Jacobi matrix J =

[
λ1 0
0 λ2

]
, the eigenroot is double root, if λ1 < 0, when t → +∞, there is a solution

(x̄, ȳ) = (0, 0) of the equation, then such singularities are called stable critical nodes.
From the two-dimensional conclusion to the higher dimensional case, we know that the singularity

of the equation in the m dimension is also (x̄, ȳ) = (0, 0). Let y(h) = tanh(tanh(Wh) � h) − h, then
h′ = σ(Uh) � y(h), and y(h) ∈ Rm. First, calculate the partial derivative of y(h) with respect to h:

yi = tanh((
m∑

j=1

Fi j · tanh(
m∑

j=1

Wi jh j)) × hi) − hi, (i = 1, 2, ...,m),

∂yi

∂h j
=


(1 − tanh2(Fi · tanh(Wh) � h)) × [(

m∑
j=1

Wi j)hi +
m∑

j=1
tanh(W jh)], i = j,

(1 − tanh2(Fi · tanh(Wh) � h)) × [(
m∑

j=1
Wi j)hi], i , j,

At the stable critical point h = (0, 0, .., 0) ∈ Rm, we have
∂y
∂h

=

−1, i = j

0, i , j
. Then, the Jacobi matrix

corresponding to Eq (2.9) can be written as J = [ ji j] = [
∂h′i
∂h j

], where

ji j =
∂h′i
∂h j

= σ(Uih)(1 − σ(Uih)) · Ui j · yi + σ(Uih) ·
∂yi

∂hi
.

At the fixed point, the Jacobi matrix of the equation is J = −1
2 E, where E is the identity matrix. The

characteristic root of the equation is λi = −1
2 (i = 1, 2, ...,m). From Lemmas 1 and 2, it can be known

that the equation is asymptotically stable at the zero solution h = (0, 0, ..., 0) ∈ Rm.
Therefore, the ordinary differential Eq (2.10) is asymptotically stable at the zero solu-

tion(singularity).

Given a stable ordinary differential equation, the stability of its forward Euler discretization is still
uncertain. By studying the stability conditions of the forward Euler method, the following propositions
are obtained [23]:

Proposition 2.2. The forward propagation of the forward Euler stability is stable, when

max
i=1,2,...,n

| 1 + ελi(Jt) |≤ 1 (2.12)

where | · | represents the absolute value or modulus of the complex number, and Jt is the Jacobi matrix
of ordinary differential equations.

Theorem 2.2. If the ordinary differential Eq (2.9) satisfies the condition of Proposition 2, then the for-
ward Euler discrete form of Eq (2.10) is stable, that is, the discrete Eq (2.10) is stable at the singularity
h = 0.

Theorem 2.2 shows that the ODE-RU network established in this paper is stable. The following is
a proof of Theorem 2.2.
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proof of Theorem 2.2. According to Proposition 2.2, the stability of the forward Euler method needs
to satisfy Eq (2.12). From the proof process of Theorem 2.1, we know that the eigenvalues λi(Jt) of the
Jacobian matrix J = −1

2 E are all negative numbers. so | 1 + ελi(Jt) |< 1 is true. The ODE-RU network
structure is the same as the discrete form of the ordinary differential Eq (2.9). Therefore, the discrete
equation is stable at the singularity, that is, the ODE-RU network is stable at the singularity h = 0.

When the ODE-RU network is slightly disturbed, it can return to the initial equilibrium state when
the time tends to infinity, and it has the ability to fit nonlinear systems. However, the inverse prob-
lem has nonlinear ill-posedness. Therefore, ODE-RU is used to solve the sound wave obstacle shape
inversion problem.

3. Numerical experiments

The ODE-RU proposed in this paper can be applied to obstacle inversion problems( [24–31]). Sup-
pose there exists an impenetrable obstacle D with a soundsoft boundary ∂D in two dimensions space.
The acoustic scattering problem can be illustrated as:

∆u + k2u = 0, in R2\D̄

u = us + ui = 0, on ∂D

lim
r→∞

r1/2
(
∂us

∂r − ikus
)

= 0, r = |x|
(3.1)

where, u is the total field, uiis the incident field, us is the scatter field, k is the wave number, u = 0
represents the Dirichlet boundary condition, which depends on the physical features of the obstacle
boundary. The asymptotic relationship between the scatter field us and the far field u∞(x̂) can be
described as:

us(x) =
eik|x|

√
|x|

(
u∞(x̂) + O

(
1
|x|

))
, |x| → ∞ (3.2)

Consistently holds for all observation directions x̂ = x
|x| .

Hence, this paper adopts the method of integral equation to derive data in the scatter field from the
obstacle boundary ∂D and the incident field ui, Let the incident wave number k = 1.5, and solves the
far-field data by formula (3.2).The inverse problem of our concern is the recovery of obstacle ∂D by
information from u∞(x̂).

Assumption 3.1. For the incident field ui(x) = eikx·d with incident directions d = (cos(α), sin(α)), the
incident angle α is uniformly distributed within [0, 2π):

α =

{
0,

2π
n
, · · · ,

2(n − 1)π
n

}
where n is the number of incident directions.

Assumption 3.2. The far-field data can be expresses as (x11, x12, · · · , x1N) ∈ CN′ for the incident angle
α = 0, (xn1, xn2, · · · , xnN) ∈ CN′ for the incident angle α =

2(n−1)π
N .

For n incident directions and N observation directions, the far-field data can be obtained as:

X = (x11, x12, · · · , x21, · · · , x2N , · · · , xn1, · · · , xnN) ∈ CnN′ ,
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Let M = n×N. Then, the far-field data can be rewritten as: X = (x1, x2, · · · xM) ∈ CM. Each far-field
data xt = at + i · bt was rewritten as xt = (at, bt)T , t = 1, 2, · · · ,M. The set of all far-field data can be
expressed as X = (x1, x2, · · · , xM) ∈ R2×M. The far-field data were taken as the scattering information
to reconstruct the shape of the obstacle.

Assumption 3.3. We assume that the boundary curve of the obstacle D has the following parameterized
representation:

∂D : Z(t) = (Z1(t),Z2(t)), 0 6 t 6 2π,

where Z1(t) and Z2(t) admit the following(truncated) Fourier representations:
Z1(t) =

a0

2
+

Q∑
q=1

aqcos(qt) +

Q∑
q=1

bqsin(qt),

Z2(t) =
b0

2
+

Q∑
q=1

cqcos(qt) +

Q∑
q=1

dqsin(qt),

where Q ∈ N. Let Y = (y1, y2, · · · , ym) denote the ordered set of the Fourier coefficients
a0, b0, aq, bq, cq, dq, q = 1, 2, · · · ,Q. Where m = 4Q + 2.

Considering the spatial relationship between far-field data and the interaction between shape pa-
rameters, the ODE-RU was established based on stability of differential equations and recurrent neural
network, and used for inversion of shape parameters Y ′ = (y′1, y

′
2, · · · , y

′
m) ∈ Rm.

The real parameter information and far-field data of obstacles are used to construct the training data
set, and the dataset is divided into a training set and a test set at the ratio of 9:1.

The far-field data is passed as input data to the network through the nodes in turn, and the extracted
obstacle parameter information is output through the network operation.We use the crossentropy cal-
culate the loss and SGD with momentu as optimizers According to multiple experiments, the hyper
parameters for the inversion model were set and listed in Table 1.

Table 1. Hyper parameters of the ODE-RU.

Hyper parameters batchsize batch number Number of iterations
Value 512 1000 20

Example 1. When the incident point and the observation point are the same as N, the shape of the
obstacle is inverted, and the incident angle α = {0, 2π

N , · · · ,
2(N−1)π

N }. If the number of incident points
and observation points are both N = 7, then the far-field data is the input matrix of 49 × 2, and the 49
input vectors are assigned to each node of the network according to the order of observation points,In
other words, the input dimension n = 2, the number of nodes t = 49, and the shape inversion task is to
output the extracted feature vectors after the network gets all 49 input vectors, so as to reconstruct the
shape and position of obstacles. Figure 3 is the inverse effect of the shape and position of the peanut
and the kite at N = 3, 5, 7.
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Figure 3. Inversion of peanut and kite shapes when the number of observation points and
incidence points are both N = 3, 5, 7.

Table 2 summarizes the performance of the existing methods and the network studied in this paper,
where the error is the error of the inversion of different shapes. For the current inversion problems,
the ODE-RU network proposed in this paper is superior to other gated recurrent network models in
inversion time, and has the same inversion effect.

Table 2. Error evaluation of inversion effect under different networks.

Network N=3 N=5 N=7
GRU (peanut) 3.64E-02 2.14E-02 2.17E-02
LSTM (peanut) 3.47E-02 2.21E-02 2.09E-02
ODE-RU (peanut) 3.55E-02 2.20E-02 2.18E-02
GRU (kite) 3.59E-02 2.26E-02 2.16E-02
LSTM (kite) 3.63E-02 2.19E-02 2.17E-02
ODE-RU (kite) 3.61E-02 2.25E-02 2.20E-02

Example 2. Verify the network inversion effect under a small amount of information. Take the number
of incident points as one, then the fewer the number of observation points, the less the obstacle shape
information contained in the far-field data. Similar to the previous experiment, an input vector is
transferred to the network at each node, with input dimension n = 2 and the number of nodes N =

5, 15, 25, uses a single planar wave with the incident direction d = (1, 0). The inversion results are
shown in Figure 4.
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Figure 4. Inversion of peanut and kite shapes when the number of observation points is
N = 5, 15, 25.

It can be seen from Figure 4. that with the addition of far-field information, the recovery effect
is obviously better.The data results are shown in Table 3. The performance of ODE-RU network is
comparable to that of the other two networks, and the error of the results is basically similar to that of
LSTM.

Table 3. Error evaluation of inversion effect under different networks.

Network N=5 N=15 N=25
GRU (peanut) 2.94E-02 2.15E-02 2.02E-02
LSTM (peanut) 3.07E-02 2.24E-02 2.36E-02
ODE-RU (peanut) 3.09E-02 2.16E-02 2.19E-02
GRU (kite) 3.05E-02 2.06E-02 2.15E-02
LSTM (kite) 2.89E-02 2.13E-02 2.09E-02
ODE-RU (kite) 3.09E-02 2.15E-02 2.12E-02

Example 3. In order to better show the inversion effect of the network studied in this paper, we add
noise on the basis of the original data, and consider the inversion effect of different networks when the
far-field characteristic data is not accurate enough. In the case of a single incident point and seven
observation points, the proportion of noise is added to the original characteristic data. At this point,
the input data dimension of each node is still n = 2 and the number of nodes is t = 7. Figure 5 shows
represents the inversion effect with the introduction of 5, 10 and 20% noise.
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Figure 5. The peanut and kite shapes obtained by inversion when the noise ratio is Per =

5, 10, 20.

Table 4. Error of inversion effect under different networks.

Network per=5 per=10 per=20
GRU (peanut) 3.04E-02 2.57E-02 3.64E-03
LSTM (peanut) 2.96E-02 2.62E-02 0.37E-02
ODE-RU (peanut) 2.95E-02 2.56E-02 3.55E-03
GRU (kite) 2.99E-02 2.49E-02 2.59E-03
LSTM (kite) 2.87E-02 2.52E-02 0.31E-02
ODE-RU (kite) 3.01E-02 2.51E-02 2.63E-03

As shown in Figure 5 and Table 4, when the far-field data contained a low level of noises, our model
could accurately inverse the shape parameters and reconstruct the shape of the obstacle. It can be seen
that the network is very robust against noises.

4. Conclusions

From the point of view of a dynamical system, this paper presents a viewpoint of interpreting
recurrent neural network as an ordinary differential equation. By connecting neural network with the
theory of ordinary differential equation, a new recurrent network structure is designed through the
discrete form of an ordinary differential equation, and the network structure designed by this method
can inherit the properties of the differential equation. By using the obstacle shape inversion experiment,
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it is verified that the proposed network can be successfully trained and predicted, and it is found that
the method can maintain the performance of the network.
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