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Abstract: In this paper, we construct the Zn
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1. Introduction

There is growing interest in studying generalized supergeometry, that is, geometry of graded mani-
folds where the grading group is not Z2, but Zn

2 = Z2 × . . .× Z2. The foundational aspects of the theory
of Zn

2−manifolds were recently studied in [1–4]. This generalization is used in physics, see [5]. Also
in Mathematics, there exist many examples of Zn

2−graded Zn
2−commutative algebras: quaternions and

Clifford algebras, the algebra of Deligne differential superforms, etc. Moreover, there exist interesting
examples of Zn

2−manifolds. In this paper, we study the Zn
2−grassmannians as Zn

2−manifolds and their
constructions.

In the context of manifolds, homogeneous superspaces have been defined and investigated exten-
sively using the functor of points approach in [6–8]. In this paper, we show that Zn

2−grassmannians
G−→k (−→m) are homogeneous, c.f. section 3. To this end, we show that the Zn

2−Lie group GL(−→m), c.f.
section 2, acts transitively on Zn

2−grassmannian G−→k (−→m) , c.f. section 3.
In the first section, we recall briefly all necessary basic concepts such as Zn

2− grading spaces,
Zn

2−manifolds, Zn
2−Lie groups and an action of a Zn

2−Lie group on a Zn
2−manifold. We use these

concepts in the case of Z2−geometry in [6] and [8].

In section 2, we study the Zn
2−grassmannians extensively. The supergrassmannians are introduced

by Manin in [9], but here by developing an efficient formalism, we fill in the details of the proof of this
statement.
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In section 3, by a functor of points approach, an action of the Zn
2−Lie group GL(−→m) on the

Zn
2−grassmannian G−→k (−→m) is defined by gluing local actions. Finally it is shown that this action is

transitive.

2. Preliminaries

Let Zn
2 = Z2 × . . . × Z2 be the n−fold Cartesian product of Z2. From now on, we set q := 2n − 1 and

by
−→
k , we mean (k0, k1, . . . , kq) such that ki ∈ N. Consider the bi-additive map

⟨. , . ⟩ : Zn
2 × Z

n
2 → Z2

⟨a, b⟩ =
n∑

i=1

aibi(mod2). (2.1)

The even subgroup (Zn
2)0 consists of elements γ ∈ Zn

2 such that ⟨γ, γ⟩ = 0, and the set (Zn
2)1 consists of

odd elements γ ∈ Zn
2 such that ⟨γ, γ⟩ = 1.

One can fix an ordering on Zn
2; based on this ordering, each even element is smaller than each odd

element. Given two even (odd) elements (a1, a2, . . . , an) and (b1, b2, . . . , bn), the first one is smaller
than the second one for the lexicographical order, if ai < bi, for the first i where ai and bi differ. For
example, the lexicographical ordering on Z3

2 is

(0, 0, 0) < (0, 1, 1) < (1, 0, 1) < (1, 1, 0) < (0, 0, 1) < (0, 1, 0) < (1, 0, 0) < (1, 1, 1).

Obviously, Zn
2 with lexicographical ordering is totally ordered set. Thus it may be diagrammed as an

ascending chain as follows
γ0 < γ1 < . . . < γq.

In the supergeometry, the sign rules between generators of the algebra are completely determined by
their parity. One can define a grading by (2.1) such that ϵ(a, b) = (−1)⟨a,b⟩ will be a sign rule what will
lead to Zn

2−geometry. Also, it has been shown that any other sign rule for finite number of coordinates
is obtained from the above sign rule for sufficiently big n. See [1] for more details.

2.1. Zn
2−geometry

The Zn
2−graded objects like Zn

2−algebras, Zn
2−ringed spaces, Zn

2−domains and Zn
2−manifolds have

been studied in [1, 3, 4]. In the following, we recall the necessary definitions from these references.
By definition, a Zn

2−vector space is a direct sum V =
⊕

γ∈Zn
2
Vγ of vector spaces Vγ over a field K

(with characteristic 0). For each γ ∈ Zn
2, the elements of Vγ is called homogeneous with degree γ. If

x ∈ Vγ be a homogeneous element of V, then the degree of x is represented by x̃ = γ.
A Zn

2−ring R =
⊕

γ∈Zn
2
Rγ is a ring such that its multiplication satisfies

Rγ1Rγ2 ⊂ Rγ1+γ2 .

A Zn
2−ring R is called Zn

2−commutative, if for any homogeneous elements a, b ∈ R

a.b = (−1)⟨ã,b̃⟩b.a.
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For any Zn
2−algebra R, let J be an ideal of R generated by all homogeneous elements of R having

nonzero degree. If f : R→ S is a morphism of Zn
2−algebras, then f (JR) ⊆ JS . Let M be an R-module.

The collection of sets {x + JkM}∞k=0 can be considered as a basis for a topology on M. This topology
is called J−adic topology. Note that x runs over all elements of M. The J−adic topology plays a
fundamental role in Zn

2−geometry.
A Zn

2−ring R with respect to J−adic topology is Hausdorff complete if the natural ring morphism
R → lim

←−−k∈N
R/Jk is an isomorphism.

Example 2.1. Let R be a ring and ξ1, . . . , ξq be indeterminates with degree γ1, . . . , γq ∈ Z
n
2 respectively

such that
ξiξ j = (−1)⟨γi,γ j⟩ξ jξi.

Then R[[ξ1, . . . , ξq]] is the Zn
2−commutative associative unital R−algebra of formal power series in the

ξa with coefficients in R. If J be an ideal generated by all formal power series
∑
−→
k a−→kξ

k0
1 . . . ξ

kq
q whose

first term a−→k is equal to zero, then One can see R[[ξ1, . . . , ξq]] is J−adically Hausdorff complete.

By a Zn
2−ringed space, we mean a pair (X,OX) where X is a topological space and OX is a sheaf

of Zn
2−commutative Zn

2−graded rings on X. A morphism between two Zn
2−ringed spaces (X,OX) and

(Y,OY) is a pair ψ := (ψ, ψ∗) such that ψ : X → Y is a continuous map and ψ∗ : OY → ψ∗OX

is a homomorphism of weight zero between the sheaves of Zn
2−commutative Zn

2−graded rings. Let
q = 2n − 1, the Zn

2-ringed space

R
−→m :=

(
Rm0 ,C∞Rm0 (−)[[ξ1

1, . . . , ξ
m1
1 , ξ1

2, . . . , ξ
m2
2 , . . . , ξ1

3, . . . , ξ
mq
q ]]

)
,

is called Zn
2-domain such that C∞Rm0 is the sheaf of smooth functions on Rm0 . By evaluation of f =

∑
fIξ

I

at x ∈ U, denoted by evx( f ), we mean f∅(x). Also for each open U ⊂ Rm0 ,

OR
−→m(U) := C∞Rm0 (U)[[ξ1

1, . . . , ξ
m1
1 , ξ1

2, . . . , ξ
m2
2 , . . . , ξ1

3, . . . , ξ
mq
q ]],

is the Zn
2−commutative associative unital Zn

2−algebra of formal power series in formal variables ξ j
i ’s of

degrees γi which commuting as follows:

ξ
j
i ξ

l
k = (−1)⟨γi,γk⟩ξl

kξ
j
i .

LetJ(U) be the ideal generated by all homogeneous formal power series of nonzero degree. Then it is
easily seen that OR−→m(U) is Hausdorff complete with respect to J(U)-adic topology. Equivalently there
is a canonical ring isomorphism between O(U) and lim

←−−k
O(U)/Jk(U). Let V ⊂ U. Then the following

diagram is commutative

O(U) //

rUV

��

lim
←−−k
O(U)/Jk(U)

RUV

��
O(V) // lim

←−−k
O(V)/Jk(V)

where rUV : O(U) → O(V) is the restriction map and RUV is induced morphism. This shows that the
notion of adic topology may be extended for sheaf O such that each stalk Op, p ∈ Rm0 , is Hausdorff
complete with respect to Jp−adic topology.
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A Zn
2-manifold of dimension −→m is a Zn

2-ringed space (M,OM) that is locally isomorphic to R
−→m. In

addition M is a second countable and Hausdorff topological space. A morphism between two Zn
2-

manifolds M = (M,OM) and N = (N,ON) is a local morphism between two local Zn
2-ringed spaces.

Let (M,OM) be a Zn
2−manifold, and let J be the ideal sheaf J , defined by

J(U) =
〈

f ∈ OM(U) | deg f , 0
〉
.

The structure sheaf OM is J−adically Hausdorff complete as a sheaf of Zn
2− commutative Zn

2−rings.
See Proposition 6.9 in [3] for more details.

Analogous with supergeometry, one can obtain a Zn
2−manifold by gluing Zn

2− domains. We will use
this method to construct the Zn

2−grassmannian as a Zn
2− manifold in section 3.

In order to introduce the concept of Jacobian, we need a few definitions and a proposition from [10].

Definition 2.2. Let M be a Zn
2-manifold and m ∈ M. The tangent space of M at m, denoted by TmM,

is the real Zn
2-vector space of R−derivations Om → R.

Definition 2.3. Let ψ : M → N be a morphism of Zn
2-manifolds. Assume ψ(m) = n ∈ N for a point

m ∈ M. The tangent map of ψ at m is a morphism of Zn
2-vector spaces denoted by (dψ)m : TmM → TnN

and defined by

(dψ)m(v)
(
[ f ]n

)
= v

(
ψ∗m([ f ]n)

)
, ∀v ∈ TmM, ∀[ f ]n ∈ ON,n.

Let ψ : M → N and φ : N → Q be two morphisms of Zn
2-manifolds, one can use the above definition

to show that for any point m ∈ M,

d(φ ◦ ψ)m = dφψ(m) ◦ dψm. (2.2)

Here we state the chain rule for Zn
2-manifolds and use it to relate the tangent map to the Zn

2-graded
Jacobian matrix. See Proposition 2.10 in [10].

Proposition 2.4. Let U
−→p , U

−→r be Zn
2-domains, with coordinates uα, vβ respectively. Let ψ : U

−→p → U
−→r

be a morphism of Zn
2-manifolds. Then,

∂ψ∗( f )
∂uα

=
∑
β

∂ψ∗(vβ)
∂uα

ψ∗
(
∂ f
∂vβ

)
, ∀ f ∈ O(U

−→r ).

Let us study the matrix representation of the equation (2.2). Assume ψ =
(
vγ(u)

)
and φ =

(
wα(v)

)
are local representations of Zn

2-morphisms ψ : M → N and φ : N → S around m and ψ(m) respectively,
one has

∂uβwα =
∑
γ

∂uβvγ∂vγwα

=
∑
γ

(−1)⟨deg(uβ)+deg(vγ),deg(vγ)+deg(wα)⟩∂vγwα∂uβvγ.

Definition 2.5. Let ψ be a Zn
2-morphism between Zn

2-domains U and V . If u 7→
(
vi(u)

)
is a representa-

tion of ψ, then the Jacobian of ψ is a Zn
2-matrix of degree zero as follow

Jacψ =
(
(−1)⟨deg(vi)+deg(u j),deg(u j)⟩∂u jvi

)
i j
.
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At the end of this section, it is worth mentioning that some of the required concepts of category the-
ory are given in the Appendix. At there, among other things, we talked about Yoneda lemma (Lemma
A.1). According to this lemma two objects X,Y ∈ Ob j(C) are isomorphic if and only if the functor of
points associated to them are isomorphic. Indeed, the Yoneda embedding is an equivalence between C
and a subcategory of representable functors in [C,SET] since not all functors are representable. See
(Appendix A.1) for more details.

2.2. Zn
2−Lie groups

Let ZSM be the category of Zn
2−manifolds. This is a category whose objects are Zn

2−manifolds
whose morphisms are morphisms between two Zn

2−manifolds. ZSM is a locally small category and

has finite product property, see [11] for more details. In addition it has a terminal object R
−→
0 , that is the

constant sheaf R on a singleton {0}.

Let M = (M,OM) be a Zn
2−manifold and p ∈ M. There is a map jp = ( jp, jp

∗) where:

jp : {0} → M , jp
∗ : OM → R

g 7→ g̃(p) =: evp(g).

So, for each Zn
2−manifold T , one can define the morphism

p̂
T

: T → R
−→
0 jp
−→ M, (2.3)

as a composition of jp and the unique morphism T → R
−→
0 .

By Zn
2−Lie group, we mean a group-object in the category ZSM. This group is a Zn

2−graded group.
Graded Lie groups are extensively studied in [12]. The category ZSM has group-object because of
existence categorical products and terminal object. Also, one can show that any Zn

2−Lie group G
induced a group structure over its T -points for any arbitrary Zn

2−manifold T . This means that the
functor T → G(T ) takes values in category of groups. Moreover, for any other Zn

2−manifold S and
morphism T → S , the corresponding map G(S )→ G(T ) is a homomorphism of groups. See Appendix
for more details. As another form, one can also define a Zn

2−Lie group as a representable functor
T → G(T ) from category ZSM to category of groups.

Example 2.6. Consider the Zn
2−domain R

−→m and an arbitrary Zn
2−manifold T . Let f j

i ∈ O(T )γi , 0 ≤
i ≤ q, 1 ≤ j ≤ m j, be γi−degree elements. By Theorem 6.8 in [1] (Fundamental theorem of Zn

2-
morphisms), One may define a unique morphism ψ : T → R

−→m, by setting ξ j
i 7→ f j

i where (ξ j
i ) is a

global coordinates system on R
−→m. Thus ψ may be represented by ( f j

i ).

One can see a degree zero square matrix with entries in the standard block format
B00 . . . B0q

. . . . . .

Bq0 . . . Bqq

 .
is invertible if and only if Bii is an invertible matrix for all 0 ≤ i ≤ q, see Proposition 1.5 and Proposition
6.1 in [10].
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Let V be a finite dimensional Zn
2-vector space of dimension −→m = m0|m1| . . . |mq. One can define the

Zn
2−Lie group GL(V) which is denoted by GL(−→m) if V = R

−→m. For more details, see (Appendix A.2). It
can be shown that T−points of GL(−→m) are the −→m × −→m invertible Zn

2−matrices of weight zero where the
elements of the mk × mu block Bku have degree γk + γu and the multiplication is the matrix product.

Let x ∈ G, one can define the left and right translation by x as

rx := µ ◦ (1G × x̂G) ◦ ∆G, (2.4)
lx := µ ◦ (x̂G × 1G) ◦ ∆G, (2.5)

where ∆G is the diagonal map on G and x̂G is as above. One can show that pullbacks of above mor-
phisms are as following

r∗x := (1O(G) ⊗ evx) ◦ µ∗, (2.6)
l∗x := (evx ⊗ 1O(G)) ◦ µ∗. (2.7)

One may also use the language of functor of points to describe two morphisms (2.4) and (2.5).
One can see the definition of vector fields on a graded Lie group G in [12]. According to the

standard superspace, we have the following definition:

Definition 2.7. Let G be a Zn
2−Lie group. A Vector field X on G is called right invariant vector field,

if we have
(X ⊗ 1) ◦ µ∗ = µ∗ ◦ X.

Similarly, one can use (1 ⊗ X) ◦ µ∗ = µ∗ ◦ X, for a left invariant vector field X.

The bracket of two right invariant vector fields is right invariant. So we have

Definition 2.8. Let G be a Zn
2− Lie group. The set of all right invariant vector fields is denoted by g

and is called the Zn
2−Lie algebra associated with the Zn

2−Lie group G, and we write g = Lie(G)

Similar to standard supergeometry, one can show that g = Lie(G) is a finite dimensional Zn
2−vector

space canonically identified with the tangent space at the identity of the Zn
2−Lie group G.

Definition 2.9. Let M be a Zn
2−manifold and let G be a Zn

2−Lie group with µ, i and e as its multiplica-
tion, inverse and unit morphisms respectively. A morphism a : M ×G → M is called a (right) action
of G on M, if the following diagrams commute

M ×G ×G
1M×µ

''

a×1G

ww
M ×G

a
''

M ×G,

a
ww

M

M ×G
a

##
M

(1M×êM )◦∆M
;;

1M

// M,

where êM ,∆M are as above. In this case, we say G acts from right on M. One can define left action
analogously.
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According to the above diagrams, one has:

a ◦ (1M × µ) = a ◦ (a × 1G), (2.8)
a ◦ (1M × êM) ◦ ∆M = 1M. (2.9)

By Yoneda lemma (Lemma A.1), one may consider, equivalently, the action of G as a natural transfor-
mation:

a(.) : M(.) ×G(.)→ M(.).

As in [13], for each p ∈ M and g ∈ G, one can define the morphisms ap and ag and use the functor
point language to show that the maps ap and ag satisfy the relations

ag ◦ ag−1
= idM ∀g ∈ G (2.10)

ag ◦ ap = ap ◦ rg ∀g ∈ G, p ∈ M. (2.11)

where rg is the right translation on Lie Zn
2-group G.

For proof of the following proposition, see (Appendix A.3).

Proposition 2.10. Let a : M ×G → M be an action of a Lie Zn
2-group G on a Zn

2-manifold M. Then

(1) ag is a Zn
2-diffeomorphism for all g ∈ G.

(2) ap has constant rank for all p ∈ M.

Before next definition, we recall that a morphism between Zn
2−manifolds, say ψ : M → N is a

submersion at x ∈ M, if (dψ)x is surjective and ψ is called submersion, if it is surjective at each point.
(For more details, refer to [10]). Also ψ is a surjective submersion, if in addition ψ0 is surjective.

Definition 2.11. Let G acts on M with action a : M×G → M. The action a is called transitive, if there
exist p ∈ M such that ap is a surjective submersion.

It is shown that, if ap is a submersion for one p ∈ M, then it is a submersion for all point in M. Also
one can show that a is transitive if and only if a is a transitive action in classical geometry and (dap)e is
a surjective because of Proposition 2.10. The following proposition will be required in the last section.

Proposition 2.12. Let a : M × G → M be an action of a Lie Zn
2-group G on a Zn

2-manifold M. Let
p ∈ M and dim G = −→r = (r0, r1, . . . , rq) and −→r ′ := (0, r1, . . . , rq). If the map

(ap)R−→r ′ : G(R
−→r ′)→ M(R

−→r ′)

is surjective, then a is a transitive action.

Proof. According to above argument, it is enough to show that a is a transitive action in classical
geometry and (dap)e is surjective.

Let (ap)R−→r ′ be surjective. Looking at the reduced part of each morphism in

(ap)R−→r ′
(
G(R

−→r ′)
)
= M(R

−→r ′),

we have that

(ap)
R
−→
0 = ap : G → M (2.12)

Electronic Research Archive Volume 30, Issue 1, 221–241.



228

is surjective. So a is a classical transitive action. Let now {t, ξ1, . . . , ξq} be coordinates in a neighbour-
hood U of m ∈ M. Consider the element Φ ∈ M(R

−→r ′) defined by

Φ∗ : O(U)→ O(R
−→r ′) = S +(η1, . . . , ηq)

ti 7→ ti(m)
ξ j

s 7→ η j
s ∀ j, ∀1 ≤ s ≤ q.

By surjectivity of (ap)R−→r ′ , there exists ψ ∈ G(R
−→r ′) such that (ap)R−→r ′ (ψ) = Φ and we have

ψ∗ ◦ a∗p(ti) = ti(m)

ψ∗ ◦ a∗p(ξ j
s) = η

j
s, ∀1 ≤ j ≤ q.

This implies that (TmM)γ,0 is in the image of (dap)ψ. Since, by our previous considerations, ap is a
submersion, (TmM)0 is in the image ap. Hence, due to Proposition 8.1.5 we are done. □

In the following, after introducing the concept of stabilizer, we state some related results without
any proofs, since the proofs are the same as the proofs of the similar results in supergeometry with
appropriate modifications without any extra difficulties regarding Zn

2−geometry. For more details see
[6] and [8].

Definition 2.13. Let G be a Zn
2−Lie group and let a be an action of G on Zn

2−manifold M. By stabilizer
of p ∈ M, we mean a Zn

2−manifold Gp equalizing the diagram

G
ap

⇒
p̂G

M.

Proposition 2.14. Let a : M ×G → M be an action, then

1. The following diagram admits an equalizer Gp

G
ap

⇒
p̂G

M.

2. Gp is a Zn
2−sub Lie group of G.

3. The functor T →
(
G(T )

)
p̂T

is represented by Gp, where
(
G(T )

)
p̂T

is the stabilizer in p̂T of the

action of G(T ) on M(T ).

Proposition 2.15. Suppose G acts transitively on M. There exists a G-equivariant isomorphism

G
Gp

� // M.

3. Zn
2-grassmannian

Supergrassmannians Gk|l(m|n) are introduced and studied by Manin in [9] and [14]. Also the authors
have studied them in more details in [13] and [15]. In this section, we introduce the Zn

2-grassmannian
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which is denoted by G−→k (−→m) shortly, or Gk0 |k1 |...|kq(m0|m1| . . . |mq) . For convenience from now, we set

β0 :=
∑
γi+γ j=γ0

ki(m j − k j),
β1 :=

∑
γi+γ j=γ1

ki(m j − k j),
. . .

βq :=
∑
γi+γ j=γq ki(m j − k j),

and also decompose any Zn
2−matrix into 2n × 2n blocks

B00 B01 . . . B0q

. . . . . .

Bq0 Bq1 . . . Bqq

 .
such that the elements of block Bku have degree γk + γu. By a Zn

2-grassmannian, G−→k (−→m), we mean a
Zn

2-manifold which is constructed by gluing the following Zn
2- domains

R
−→
β =

(
Rβ0 , C∞

Rβ0 (−)[[ξ1
1, . . . , ξ

β1
1 , ξ

1
2, . . . , ξ

β2
2 , . . . , ξ

1
q, . . . , ξ

βq
q ]]

)
For i = 0, 1, . . . ,q, let Ii ⊂ {1, . . . ,mi} be a sorted subset in ascending order with ki elements. The
elements of Ii are called γi-degree indices. The multi-index

−→
I = (I1, ..., Iq) is called

−→
k -index. Set

U−→I := (U−→I ,O−→I ), where

U−→I = R
β0 , O−→I = C∞

Rβ0 (−)[[ξ1
1, . . . , ξ

β1
1 , ξ

1
2, . . . , ξ

β2
2 , . . . , ξ

1
q, . . . , ξ

βq
q ]].

Let each Zn
2-domainU−→I be labeled by a Zn

2−matrix
−→
k × −→m of weight zero, say A−→I , with 2n × 2n blocks

Bi j each of which is a ki ×m j matrix. In addition, except for columns with indices in I0 ∪ I1 ∪ . . . ∪ Iq,
which together form a Zn

2−submatrix denoted by M−→I A−→I , the matrix is filled from up to down and left

to right by x
−→
I
a , ξ

−→
I

b , the free generators of O−→I (Rβ0) each of them sits in a block with same degree. This
process impose an ordering on the set of generators. In addition M−→I A−→I is supposed to be the identity
matrix.

For example, consider G1|2|1|1|2|2|2|2. Then let I0 = {1}, I1 = {1, 2}, I2 = {1}, I3 = {2}, so
−→
I is a

1|2|1|1-index. In this case the set of generators of O−→I (Rβ0) is

{x1, x2, x3, ξ1
1, ξ

2
1, ξ

3
1, ξ

4
1, ξ

1
2, ξ

2
2, ξ

3
2, ξ

4
2, ξ

1
3, ξ

2
3, ξ

3
3, ξ

4
3},

and A−→I is: 
1 x1 0 0 0 ξ2

2 ξ4
3 0

0 ξ1
1 1 0 0 ξ2

3 ξ3
2 0

0 ξ2
1 0 1 0 ξ3

3 ξ4
2 0

0 ξ1
2 0 0 1 x2 ξ4

1 0
0 ξ1

3 0 0 0 ξ3
1 x3 1


.

Note that, in this example,

{x1, ξ1
1, ξ

2
1, ξ

1
2, ξ

1
3, ξ

2
2, ξ

2
3, ξ

3
3, x2, ξ

3
1, ξ

4
3, ξ

3
2, ξ

4
2, ξ

4
1, x

3} (3.1)
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is corresponding total ordered set of generators.
By Ũ−→I ,−→J , we mean the set of all points of U−→I , on which M−→J A−→I is invertible. Obviously Ũ−→I ,−→J is an

open set. The transition map between the two Zn
2-domains U−→I and U−→J is denoted by

g−→
I ,
−→
J

:
(
Ũ−→J ,−→I ,O−→J |Ũ−→J ,−→I

)
−→

(
Ũ−→I ,−→J ,O−→I |Ũ−→I ,−→J

)
.

Note that g−→
I ,
−→
J
= (g

−→
I ,
−→
J
, g∗
−→
I ,
−→
J
), where g∗

−→
I ,
−→
J

is an isomorphism between sheaves determined by defining on
each entry of D−→I (A−→I ) as a rational expression which appears as the corresponding entry provided by
the pasting equation

D−→I

((
M−→I A−→J

)−1A−→J

)
= D−→I (A−→I ), (3.2)

where D−→I (A−→I ) is a matrix which is remained after omitting M−→I A−→I . Clearly, the left hand side of (3.2)
is defined whenever M−→I A−→J is invertible. The morphism g∗

−→
I ,
−→
J

induces the continuous map g
−→
I ,
−→
J

(in the
case n = 1, see [16], lemma 3.1).

For example in G1|2|1|1(2|2|2|2) suppose

I0 = {1}, I1 = {1, 2}, I2 = {1}, I3 = {2},
J0 = {2}, J1 = {1, 2}, J2 = {2}, J3 = {1},

so
−→
I ,
−→
J are 1|2|1|1-indices. We have:

A−→I =


1 x1 0 0 0 ξ2

2 ξ4
3 0

0 ξ1
1 1 0 0 ξ2

3 ξ3
2 0

0 ξ2
1 0 1 0 ξ3

3 ξ4
2 0

0 ξ1
2 0 0 1 x2 ξ4

1 0
0 ξ1

3 0 0 0 ξ3
1 x3 1


, A−→J =


x1 1 0 0 ξ2

2 0 0 ξ4
3

ξ1
1 0 1 0 ξ2

3 0 0 ξ3
2

ξ2
1 0 0 1 ξ3

3 0 0 ξ4
2

ξ1
2 0 0 0 x2 1 0 ξ4

1
ξ1

3 0 0 0 ξ3
1 0 1 x3



M−→J A−→I =


x1 0 0 ξ2

2 ξ4
3

ξ1
1 1 0 ξ2

3 ξ3
2

ξ2
1 0 1 ξ3

3 ξ4
2

ξ1
2 0 0 x2 ξ4

1
ξ1

3 0 0 ξ3
1 x3


.

The maps g−→
I ,
−→
J

are gluing morphisms. In fact, a straightforward computation shows the following
proposition holds.

Proposition 3.1. Let g−→
I ,
−→
J
=

(
g
−→
I ,
−→
J
, g∗
−→
I ,
−→
J

)
be as above, then

1. g∗
−→
I ,
−→
I
= id.

2. g∗
−→
J ,
−→
I
◦ g∗

−→
I ,
−→
J
= id.

3. g∗
−→
S ,
−→
I
◦ g∗

−→
J ,
−→
S
◦ g∗

−→
I ,
−→
J
= id.

Proof. For first equality, note that the map g∗
−→
I ,
−→
I

is obtained from the following equality:

D−→I

(
(M−→I A−→I )−1A−→I

)
= D−→I A−→I ,
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where the matrix M−→I A−→I is identity. So g∗
−→
I ,
−→
I

is defined by the following equality:

D−→I A−→I = D−→I A−→I .

This shows the first equality. For second equality, let
−→
J be an another

−→
k -index, so g∗

−→
J ,
−→
I

is obtained by
the following equality:

D−→J

(
(M−→J A−→I )−1A−→I

)
= D−→J A−→J .

One may see that g∗
−→
J ,
−→
I
◦ g∗

−→
I ,
−→
J

is obtained by following equality:

D−→I

((
M−→I

(
(M−→J A−→I )−1A−→I

))−1

(M−→J A−→I )−1A−→I

)
= D−→I A−→I .

For left side, we have

= D−→I

((
(M−→J A−→I )−1M−→I A−→I

)−1

(M−→J A−→I )−1A−→I

)
= D−→I

((
(M−→J A−→I )−1

)−1
(M−→J A−→I )−1A−→I

)
= D−→I

(
(M−→J A−→I )(M−→J A−→I )−1A−→I

)
= D−→I (A−→I ).

Accordingly the map g∗
−→
J ,
−→
I
◦ g∗

−→
I ,
−→
J

is obtained by D−→I A−→I = D−→I A−→I and it shows that this map is identity.
For third equality, it is sufficient to show that the map g∗

−→
S ,
−→
I
◦ g∗

−→
J ,
−→
S
◦ g∗

−→
I ,
−→
J

is obtained from

D−→I A−→I = D−→I A−→I .

This case obtains from case 2 analogously. □

So the sheaves (U−→I ,O−→I ) may be glued through the g−→I ,−→J to construct the Zn
2−grassmannian G−→k (−→m).

Indeed, according to Lemma 3.1 in [10], the conditions of the above proposition are necessary and
sufficient for gluing.

4. Zn
2−grassmannian as homogeneous Zn

2−space

In this section, we study construction of the quotients of Zn
2−Lie groups. Although this study is

parallel its analogue in supergeometry, see [18] for Z2 graded case, but generalizing related results in
Zn

2 setting necessitates working with J−adic topology.
Let G = (G,OG) be a Zn

2−Lie group and H = (H,OH) be a closed Zn
2−Lie supgroup of G. One can

define a Zn
2−manifold structure on the topological space X = G/H as follows:

Let g = Lie(G) and h = Lie(H) be the Zn
2−Lie algebras corresponding with G and H. For each Z ∈ g,

let DZ be the left invariant vector field on G associated with Z. For h, a Zn
2−subalgebra of g, set:

∀U ⊂ G Oh(U) := { f ∈ OG(U) | DZ f = 0 on U, ∀Z ∈ h}.

On the other hand, for any open subset U ⊂ G set:

Oinv(U) := { f ∈ OG(U) | ∀x0 ∈ H, r∗x0
f = f },
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where rx0 is the right translation by x0 in (2.5). If H is connected, thenOinv(U) = Oh(U). Let π : G → X
be the natural projection. For each open subset W ⊂ X = G/H, the structure sheaf OX is defined as
following

OX(W) := Oinv(W) ∩ Oh(W),

where W = π−1(W). One can show that OX is a sheaf on X and the ringed space X = (X,OX) is a
Zn

2−domain locally. Indeed, according to the definition of distribution in [19], we have a distribution
spanned by the vector fields in h which is denoted by Dh. This distribution is involutive, because h
is a Zn

2−Lie algebra. By using the local Frobenius theorem, Dh is integrable. For more details about
Frobenius theorem in the Zn

2−graded category, see [19]. So there is an open neighborhood U of identity
element 1 and coordinates (x, ξ1, . . . , ξq) such that Dh is spanned on U by

∂

∂x1 , . . . ,
∂

∂xr0
,
∂

∂ξ1
1

, . . . ,
∂

∂ξr1
1
, . . . ,

∂

∂ξ1
q
. . . ,

∂

∂ξ
rq
q
.

Let D′
h

be spanned by

∂

∂xr0+1 , . . . ,
∂

∂xm0
,

∂

∂ξr1+1
1

, . . . ,
∂

∂ξm1
1
, . . . ,

∂

∂ξ
rq+1
q

. . . ,
∂

∂ξ
mq
q

on U. One can use the local Frobenius theorem again, so D′
h

is involutive distribution. One can show
that Zn

2−manifold X is obtained by gluing the integral Zn
2−manifolds of the local distributions D′

h
. So

X is a Zn
2−manifold and is called homogeneous Zn

2−space. The details of proof are similar to standard
supergeometry in [6].

In this section, we want to show that the Zn
2−grassmannian G−→k (−→m) is a homogeneous Zn

2−space.
According to the section 1, it is enough to find a Zn

2−Lie group which acts on G−→k (−→m) transitively. For
this, we need the following remark and the next lemma

Remark 4.1. Let X be an element of U−→I (T ) where
−→
I is an arbitrary index. One can correspond to X

a Zn
2−matrix

−→
k × −→m called [X]−→I as follows: Except for columns with indices in I0 ∪ I1 ∪ . . . ∪ Iq, the

blocks are filled from up to down and left to right by fi, g j’s where

fi := X(xi), g j := X(ξ j),

according to the ordering (3.1), where (xi; ξ j) is the global coordinates of the Zn
2−domain U−→I . The

columns with indices in I0 ∪ I1 ∪ . . . ∪ Iq form an identity matrix.

Lemma 4.2. Let ψ : T → R
−→r be a T-point of R

−→r and (ztu) be a global coordinates of R
−→r with ordering

as the one introduced in (3.1). If B = (ψ∗(ztu)) is the Zn
2−matrix corresponding to ψ, then the Zn

2−matrix
corresponding to

(
g−→

I ,
−→
J

)
T
(ψ) is as follows:

D−→I
(
(M−→I [B]−→J )−1[B]−→J

)
,

where [B]−→J is introduced in Remark 4.1.
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Proof. Note that g∗−→
I ,
−→
J

may be represented by a Zn
2−matrix as follows:

D−→I
(
(M−→I A−→J )−1A−→J

)
,

where A−→J is the label of U−→J . Let M−→I A−→J = (mtu) and (M−→I A−→J )−1 = (mtu). If z = (zi j) be a coordinates
system on U−→I , then one has

g∗−→
I ,
−→
J
(ztu) =

∑
mtk(z).zku.

Then

ψ∗ ◦ g∗−→
I ,
−→
J
(ztu) = ψ∗

(∑
mtk(z).zku

)
=

∑
mtk(ψ∗(z)

)
.ψ∗(zku).

For second equality one may note that ψ∗ is a homomorphism of Zn
2−algebras and mtk(z) is a rational

function of z. Obviously, the last expression is the (t, u)-entry of the matrix D−→I
(
(M−→I [B]−→J )−1[B]−→J

)
. This

completes the proof. □

Theorem 4.3. The Zn
2−Lie group GL(−→m) acts on Zn

2−grassmannian G−→k (−→m).

Proof. First, we have to define a morphism a : G−→k (−→m)×GL(−→m)→ G−→k (−→m). For this, by Yoneda lemma,
it is sufficient to define aT :

aT : G−→k (−→m)(T ) ×GL(−→m)(T )→ G−→k (−→m)(T ).

for each Zn
2−manifold T or equivalently define

(aT )P : G−→k (−→m)(T )→ G−→k (−→m)(T ).

where P is a fixed arbitrary element in GL(−→m)(T ). For brevity, we denote (aT )P by A. One may
consider GL(−→m)(T ), as the set of −→m × −→m invertible Zn

2−matrices with entries in O(T ), but there is not
such a description for G−→k (−→m)(T ), because it is not a Zn

2−domain. We know each Zn
2−grassmanian

is constructed by gluing Zn
2−domains (c.f. section 2), so one may define the actions of GL(−→m) on

Zn
2−domains (U−→I ,O−→I ) and then shows that these actions glued to construct aT .

For defining A, it is needed to refine the covering {U−→I (T )}−→I . Set

U
−→
J
−→
I
(T ) :=

{
ψ ∈ U−→I (T ) | M−→J

(
[ψ]−→I [P]

)
is invertible

}
,

where [P] is the matrix form of the fixed arbitrary element P in GL(−→m)(T ), see [8] and [21]. One can
show that {U

−→
J
−→
I
(T )}−→I ,−→J is a covering for G−→k (−→m)(T ) and A

(
U
−→
J
−→
I
(T )

)
⊆ U−→J (T ). Now consider all maps

A
−→
J
−→
I

:U
−→
J
−→
I
(T )→ U−→J (T )

ψ 7→ D−→J

((
M−→J ([ψ]−→I [P])

)−1
[ψ]−→I [P]

)
where, [ψ]−→I is as above. We have to show that these maps may be glued to construct a global map on
G−→k (−→m)(T ). For this, it is sufficient to show that the following diagram commutes:
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U
−→
J
−→
I
(T ) ∩ U

−→
L
−→
Q

(T )
(g−→

Q,
−→
I

)T

''

A
−→
J
−→
I

ww
U−→J (T ) ∩ U−→L(T )

(g−→
J ,
−→
L

)T ((

U
−→
J
−→
I
(T ) ∩ U

−→
L
−→
Q

(T )

A
−→
L
−→
Qvv

U−→J (T ) ∩ U−→L(T )

where
(
g−→I ,−→J

)
T

is the induced map from g−→I ,−→J on T -points. The following proposition is used to show
commutativity of the above diagram. □

Proposition 4.4. The last diagram commutes.

Proof. We have to show that
(g−→L ,−→J )T ◦ A

−→
J
−→
I
= A

−→
L
−→
Q
◦ (g−→Q,−→I )T . (4.1)

for arbitrary
−→
k -indices

−→
I ,
−→
J ,
−→
Q,
−→
L . Let ψ ∈ U

−→
J
−→
I
(T ) ∩ U

−→
L
−→
Q

(T ) be an arbitrary element. One has ψ ∈

U
−→
J
−→
I
(T ), so

D−→J

((
M−→J ([ψ]−→I [P])

)−1
[ψ]−→I [P]

)
∈ U−→J (T ),

(g−→L ,−→J )T

(
D−→J

((
M−→J ([ψ]−→I [P])

)−1[ψ]−→I [P]
))
∈ U−→L(T ).

From left side of (4.1), we have:

(g−→L ,−→J )T ◦ A
−→
J
−→
I
(ψ)

= (g−→L ,−→J )T

(
D−→J

((
M−→J ([ψ]−→I [P])

)−1[ψ]−→I [P]
))

= D−→L

((
M−→L

(
(M−→J ([ψ]−→I [P]))−1[ψ]−→IP

))−1

(M−→J ([ψ]−→IP))−1[ψ]−→I [P]
)

= D−→L

((
(M−→J ([ψ]−→I [P]))−1(M−→L([ψ]−→I [P]))

)−1
(M−→J ([ψ]−→I [P]))−1[ψ]−→I [P]

)
= D−→L

(
(M−→L([ψ]−→I [P]))−1M−→J ([ψ]−→I [P])(M−→J ([ψ]−→I [P]))−1[ψ]−→I [P]

)
= D−→L

((
M−→L([ψ]−→IP)

)−1
[ψ]−→IP

)
.

For right side of equation (4.1), we have

A
−→
L
−→
Q
◦ (g−→Q,−→I )T (ψ)
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= A
−→
L
−→
Q

(
D−→Q

(
(M−→Q[ψ]−→I )−1[ψ]−→I

))
= D−→L

([
M−→L

(
(M−→Q[ψ]−→I )−1[ψ]−→I [P]

)]−1
(M−→Q[ψ]−→I )−1[ψ]−→I [P]

)
= D−→L

([
(M−→Q[ψ]−→I )−1M−→L([ψ]−→I [P])

]−1
(M−→Q[ψ]−→I )−1[ψ]−→I [P]

)
= D−→L

((
M−→L([ψ]−→I [P])

)−1
(M−→Q[ψ]−→I )(M−→Q[ψ]−→I )−1[ψ]−→I [P]

)
= D−→L

((
M−→L([ψ]−→IP)

)−1
[ψ]−→IP

)
.

This shows that the above diagram commutes. □

Therefore GL(−→m) acts on G−→k (−→m) with action a. Now it is needed to show that this action is transitive.

Theorem 4.5. GL(−→m) acts on G−→k (−→m) transitively.

Proof. By proposition 2.12, it is sufficient to show that the map

(ap)R−→r ′ : GL(−→m)(R
−→r ′)→ G−→k (−→m)(R

−→r ′),

is surjective, where −→r = (r0, r1, . . . , rq) is dimension of GL(−→m) and one can consider −→r ′ =
(0, r1, . . . , rq). Let

p = (p0, p1, . . . , pq) ∈ U−→I ⊂ Gk0(m0) ×Gk1(m1) × . . . ×Gkq(mq)

be an element and p̄0, p̄1, . . . , p̄q be the matrices corresponding to p0, p1, . . . , pq respectively as sub-
spaces. As an element of G−→k (−→m)(T ), one may represent p̂T , as follows

p̂T =


p0 0 . . . 0
0 p1 . . . 0
0 0 . . . 0
0 0 . . . p

q


where T is an arbitrary Zn

2−manifold. For surjectivity, let

W =


W00 W01 . . . W0q

W10 W11 . . . W1q

. . . . . . . . . . . .

Wq0 Wq1 . . . Wqq

 ∈ U−→J (R
−→r ′),

be an arbitrary element. We have to show that there exists an element V ∈ GL(−→m)(R
−→r ′) such that

p̂T V = W. Since the Lie group GL(mi) acts on manifold Gki(mi) transitively, then there exists an
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invertible matrix Hii ∈ GL(mi) such that p̄iHii = Wii. In addition, the equations p̄iZ = Wi j have
solutions since rank( p̄i) = ki. Let Hi j be solutions of these equations respectively. Clearly, One can see

V =


H00 H01 . . . H0q

H10 H11 . . . H1q

. . . . . . . . . . . .

Hq0 Hq1 . . . Hqq


−→m×−→m

satisfy in the equation p̂T V = W. So (ap)R−→r ′ is surjective. By Proposition 2.12, GL(−→m) acts on G−→k (−→m)
transitively. □

Thus according to Proposition 2.15, G−→k (−→m) is a homogeneous Zn
2−space.

A. Basic Concepts

A.1. Category theory

By a locally small category, we mean a category such that the collection of all morphisms between
any two of its objects is a set. Let X, Y are objects in a category and α, β : X → Y are morphisms
between these objects. An universal pair (E, ϵ) is called equalizer if the following diagram commutes:

E
ϵ
−→ X

α

⇒
β

Y,

i.e., α ◦ ϵ = β ◦ ϵ and also for each object T and any morphism τ : T → X which satisfy α ◦ τ = β ◦ τ,
there exists unique morphism σ : T → E such that ϵ ◦ σ = τ. If equalizer existed then it is unique up
to isomorphism. For example, in the category of sets, which is denoted by SET, the equalizer of two
morphisms α, β : X → Y is the set E = {x ∈ X|α(x) = β(x)} together with the inclusion map ϵ : E ↪→ X.

Let C be a locally small category, and X be an object in C. By T -points of X, we mean X(T ) :=
HomC(T, X) for any T ∈ Ob j(C). The functor of points of X is a functor which is denoted by X(.) and
is defined as follows:

X(.) : C → SET
S 7→ X(S ),

X(.) : HomC(S ,T )→ HomSET(X(T ), X(S ))
φ 7→ X(φ),

where X(φ) : f 7→ f ◦ φ. A functor F : C → SET is called representable if there exists an object X
in C such that F and X(.) are isomorphic. Then one may say that F is represented by X. The category
of functors from C to SET is denoted by [C,SET]. It is shown that the category of all representable
functors from C to SET is a subcategory of [C,SET].

Corresponding to each morphism ψ : X → Y , there exists a natural transformation ψ(.) from X(.)
to Y(.). This transformation corresponds the mapping ψ(T ) : X(T ) → Y(T ) with ξ 7→ ψ ◦ ξ for each
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T ∈ Ob j(C). Now set:
Y : C → [C,SET]

X 7→ X(.)
ψ 7→ ψ(.).

Obviously, Y is a covariant functor and it is called Yoneda embedding. The following lemma, is
brought from [8] or the section III.2 in [20].

Lemma A.1. The Yoneda embedding is full and faithful functor, i.e. the map

HomC(X,Y) −→ Hom[C,SET](X(.),Y(.)),

is a bijection for each X,Y ∈ Ob j(C).

Thus according to this lemma, X,Y ∈ Ob j(C) are isomorphic if and only if their functor of points are
isomorphic. The Yoneda embedding is an equivalence between C and a subcategory of representable
functors in [C,SET] since not all functors are representable.

A.2. The Zn
2−Lie group GL(V)

Let V be a finite dimensional Zn
2-vector space of dimension −→m = m0|m1| . . . |mq and let{

R1, . . . ,Rm0 ,Rm0+1, . . . ,Rm0+m1 , . . . ,Rm0+...+mq

}
be a basis of V for which the elements Rm0+...+mi−1+k, 1 ≤ k ≤ mi, are of weight γi for 0 ≤ i ≤ q.

Consider the functor F from the category ZSM to GRP the category of groups which maps each
Zn

2−manifold T to AutO(T )(O(T ) ⊗ V) the group of zero weight automorphisms of O(T ) ⊗ V . Consider
the Zn

2−manifold End(V) =
(∏

i End(Vi),A
)

whereA is the following sheaf

C∞
R

m2
0+...+m2

q
[[ξ1

1, . . . , ξ
t1
1 , ξ

1
2, . . . , ξ

t2
2 , . . . , ξ

1
3, . . . , ξ

tq
q ]]. (A.1)

where tk =
∑
γi+γ j=γk

mim j. Let Fi j be a linear transformation on V defined by Rk 7→ δikR j, then {Fi j}

is a basis for End(V). If { fi j} is the corresponding dual basis, then it may be considered as a global
coordinates on End(V). Let X be the open submanifold of End(V) corresponding to the open set:

X =
∏

i

GL(Vi) ⊂
∏

i

End(Vi).

Thus, we have
X =

(∏
i

GL(Vi),A|∏i GL(Vi)

)
.

It can be shown that the functor F may be represented by X. For this, one may show that Hom(T, X) �
AutO(T )(O(T ) ⊗ V). To this end, first, one can notice Theorem 9 in [17] to see

Hom(T, X) = Hom
(
A(X),O(T )

)
.

It is known that each ψ ∈ Hom
(
A(X),O(T )

)
may be uniquely determined by {gi j} where gi j = ψ( fi j),

see Theorem 6.8 in [1]. Now setΨ(R j) := Σgi jRi. One may considerΨ as an element of AutO(T )(O(T )⊗
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V). Obviously ψ 7→ Ψ is a bijection from Hom(T, X) to AutO(T )(O(T )⊗ V). Thus the Zn
2−manifold X is

a Zn
2−Lie group and denoted it by GL(V) or GL(−→m) if V = R

−→m. Therefore T - points of GL(−→m) are the
−→m × −→m invertible Zn

2−matrices of weight zero
B00 B01 . . . B0q

. . . . . .

Bq0 Bq1 . . . Bqq

 .
where the elements of the mk × mu block Bku have degree γk + γu and the multiplication is the matrix
product.

A.3. Proof of (Proposition 2.10)

Proof. The proof of (1) is easy because of (2.10). For (2), let M be a Zn
2-manifold of dimension −→m

and G be a Lie Zn
2-group of dimension

−→
k . Let g be the Lie Zn

2-algebra of G and let Jap be the Jacobian
Zn

2-matrix of ap in a neighborhood of a point g ∈ G. Since

Jap(g) = (dap)g = (dag)p ◦ (dap)e ◦ (drg−1)g,

and ag and rg−1 are diffeomorphisms, Jap(g) has rank equal to dim g − dim ker(dap)e for each g ∈ G .
Recall that if X ∈ g we denote by DR

X := (X ⊗ 1
OG (U))µ

∗ the right-invariant vector field associated with
X. Using equation (2.8) we have, for each X ∈ ker(dap)e,

DR
Xa∗p = 0. (A.2)

Because

DR
Xa∗p = (X ⊗ 1

OG (U))µ
∗(evp ⊗ 1

OG (U))a
∗ =

(
(dap)e(X) ⊗ 1

OG (U)

)
a∗ = 0.

If (ξ0 = x, ξ1, . . . , ξq) and (η0 = y, η1, . . . , ηq) are coordinates in a neighborhood U of e ∈ G, and in
a neighborhood V ⊇ ap(U) of p ∈ M, respectively, then Jap may be represented as the following block
matrix: 

∂a∗p(η0)

∂ξ0

±
∂a∗p(η0)

∂ξ1
. . . ±

∂a∗p(η0)

∂ξq

±
∂a∗p(η1)

∂ξ0

±
∂a∗p(η1)

∂ξ1
. . . ±

∂a∗p(η1)

∂ξq
. . . . . . . . . . . .

±
∂a∗p(ηq)

∂ξ0

±
∂a∗p(ηq)

∂ξ1
. . . ±

∂a∗p(ηq)

∂ξq


∈ M−→m,−→k (OG(U)), (A.3)

where by
∂a∗p(ηt)

∂ξl
, we mean a matrix as follows

∂a∗p(ηi
t)

∂ξ
j
l


1≤i≤mt ,1≤ j≤kl

,
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and its sign in (A.3) is equal to
(−1)⟨deg ηt+deg ξl,deg ξl⟩.

Now, we find a matrix A ∈ GL−→k (OG(U)) such that Jap A has a certain set of columns equal to zero. We
are going to use equation (A.2). Let

dim ker(dap)e =
−→n ,

and {Xu0}, . . . and {Xuq} be the bases of g0, . . . and gq such that for all nr if ur ≤ nr then Xur ∈ ker(dap)e.

Consider a block matrix as follows:

A =


α0

u0,i0
±α0

u1,i0
. . . ±α0

uq,i0
±α1

u0,i1 ±α
1
u1,i1 . . . ±α1

uq,i1
. . . . . . . . . . . .

±α
q
u0,iq

±α
q
u1,iq

. . . ±α
q
uq,iq

 (A.4)

where, for each u j, 0 ≤ j ≤ q, αu j.is’s are the coefficients appear in the following equality:

DR
Xu j
=

∑
1≤i0≤k0

α0
u j,i0

∂

∂ξi0
0

+
∑

1≤i1≤k1

α1
u j,i1

∂

∂ξi1
1

+ . . . +
∑

1≤iq≤kq

α
q
u j,iq

∂

∂ξ
iq
q

,

where γ j + γs is the degree of αs
u j,is

and the sign of (t, l)-th block is

(−1)⟨deg γt+deg γl,deg γl⟩.

Since Xui and Xu j are linearly independent at each point, the reduced matrix A is invertible and A ∈
GL−→k (OG(U)). Now by equation (A.2), one may see that the matrix

Jap A =


DR

Xu0
a∗p(ξ0) ±DR

Xu1
a∗p(ξ0) . . . ±DR

Xuq
a∗p(ξ0)

±DR
Xu0

a∗p(ξ1) ±DR
Xu1

a∗p(ξ1) . . . ±DR
Xuq

a∗p(ξ1)
. . . . . . . . . . . .

±DR
Xu0

a∗p(ξq) ±DR
Xu1

a∗p(ξq) . . . ±DR
Xuq

a∗p(ξq)

 ,

has |−→n | = n0 + . . . + nq zero columns. Thus Jap has rank equal to
−→
k − −→n with entries in OG(U). In

addition the first |
−→
k | − |−→n | columns are non-zero. Thus one may describe Jap by

(
z 0
w 0

)
. Then it is not

restrictive to assume that z invertible. Thus one has

GJ =
(
I 0
0 0

)
,

where

G =
(

z−1 0
−wz−1 I

)
.
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For more explanation, assume Jap is a matrix of the form as below



0 α11 0 α12 . . . 0 α1q

0 α21 0 α22 . . . 0 α2q

0 . . . 0 . . . . . . 0 . . .

0 αq1 0 αq2 . . . 0 αqq

0 β11 0 β12 . . . 0 β1q

0 β21 0 β22 . . . 0 β2q

0 . . . 0 . . . . . . 0 . . .

0 βq1 0 βq2 . . . 0 βqq


.

Since Jap has rank
−→
k − −→n , we can suppose that αii and β j j are invertible. By section 4 in [10], we can

rearrange the matrix so that it takes the form
(

z 0
w 0

)
, with z invertible and the matrix G =

(
z−1 0
−wz−1 I

)
such that GJ =

(
I 0
0 0

)
. We can then conclude that Jap has constant rank in U and, by translation, in all

of G. □
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