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Abstract: On the whole, the present microgrid constitutes numerous actors in highly decentralized
environments and liberalized electricity markets. The networked microgrid system must be capable
of detecting electricity price changes and unknown variations in the presence of rare and extreme
events. The networked microgrid system comprised of interconnected microgrids must be adaptive
and resilient to undesirable environmental conditions such as the occurrence of different kinds of
faults and interruptions in the main grid supply. The uncertainties and stochasticity in the load and
distributed generation are considered. In this study, we propose resilient energy trading incorporating
DC-OPF, which takes generator failures and line outages (topology change) into account. This paper
proposes a design of Long Short-Term Memory (LSTM) - soft actor-critic (SAC) reinforcement
learning for the development of a platform to obtain resilient peer-to-peer energy trading in
networked microgrid systems during extreme events. A Markov Decision Process (MDP) is used to
develop the reinforcement learning-based resilient energy trade process that includes the state
transition probability and a grid resilience factor for networked microgrid systems. LSTM-SAC
continuously refines policies in real-time, thus ensuring optimal trading strategies in rapidly
changing energy markets. The LSTM networks have been used to estimate the optimal Q-values in
soft actor-critic reinforcement learning. This learning mechanism takes care of the out-of-range
estimates of Q-values while reducing the gradient problems. The optimal actions are decided with
maximized rewards for peer-to-peer resilient energy trading. The networked microgrid system is
trained with the proposed learning mechanism for resilient energy trading. The proposed LSTM-SAC
reinforcement learning is tested on a networked microgrid system comprised of IEEE 14 bus
systems.
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1. Introduction

Renewable Energy (RE) is vital to building a resilient and secure future energy system. The
penetration of distributed energy resources (DER) into the entire power system facilitates the
liberalization of electricity markets, the availability of standby capacity for peak demand, the
enhancement in reliability and power quality, the augmentation of the local electricity network, the
support to the existing grid, the combined generation of electricity and heat, the efficient use of
low-priced fuel, etc. [1]. Now, one question that arises is, "What should be the business and
technology platforms that can manage the variability of a generation of DER, diversity, and
complexity in the transfer of electricity to end-users?" [2]. New technologies, which are also to be
developed, should have capabilities to interface the augmented power system infrastructure with
power market stakeholders. System operators and other entities who deal with electricity markets
should possess the controllability and visibility of different DERs; moreover, there should be
requisite interfacing between these system components to achieve optimized monitoring and control
operations [3]. New acceptable business models need to be created along with an expansion in power
system elements due to trading entities as per the repercussion of the enhancement in investment in
DER, wholesale electricity market, demand response programs, energy storages, and plug-in-electric
vehicles (PEVs) technologies. Consumers are gaining a prime importance in whole power system
developments due to the following objectives: a) to estimate and predict the proportion of customer
participation in demand reduction; b) to identify the localized demand response and its impact on a
utilities’ distribution system; c) to include the demand response and distributed energy resources into
the utilities' action plan; and d) to identify the effect of the reduction of load on the utilities’
procurement plan [4,5].

There must be some ways to utilize demand reduction by consumers during peak and non-peak
hours. The possibilities are to be examined such that a DER and a combination of DER at the local
level not affecting that does not affect the power grid can have the generation capacity to cater to the
consumers' demand, at most, during peak hours, and to identify whether the production capacity of
DER is surplus during peak hours and non-peak hours [6]. It is a challenging task to sum up the
surplus power generation of different DERs that posses the stochastic generation capacity. It is not
clear whether and by which ways it is possible to utilize the aggregated power available from
dispersedly interconnected DER and demand reduction of numerous heterogeneous loads and then
postpone new power system infrastructure developments with an uprise of the power demand. The
aggregated power from DERs should be available for sale in electricity markets with many
bids/offers [7].

In the cyber-physical system of microgrids, distributed control schemes are found to be better in
solving economic dispatch problems compared to central control schemes because distributed control
schemes are robust, easily scalable, and possess a lower cost of implementation. Though distributed
control schemes show advantages over central control schemes, these are prone to cyber-attacks.
Therefore, to mitigate the effects of cyber-attacks, an attack-robust distributed economic dispatch
strategy is designed. In a transactive energy framework, microgrid (MG) aims to schedule an optimal
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hourly strategy in the day-ahead market to maximize profits. Next, MGs try to minimize the
imbalance of cost in the real-time market. The installation of a microgrid provides a lucrative
solution to dependency on the supply of power from the main grid and obtains economic benefits
from locally generated power [8]. The basic architecture of the microgrid is shown in Figure 1.

Attack-resilient intelligent power management has been developed such that the efficient
operation of an emergency power system in the presence of a cyber-attack can be ensured. An
adaptive neuro-fuzzy inference system (ANFIS) based methodology can validate the integrity of
critical data about an energy management system and is capable of detecting the occurrence of
cyber-attacks [9]. The various energy management systems (EMS) available in the literature have
pros and cons based on the minimum operating cost, customer privacy, flexibility, computation
power reduction, reliability, and resiliency. In islanded mode, a microgrid operates independently;
hence, there is a possibility that the microgrid may become less tolerant to faults and its resiliency
gets affected.

A mechanism has to be developed to improve the resiliency of the independent microgrid [10].
By promoting the dispersion of power resources, the resiliency of the microgrid can be
improved [11]. The feasibility of the resilient operation is to be analyzed with three actions unit
commitments, energy storage schedules, load curtailment, and adjustable load schedules. The
resiliency-oriented optimal scheduling model for the microgrid was developed in [12]. A mechanism
must be developed to ensure the economically optimal operation, a robustness against uncertainties
present in the system, and a fast-islanding operation with minimum consumer inconvenience. The
mathematical modeling of optimal scheduling that considers resiliency for microgrids is not widely
available. To build a resilient and environment-friendly microgrid that emphasizes customers, an
intelligent and distributed autonomous framework was developed [13]. In this model, the occurrence
of major outages due to natural disasters such as floods, tsunamis, earthquakes, heavy rains, etc. was
considered. The severity and occurrence of these events may increase in the future [14]. In the
grid-connected mode, a proactive operation model was implemented while considering a scheduling
horizon of 24 hours. This proactive scheme works on initial warnings created well before the
occurrence of major outages. The resilient-oriented operation scheme for microgrids considers the
major outages. A cyber-physical system of the multi-energy system is prone to Denial of Service
(DoS) attacks; consequently, the implementation of distributed energy management algorithms is
affected [15]. In the load-shedding algorithm, the possibility of maximum load curtailment has to be
identified. In the ramp-down algorithm, the maximum possible generation and the remaining amount
of surplus power at different time instants has to be identified.

The approach of reinforcement learning (RL) is goal-directed while learning from the given
environment. In reinforcement learning, the agents are software programs. First, these agents discern
the environment and make decisions accordingly for an action. The actions of the agents must be
optimal and superior. The environment of an RL space should be either deterministic, observable,
discrete, or continuous, and either single or multi-agent. The variables of the RL algorithm known as
hyperparameters are set for the model. These are different from the parameters of the model. The
hyperparameters are epsilon, alpha, and gamma, where epsilon is a greedy factor, alpha is the
learning rate, and gamma is the discount factor [16,17]. RL-based energy management has been
implemented in the creation of an energy management system for an electrified powertrain [18]. The
design of a resilient multi-energy microgrid system faces the challenges of stochastic uncertainties of
renewable generation, the development of model-free control schemes under undesirable conditions,
and the achievement of robust and efficient operations [19]. A multi-agent deep RL algorithm has

AIMS Electronics and Electrical Engineering \Volume 9, Issue 2, 165-191.



168

been designed for the resilience-driven routing and scheduling operations of the mobile energy
storage system [20]. The resilience quantification and planning of the power distribution grid were
analyzed with a zigzag topological approach [21].

In order to achieve several goals, such as lowering operating expenses and guaranteeing power
supply dependability, a deep reinforcement learning-based energy scheduling approach is
suggested [22]. To enhance the control performance of energy management system (EMS), SAC is
applied to the EMS of an electric vehicle (EV) equipped with a hybrid energy storage system
(HESS) [23]. The deep reinforcement learning algorithm is used to identify and calibrate problematic
parameters using PMU measurements [24]. By maintaining the variance of the state-action returns
within a tolerable range, a deep off-policy actor-critic variation is proposed to learn a continuous
return distribution [25]. In order to maximize their financial benefits and enhance system reliability, a
study suggests a residential demand response strategic bidding approach for load aggregators with
deep reinforcement learning [26]. To harness energy flexibility, a major commercial building's
cooling setpoint has been controlled using deep reinforcement learning based on Soft Actor
Critic [27]

1.1. Resilient energy trading

The components and stakeholders of a cyber-physical system of microgrids are shown in
Figure 1. In a networked microgrid, a resilient energy trading system is crucial to ensure the energy
security and price stability, especially as the world faces increasing climate risks and the transition to
more sustainable energy sources. A networked microgrid consists of multiple interconnected
microgrids that can operate either autonomously or in coordination with a main power grid. This
structure enhances the resilience, flexibility, and efficiency in energy management. Peer-to-peer
energy trading in networked microgrids enables prosumers (producers + consumers) to trade excess
energy directly with consumers. When resilience is incorporated, the trading mechanism ensures the
fault tolerance, cybersecurity, and adaptability against disruptions (e.g., cyberattacks, extreme
weather, or grid failures), as seen in Figure 2.

In energy trading, resilience is key to ensuring the continued flow of electricity, even in the face
of disruptions such as supply shocks, demand volatility, technological changes, or environmental
challenges. To build resilience in energy trading, the following strategies must be adopted:

e Sourcing energy from a variety of regions and suppliers to reduce the dependence on any one
source;

e Using Al and machine learning to predict market trends and quickly respond to disruptions;

e Modernizing grids and storage solutions to effectively handle fluctuations in the supply and
demand ; and

e Creating policies that encourage market transparency and provide support during crises.

1.2. Causes impacting resilient energy trading
Resilient energy trading ensures stable, secure, and adaptive transactions, even under uncertain
conditions. However, several factors can impact its efficiency and robustness. These causes can be

categorized into technical, economic, cyber, environmental, and regulatory factors. Resilient energy
trading is influenced by multiple factors, including technical, economic, cyber, and environmental
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challenges, as shown in Table 1.

A. Impact on Trading due to Transmission line faults ( Short Circuits, Overloads )

e Power flow disruptions affect the energy prices and trading stability.
e Some buses become isolated, thus causing supply shortages.
e Increased congestion in unaffected transmission lines.

B. Impact on Trading due to Generator Failure (Bus Outage, Frequency Instability)

e Sudden loss of generation capacity causes price spikes.
« Microgrid-dependent areas face severe power shortages.
o Market participants hoard energy, thus leading to unfair pricing.

1.3. Long short-term memory and soft actor-critic algorithms

The Long Short-Term Memory (LSTM) network is part of the deep recurrent neural network
(RNN) class with backpropagation and does not use gradients. Various memory gates are added in
the LSTM network, which possess the blocks that are comprised of gates to manage the block's state
and output [28,29]. The text classification tasks have been solved using optimal LSTM topologies.
The soft actor-critic (SAC) algorithm, including maximum entropy with LSTM, has been considered
for the energy management of multi-energy systems [30]. The workload prediction model was
designed considering the LSTM model [31]. In time series forecasting, the LSTM model was used
in [32]. The spiking neural P (SNP) based LSTM model was created to process sequential data [33].
The stock market values were predicted using the LSTM model [34]. A method was suggested to
predict the parts with the highest frequency with the Random Forest (RF), while LSTM predicted the
remaining parts [35]. A multi-scale FCN (MFCN) and LSTM network were considered for learning
spatial and temporal features [36]. In the error detection of electroencephalography (EEG), a
bidirectional LSTM neural network was implemented. The electrocardiogram signals were
partitioned into normal and abnormal using LSTM [37]. The multi-series classification has been
performed with a full convolution network- LSTM [38]. The levelized cost of electricity (LCOE) and
payback period approach was used to assess the solar-powered microgrid's economic viability [39]. A
technique for transferring tokens between networked microgrids with interoperable blockchains has
been created. A technique for token transfers between networked microgrid interoperable blockchains
has been devised for safe and private smart power contracts between electricity suppliers and
customers [40]. Under grid-to-vehicle and vehicle-to-grid systems, the electric vehicle network hub
enables blockchain-based safe and robust energy trading [41].

1.4. Research gap

Resilient energy trading ensures the secure, adaptive, and efficient energy exchange in
decentralized networks. However, several research gaps hinder its full potential. The major points in
the research gap are highlighted below:

e EXxisting optimization models fail to adapt to dynamic price fluctuations, grid failures, and
adversarial conditions;
e Current energy trading frameworks struggle with data privacy, non-independent and identically

AIMS Electronics and Electrical Engineering \Volume 9, Issue 2, 165-191.



170

distributed (I11D) data distribution, and communication failures;

e Vulnerabilities to DDoS attacks, data poisoning, and blockchain smart contract exploits threaten
the resilience of energy trading;

e Current models do not address climate-induced disruptions (e.g., wildfires, hurricanes) that
affect the energy trading resilience;

e There is a lack of holistic models that integrate renewable energy, microgrids, and energy
storage; and

e Limited research has been done on the design of quantification techniques for real-time energy
resilience.

Addressing these research gaps requires integrating RL, federated learning, blockchain security,
and real-world validation. Advancing resilient energy trading frameworks will enhance the stability,
security, and efficiency in decentralized energy markets.

1.5. Contributions

In this paper, LSTM-soft actor-critic (SAC) RL-based resilient energy management is suggested
for a networked microgrid system. In the networked microgrid system, the peer-to-peer resilient
energy trading mechanism is adaptive and robust to undesirable scenarios such as the occurrence of
faults in transmission lines, the failure of generators, and the failure of supply from the main grid.
The LSTM-SAC reinforcement learning is proposed to train the networked MG system to make it
resilient and adaptive. The state observations comprise the expected values of the electrical load
demand, power generations by the distributed generators, and the state of charge (SoC) and state of
health (SoH) of energy storage devices and electric vehicles. The action part contains either buying
or selling rates for surplus and deficit power, charging and discharging rates of energy storage
devices, and electric vehicles. The LSTM-SAC RL finds the actions for optimal Q values that
maximize the reward for different scenarios of undesirable events in a microgrid.

The proposed LSTM-SAC for Resilient Energy Trading is comprised of the following major
features, particularly in dynamic and uncertain energy markets:

e Unlike standard SAC, integrating LSTM enables the model to learn from past energy trading
patterns, grid conditions, and demand fluctuations;

e SAC-LSTM recognizes trends and adjusts strategies based on historical sequences, thus
improving decision-making in volatile energy markets;

e Multiple microgrids use SAC-LSTM, and they dynamically learn optimal trading strategies
while ensuring resilience against failures; and

e By considering past failures and recovery mechanisms, SAC-LSTM enhances the resilience of
energy trading strategies.

The major contributions of this paper are highlighted below:

e This paper formulates the resilient energy trading process by incorporating DC-OPF that
considers line outages (topology change) and generator failures;

e The proposed LSTM-SAC network does not use the gradient descent technique to estimate
Q-values, while the policy is maximized and avoids overestimates and underestimates of
Q-values;

e The networked microgrid is trained with the proposed LSTM-SAC algorithm that formulates the
reward function comprised of microgrid losses and profits, which are determined based on the
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surplus and deficit power and the time of occurrence of fault; and
e A Markov Decision Process (MDP) is used to develop the RL-based resilient energy trade

problem.
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Figure 1. Basic architecture of cyber-physical system microgrid.
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Figure 2. Peer-to-peer resilient energy trading in networked microgrid.
Table 1. Impact on trading due to various faults.
SrNo Fault Type Impact on trading
1 Line Faults Power congestion, price fluctuations
2 Generator Failure Demand-supply imbalance, blackouts
3 Bus Outages Complete trading failure, cascading blackouts
4 Cyber Attacks Price manipulation, fake trading data

1.6. Paper organization

This paper is organized as follows: Section 1 covers the introduction; Section 2 includes the
basic concepts of RL; Section 3 focuses on the resilient energy trading problem formulation; Section
4 discusses RL-based secure and resilient energy trading; Section 5 covers the proposed LSTM-SAC
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RL scheme for resilient energy trading systems; Section 6 includes a simulation and results; and
Section 7 concludes the paper.

2. Reinforcement learning: An introduction

The approach of RL is goal-directed while learning from the given environment. In RL, the
agents are software programs. First, these agents discern the environment and make decisions
accordingly for an action. The actions of the agents must be optimal and best. The environment of
the RL space should be deterministic, observable, discrete or continuous, and single or multi-agent.
There are four main parts of RL such as a policy, a reward signal, a value function, and/or a model
function [42,43].

a. Policy: A policy is the learning process and behavior of the agent in the environment. A policy
defines the action to be taken out of discerned states from the environment. The policy is the
core part of the RL and maybe a simple function or a look-up table.

b. Reward: The reward is the goal of the RL problem. At each discrete time step, an agent receives
a reward, which is a number from the environment. The objective of the agent is to maximize its
reward. The reward the agents receive depends on the good or bad events. The reward of any
number to the agent depends on the stochastic functions of the environment and the agent's
actions.

c. Value function: A value function indicates the good things that will occur in the long run. The
value function depends on an agent who expects to collect the reward in future actions. The
environment directly gives a reward to the agents with an estimation of values on the actions
during their entire lifetime.

RL is based on mathematical principles from MDPs, probability, optimization, and dynamic
programming. An MDP is defined by a tuple (S, 4, P, R,y),
where S is the set of state, A is the set of actions, P(s'|s,a) is the transition probability from state
s to s givenaction, r(s,a) is the reward function, and y is the discount factor (0 < y < 1).
The state value function is shown below:

V™(s) € Ex[EZ0 v T (se, ar)lso = s]. (1)

It represents the expected cumulative reward when starting from state s and following the policy.
The action —value function is shown below:

Q"(s,a) = Ex[EZoy'r(se,ar)lso = s,a9 = al. @)

It represents the expected cumulative reward starting from state s, taking action a, and then
following the policy m. The Bellman equation expresses the recursive relationship of the value
function:

V7 (s) = Zam(als) Ty P(s' Is,@)[r(s, @) +yV™(s). 3)
The Bellman Equation for the Q-Function is as follows:
Q"(s,a) =7(s,a) +y Xy P(s'|(s,@) Zo m(a' s )Q (s, a). (4)

For the optimal policy m*, the value function satisfies the following:
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V*(s) = max Q" (s,a). (5)

The optimal Q-function satisfies the Bellman optimality equation:

Q*(s,a) =r(s,a) + yz P(s'|s,a) max Q* (s, a). (6)

Using the Q-function, the policy is improved using the following:

' (s) = arg max Q™ (s, a). )

This interprets the action that maximizes the expected reward. The temporal difference learning
updates the value function as follows:

, (8)
V(s) «V(s)+ a(r +yV(s) — V(s)),

where o is the learning rate. Q-learning is an off-policy learning method with the following update
rule:

Q(s,) = Q(5,@) + a(r +y maxQ(s',a) — (s, ), ©

where max, Q(s,a’) represents the best possible future value.
3. Resilient energy trading system: Problem formulation

An adaptive neuro-fuzzy inference system is developed to make the attack-resilient energy
management of a microgrid. In a multi-energy system, the optimal operation of each energy hub and
optimal energy trading path are considered during DoS attacks [9]. A load shedding of a non-critical
load is implemented in a microgrid that is islanded after a disaster in a networked microgrid
system [10]. In the islanded mode, a microgrid gets disconnected from the main grid and,
consequently, becomes less tolerant to faults; then, the resiliency of the microgrid is affected [11,12].
The system must be smart enough to anticipate such as electricity price changes and unknown
fluctuations. However, some events are rare and extreme, which deeply affects the system.
Resiliency is described as the capability of the system to adapt itself during the occurrence of these
rare and extreme events and be robust enough to these events [13]. A resiliency-oriented microgrid
optimal scheduling model has been developed. The operating model employed a normal and resilient
operation. The capability of the microgrid has to be identified to supply loads during main grid
supply interruptions. The networked microgrid system must be robust and adaptive to operational
uncertainties of loads and non-dispatchable generation. The worst-case scenarios with prevailing
uncertainties are to be considered to make the system robust and resilient [14,15].

Considering the uncertainty of the DG, the total generation cost of MG k is given below:

TCH(t) = Tien, CF (ECPE, (D)), (10)

where N, is the total number of distributed generating units in the network microgrid system, T is
the total number of time intervals, E(P};(t)) = P, (t) + APS (t) is the expected value of power
generation, and P;i(t) is the forecasted value of power generation by DG i.

AP;i < max(APg’fg) represents an uncertainty part of DG i and is limited by a maximum value in the
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worst-case scenario.

The operating limits (superscript k is dropped for simplicity) are as follows:

Pli™ < Py, < P, i €N, (11)
Pyi(t) — Py i(t—1) < Ay, (12)
Pyi(t=1) = Pyi(t) < Agown (13)
Yien, Pygi = Le, (14)
where L, is the total demand. The state of charge of the energy storage system is as follows:
$0Cye,(8) = $0Cy (¢ = 1) = (Pl (O, — BLOD) (15)

where P{, and PZ are the charging and discharging power of energy storage devices, respectively,
with constraints Pg;, < Py (t) < Phox and Py, < P (t) < Prox -

min —

The state of charge of an electric vehicle is shown below:

_PG®
SOCev,i (t) = SOCev,i (t - 1) ( evz(t) C Nd )AT, (16)
where PS5, and PZ are the charging and discharging power of electric vehicles, respectively, with
the constraints PS5, < PS5 (t) < PS,, and P < P3(t) < PY,..

3.1. Operative schedule of energy storage devices and electric vehicles

It is required to completely charge the battery after different operations in a day so that a fully
charged battery will be available for the next day's operations. To obtain a fully charged battery, a set
of intervals is reserved for charging, as shown below:

.QZ;:{TC,TC+1,.......,T}Wh€7"€ TC:T—NCf, (17)

where ch is the cardinality of set 2 and can be found as follows:

— {(Socmax _SOCmin)Ebt,max (18)
Ncharge Ppt max

and N/ =1q]. (19)
3.2. Operation and maintenance cost

The operation and maintenance cost in a microgrid is formulated as follows:

Com @) = CE Py (0) + CUT Puc () + Cod Puygr (£)+CE3 Pus (0. (20)

3.3. Surplus and deficit power

At a particular time instant t, the surplus or deficit power in MG is described as follows, while
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the uncertainty of the system is considered. At time instant t, let AP be the surplus or deficit
power in MG K; then,

AP*(t) =

Sien, (E(PE(£))) = ERlyg () = Bjen, (e, Pl (8)) = Biew,, (@eniPLi (8)),

(21)
where a;.; and a,,; are the binary parameters defined for energy storage system j and electric
vehicle [. These parameters are 1 for charging and -1 for the discharging mode. IE(Pa"gg (t)) is the
expected aggregated load demand and IE(P;i (t)) is the expected power generation by DG i at time
t in MG, and N, is the number of distributed generators in the microgrid.

The objective is to minimize the overall cost of the microgrid. For each node in the microgrid,
the overall cost includes the following components:

a. The cost of power purchased from the utility grid or prosumers, and
b. The cost of the power generated by the distributed generator.

The operational and maintenance costs include the cost of the battery wear due to charging and
discharging. If the microgrid is in surplus power, then it can sell energy to the distribution network
operator (DNO), other MG, prosumers, and utility grid and generate revenues and follows:

MGProf (t) or MG t) = MGrkev (APk(t)) - MGécost )+ Cres (1), (22)

where MGE ., = TCk(t) + Coy (1), MG, (t) is the profit, MG, (t) is the loss of the

microgrid, and C,. is resilient energy trading.
3.4. Resilient optimal power flow: An overview

The security of the electrical distribution network is an important criterion. The network must
be capable to withstand any sudden loss of a part of the network. One of the goals of the work is to
design a resilient energy management system. Resilient energy management develops a mechanism
to withstand the different sorts of faults such as line faults, distributed grid faults, power outages, and
communication network faults.

A. Transmission line fault

During the occurrence of faults, the power could not flow through the faulty transmission line.
In this energy management system, this power flow is described as follows:

P.(t) = 0,vt € [t2, ¢]]. (23)

The power flow has been set equal to zero through the faulty line. The t? is the occurrence time of
the fault, and t[ is the final time of the fault duration. If the information of the fault duration is not
known, then a future time instant constraint must be imposed. Consequently, the power has to be
transferred through the other transmission lines to avoid overloading the other transmission lines. If
the fault occurs in the radial transmission, then it is cumbersome to deliver power to the disconnected
MG.
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B. Distribution Grid Fault

During a distribution grid fault, the MG is unable to draw power from the utility grid until
recovery. This is described as a constraint:

Pi=0, Vie{l,. N} vt e[t t!], (24)

where t;', is the initial time of grid fault, and tg is the final fault time. In all cases of a fault
occurrence, the constraints related to the faults are included in the optimization problem.

C. Communication network fault

A communication network fault may occur if the communication link is physically disconnected
or if the link may fail due to a cyber attack. The sort of fault can be described in the adjacency matrix,
B, as if the communication link between node/agent fails; then,

b = by =0, (25)
where b;; € B represents the communication link between two nodes i and j in the networked
microgrid system. Due to the occurrence of faults, the performance of the energy management
algorithm diminishes and convergence problems may occur.

3.5. DC optimal power flow (DC-OPF) for resilient energy management

Resilient Energy Management (REM) ensures stable and efficient power distribution under
uncertainties such as cyberattacks, equipment failures, or natural disasters. DC Optimal Power Flow
(DC-OPF) plays a key role in optimizing the power dispatch while enhancing the system resilience.
DC-OPF is a linear approximation of the AC power flow problem and is widely used in power system
operations for economic dispatch and congestion management. In the presence of faults, the topology
of the network may change due to line outages, bus faults, or generator failures, thus requiring
modifications in the standard DC-OPF formulation.

The classical DC-OPF problem aims to minimize the generation cost while satisfying a power
balance and transmission constraints. In the presence of faults (e.g., line tripping, generator failure, or
bus outage), the network topology and constraints change of DC-OPF is written below.

The standard DC-OPF objective is to minimize the total power generation cost as follows:

min Y C; (Pyi), (26)

where the quadratic cost function for generator i is as follows:

Ci(Pi) = al-szi +bipgi +Ci' (27)
Subject to constraints
a. Generator limits
PJi™ < Py S PJI** Vi€G (28)
b. Transmission Line Flow Limits
—P"* < B;(6; —6;) <P"" (29)
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c. Line outages (Topology Change)

If aline (i,j) is outaged due to a fault, it is removed from the system, thereby modifying the
admittance matrix and power flow equations as follows:

0,-6; o
Pj =Yiemgy—, V(0 j)EF, (30)

xl—]-
where F is the set of faulted lines, 6; and 6; are the voltage phase angles at buses i and j,
respectively, x;; is the reactance of the transmission line between buses i and j. The reactance
matrix X and the incidence matrix B are updated to reflect the removal of the affected lines.

To ensure robustness,
—P'™ (F) < P; (F) < —P["™ (F). (31)

d. If agenerator at bus i fails, then

Pgi = 0: Vi € gfaulted ' (32)
where Grauirea represents the set of failed generators. The system needs dispatching of the remaining
generators to maintain a power balance as follows:

Pyi (F) + Xjep Pa, (F) = 0,VF € (,

(33)
where C is the possible contingencies, and P;; is the power demand at the bus.
The line power flow has to be calculated using the following DC power flow equation:
P{ = bA;B™'P/, (34)

where Pf € RV. is the vector obtained by stacking the power flows in each line at time t.
b € RNtXNi js a diagonal matrix in which each element b(i,j) is the susceptance of line i.
B € RV*Ns s the admittance matrix, and P, € R"# is the vector obtained by stacking all the bus
power injections. The elements of the adjacency matrix of the microgrid AL € RV:*Ni are
Al (i,j) € {0,1 — 1} if line i and bus are not connected, line i starts at bus j, or line i ends at the
bus, respectively.

3.6. Resilient energy trading in networked microgrids
The microgrid seeks to minimize the cost of buying energy and maximize the revenue from

selling energy. The Resilient energy trading is formulated while considering the DC-OPF in the
presence of faults as follows:

PSPLPL (M GRS = 22C5P) + 23C5cPs + 3G, F ], (35)

i1~

Cres = max [
t=

subject to (26),
where ¢!, Cf are the selling and buying market prices, respectively, CZ is the price to store the

energy, C; is the peer-to-peer trading price, P and Pf are the power sold and bought to the main

grid, respectively, and 44, 1,, 13, A, are the weighting factors.
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3.7. Particle Swarm Optimization

PSO optimizes DC-OPF by iteratively updating a population of candidate solutions (particles)
based on their velocity and position updates as follows:

1. Initialize the particles (each particle represents a possible set of generator outputs Py; )
2. Evaluate the fitness function (generation cost)
3. Update the particle velocity and position

vitt = wvf + 111 (Phesei = B,) + €2t (Goest — B,), (36)
Pl = pt 4yt (37)

where w is the inertia weight, ¢; and c, are acceleration coefficients, r; and r, are random
numbers in [0, 1], ppes:; IS the personal best position of particle i, and g,.s is the global best
position among all the particles. Repeat until the convergence criteria is met.

4. Reinforcement learning for resilient energy trading system

The RL-based resilient energy trading problem is formulated as an MDP:
M = (S'A' Pr Yy, Rt 'Nrel'OItatal) (38)

S is the state space representing the energy market, demand, price, and grid conditions.
A is the action space for trading decisions (buy/sell/store energy).

P is the state transition probability.

r is the reward function modeling profits, resilience, and stability.

y is the discount factor balancing short-term vs. long-term rewards.

N,.; = Network reliability

Ol,,:a1 = Operating loss in resilient energy trading

R, is grid resilience index that measures how well the energy trading system maintains functionality
and restores operations after a fault. The Grid Resilience index in energy trading quantifies the power
grid’s ability to maintain the stability, efficiency, and reliability while enabling seamless energy
transactions under normal and stressed conditions. It ensures that the energy market remains
functional despite disruptions such as cyberattacks, equipment failures, demand surges, or renewable
intermittency. Before any fault or disruption occurs, the grid operates under normal trading
conditions with optimal pricing, demand-supply balance, and stable grid parameters. Once a
disruption (fault, cyberattack, or market instability) occurs, post-fault resilience determines the
system’s ability to either maintain or restore trading operations with a minimal impact.

It is expressed as follows:

Rt _ Epost fault % 100%’ (39)
Epre fault
where:
Epost faute + Total energy traded before the fault
Epre faui - Total energy traded after the fault
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If R, = 100%, then the system is fully resilient (no impact of faults). If R, < 100%, then there is
degradation in trading due to faults.

Pre-Fault Energy Trading is affected by the following factors:

e Availability of power from conventional and renewable sources,

e Diversity of generation sources (coal, nuclear, solar, wind, hydropower),

e Real-time energy consumption patterns of industries, households, and businesses,
e Demand-response mechanisms to prevent extreme price hikes, and

e Consistent pricing to ensure fair transactions and minimal volatility.

The post fault energy trading is affected by the following factors:

e Amount of energy that can be quickly restored after a fault,

e Availability of backup power sources such as microgrids or battery storage,
e Sudden price spikes or fluctuations due to power shortages,

e Impact on energy buyers and sellers, and

e How quickly the grid can isolate faults and reroute power.

4.1. Network reliability in resilient energy trading

It refers to the ability of the energy trading systems to maintain stable, secure, and continuous
operations despite faults, cyber threats, market fluctuations, and physical grid failures. Several factors
influence the network reliability, which are categorized based on technical, economic, and security
aspects. Network reliability in energy trading is defined as the probability that all critical components
(power grid, trading platform, cybersecurity, and market operations) function properly. The network
reliability index is defined as follows:

P,.Pirad-Pcyp-P
Nrel — g-Ltrad-F cyb-Fmar , (40)
1+Pg+Perad+Pcyb+Pmar

where F,= Probability that the power grid is operational,

P..,q = Probability that the energy trading platform is functioning,
P.,, = Probability that the cybersecurity system is intact, and

P,..- =Probability that the energy market remains stable.
The state transition probability is defined below.

4.2. Operating loss in resilient energy trading

The operating loss in resilient energy trading refers to the financial and energy losses that occur
due to system failures, cyber threats, market disruptions, and grid instabilities. These losses are
categorized into direct financial losses, energy loss, opportunity cost, and recovery expenses. The
total operating loss in a resilient energy trading system is expressed as follows:

(41)
Oltotal = Olenergy + Olmarket + Olcyber + Olreva

where:
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Olgpergy = Loss due to untraded energy

Ol,.arker = LOSS due to market price fluctuations

Ol per = Loss from cyberattacks or data breaches

0l,., = Cost of restoring operations after failure

P(t) = e"*P(0), (42)
where A is the transition rate matrix and is defined as follows:
r—O'O Oy 0 0 'l
| i —(o1 + 1) Ay - 0 | (43)
A= l 0 1z —(oy+p) 0|,
: : : -0
0 0 0 Hn —HUn

where A; = failure rate at state i, and u; = Recovery rate due to self-healing.

Let us consider the nodes in the microgrid defined as an agent. At some discrete-time interval t,
the variables considered are load demand, distributed generation, SoC and SoH, and profit. Under
extreme and normal conditions, the system state for an MG is described as follows:

([E (p;l.(t))) E(sock,;®), (44)

s (t) = ’
E ( SOlet,l (t)) ) IIE:(Pakgg)

where @ =123...,Ngg , j=123..., Ny , 1=123...,N, , and s €S and
S={51,5 e, Sp }-

S represents the set of all feasible system states in the system of MG. s, stands for a feasible state,
and n is the number of all feasible system states. All feasible system states concerns all possible
values of the electricity demand, distributed power generation, and SOC/SOH of the battery. Next,
the action of MG is defined on the following decision variables:

ag (t) = { Cts ’ Ctb ’ CtSt' Ctp}’ (45)
where a, (k) € U, U = {aq, ay,....... , a,}, U is the set of all feasible actions of corresponding

states, and N,, and N,, are the numbers of the energy storage devices and electric vehicles,
respectively.

4.3. The reward function for resilient energy trading

The reward function is formulated for resilient energy trading (44). At time t, the reward
function is comprised of three components: the profit or loss of MG, the surplus or deficit power, and
the duration of the occurrence of a fault,

T'(t) = .Bp X MGz])(rof (t) - .Bl X MGlIf)ss (t) +w X f(APk (t)) - (pfault Tfault ) (46)

where (APY) = AP /(1 + In(JAP¥) Traue = [thuy — taute | Trawe is the duration of the fault,
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tfaue 1S the time of occurrence of fault, and t][ault is the time of the end of the fault. g, is 1if MG
is in profit, else 0 similarly, g, =1 if MG is in loss, else it is zero, and @, is 1 if fault occurs

elseitis 0.

The reward function is defined based on either the surplus or deficit power. The first component
is related to the profit of the microgrid, and the second component is related to the loss incurred in
the microgrid. The third component is related to the surplus or deficit power. The f and w are the
weighting factors to scale the components. There is an objective to choose @ values that generate
greater values of reward.

5. Proposed LSTM SAC reinforcement learning strategy

At a time index, the LSTM cell is comprised of three types of gates, such as Forget f;, an Input
gate with an input i, and an update g,, and an output o,. The LSTM focuses on time-series
forecasting. Let, {x;_1,x;_p,.....,X;_, } denote the input sequence. The suitable weight matrices
are considered for corresponding inputs of the network activation functions. The internal memory
cell state C,_; defines elements of the internal state vector that need to be maintained, updated, or
crashed through interaction with outputs of the previous time step h,_; and the inputs of the current
time step x,. The sigmoid activation function is used in the forget gate. The sigmoidal function (or
Relu function) and hyperbolic tangent functions are used for the input and the update of the Input
gate. The output gate decides what to forget from the previous state h,_; and updates cell state c,,
and which value will pass the output gate. f;, i;, g, and o, are defined as follows:

fo = sigm(Weyx + Wephe_q + by), (47)
iy = sigm(Wyx, + Wiph_4 + b;), (48)
g: = tanh(l/l{gxxt + Wypheq + bg), (49)
0t = Sigm(vvoxxt + Wohht—l + bo)' (50)

The cell memory is recursively updated by interactions with the previous time step value and with
the values of f, and g, gates. The process continues to repeat for the next time step.

C=0OC1+iOg: (51)

In the proposed scheme, the Q-function and policy are simultaneously learned. It considers
off-policy data and the Bellman equation to learn the Q-function that is used in computing the policy.
The optimal action is chosen by taking argmax over the Q-values of all actions. Thus, the actor is the
policy network that directly outputs the action. For exploration promotion, some Gaussian noise is
included in the action that is determined by the policy. The actor output is fed to the Q network to
calculate the Q-value. The target networks are created for both the critics and actors. The target
networks are updated based on the main networks. The actor (policy network) loss is the sum of the
Q-values of the states. The critic network is used to compute the Q-values. The action network
computes the action that is passed to the critic network. Using the reward function (44), the error
propagates back to update the LSTM CRITIC and LSTM ACTOR networks, as shown in Figure 3.
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Figure 3. LSTM-based soft actor-critic network.

5.1. Soft Actor-Critic (SAC) with LSTM for resilient energy trading

SAC is a model-free, off-policy RL algorithm that optimizes both reward maximization and
entropy regularization for better exploration. Integrating LSTM into SAC improves its ability to
handle sequential dependencies in energy trading, thus making it more resilient to uncertainties in

decentralized markets.

Energy trading in decentralized markets is highly dynamic due to the following:

e Fluctuations in the energy demand and supply;
e Uncertain energy prices; and
e Cyber threats and adversarial conditions.

The proposed SAC-LSTM algorithm has the following features:

Temporal awareness: LSTM captures past energy trading patterns.

Exploration-exploitation balance: SAC’s entropy regularization ensures robust decision-making.
Resilience: SAC can adapt to adversarial trading conditions and market fluctuations

5.2. SAC with LSTM policy and Q-Functions

The policy network outputs a stochastic action distribution using LSTM embeddings:

my(as, s¢) = N(ug (he), g (he)), (52)

where h, = LSTM(s; ,h,_1) represents the hidden state, and ug(h,) and gy (h,) are the mean
and variance of the active distribution, respectively. The objective function includes entropy

regularization,

where H(my) = — Y, my logm, is the entropy that controls exploration (automatically tuned in SAC).

Critic (Q-Value) Network with LSTM

The Q-function is learned using two critics to reduce overestimation bias.

AIMS Electronics and Electrical Engineering
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The target Q-function follows soft Bellman updates,
where the target value is as follows:
Ye =1 +y[mini=y 2 Q' (Se11, Ary1) — aH (A4, Se41)]- (53)
Automatic Temperature (o\alphaa) Adjustment
SAC dynamically adjusts the entropy weight a:
(a) = E,,  [—alogn(a.l|s,) — aHy], (54)

where H, is the target entropy.

Steps of Proposed LSTM- SAC algorithm for resilient energy trading

1. Input: Consider States in the environment
([E (P, (t))) E(sock,;®),E( sock,, @),
E(Pig)
2. Output: Action taken in the environment
a(t) = {C¢, 0, ¢
Set B,, Biy @, Praue aNd Qyp
4. Initialize the replay buffer D

s (t) =

Set two different target network parameters as follows:
(ptarg,l < (pl and (ptarg 2 < (p2 and
6. Forepisode 1,2,3,...... N do

Initialize states of peer-to-peer resilient energy trading parameters of microgrid for different
scenarios,

7. Fortimeslot t =1,23...........,T, do

Evaluate reward r(t) where

T'(t) = ,Bp X MGz])(rof,i(t) - ﬁl X Mlebss,i (t) +w X f(APk(t)) - (pfault Tfault

8. For different (s,a) pair

Derive the optimal control action a* = arg max, Q*(s, a)
Execute the control action in the environment

9. Update the state S, store the transition in replay buffer D

10. Building LSTM network for the actor and critic for the optimal Q*(s, a)
11. Check for overestimates Q*(s,a) < Q.

Model = sequential();

Model.add (LSTM (neurons), activation = RELU, return_sequences = True)
Model.compile (Loss = RMSE, optimizer = ADAM);
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12. While epoch =1,2,..... DO
Train model;
Validate model;
Return model
End

Evaluate future state optimal target Q-function Q*(s’,a’)

t<t+1

End

6. Results and discussions

A networked microgrid comprised of 04 IEEE 14 bus system is considered with different
capacities of distributed generations, energy storage devices, and electric vehicles. The stochastic
values of the generation capacity of distributed generators and electricity demand are considered. In
an MG, 10 distributed generators (DGs), 04 energy storage devices, and 02 electric vehicles are
available in the system. The minimum and maximum power generation by the distributed generators
are in the range of 45 MW and 3500 MW.

It is assumed that the MG is facilitated to also get power from the main grid. The simulation
work was performed using the GAMS software and MATLAB. The adjacency matrix varies during
normal conditions and the occurrence of extreme events. During different scenarios, state-action
pairs are generated and Q(s,a) values are approximated using the LSTM network for SAC RL. In
the environment, the optimal Q*(s,a) value and a*, which maximize the reward, are obtained.

At a time instant with an aggregated load demand, the generations by different distributed
generators are obtained under normal conditions. The optimal power generations of different DGs
have been obtained using (26) to (33) and (36) to (37); then, the surplus or deficit power changes
were calculated during normal and extreme conditions. The charging schedules of Electric vehicles
and energy storage devices were obtained using (17). Due to the occurrence of extreme events, there
may be several scenarios on networked microgrids. Out of various scenarios, only one scenario was
considered for resilient peer-to-peer energy trading, which is shown in Table 2. Let extreme events
occurs at time t = 10 hours, and the system is recovered at t = 20 hours so the duration of the
faultis Trye = 10 hours.

Accordingly, the profit or loss of the MG is evaluated in Equation (22). The MG is trained for
different scenarios using a LSTM-SAC RL algorithm. The optimal Q values (9) are obtained and the
corresponding optimal action (45) and reward (46) are evaluated. The optimal action a* is obtained
with optimal @* values, while rewards at different time intervals are generated and maximized. To
avoid a gradient descent, the LSTM neural network is implemented to generate an optimal Q* while
the reward is maximized. For different scenarios, such as the occurrence of a fault on a transmission
line, the failure of distributed generators, or the failure of supply from the main grid, the networked
microgrid system is trained for optimal actions while the reward is maximized. In a scenario, in MG1,
the distributed generators 9 and 10 fail, and in MG2, the distributed generators 5 and 6 fail. As
shown in Table 2, during the scenario of extreme conditions, the optimal power generation (36)-(37)
using the PSO algorithm by microgrid 1 and microgrid 2 are obtained, and are shown in Figures 4
and 5, respectively. The state of charge of the energy storage devices and electric vehicles are
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computed and shown in Figures 6 and 7, respectively. For microgrid 1 and microgrid 2, during this
scenario, the surplus and deficit powers are evaluated at different time intervals, which is shown in
Figure 8. The rewards of microgrids 1 and 2 are calculated and shown in Figure 9 during time
intervals of extreme conditions. For scenario 1, the grid resilient factor was calculated to 90% (39).

Table 2. Impact of extreme conditions on microgrids 1 and 2.

Scenario MG1 MG2
1 e Occurrence of fault at transmission | e Occurrence of fault at transmission
line 6-8 line 3-4
2 e Failure of DGs 9 and 10 e Failure of DG 5and 6
Microgrid 1
g 800
é 400

Figure 4. Power generations in MG1 during scenariol.

Microgrid 2

Power Generation (kW)
- N w &
[=3 o o o
(=] o o o

[}

Time(hours)

Figure 5. Power generation in MG2 during scenariol.

Microgrid 1

ES and EV 6 10 12 Time(hours)

Figure 6. SoC of Energy storage device(ES) and Electrical vehicle(EV) during scenario 1 in MGL1.
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Microgrid 2

ES and EV ’ 10 Time(hours)

Figure 7. SoC of Energy storage device(ES) and Electrical vehicle(EV) during scenario 1 in MG2.

In the learning process, the rewards were obtained for microgrid 1 and microgrid 2, and the time
intervals were identified while the rewards were negative. The negative rewards show that the
microgrid has a loss during the occurrence of extreme events for peer-to-peer energy trading.

Microgrid 2

(o))
o

1507

Microgrid 1

N
o

Surplus and deficit power (kW)
Surplus and deficit power (kW)

" E 10 15 20 25 0 5 10 15 20 25
Time(hours) Time(hours)

Figure 8. (a) Surplus and deficit power in MG1 during scenariol and (b) Surplus and

deficit power in MG2 during scenariol.

Microgrid 1 Microgrid 2
257 ‘ ‘ 8r :
20- 6
15¢ 4
xe] ©
5 10r 5 2
2 2
2 5 20
0 -2F
-5f -4t
-10" : ‘ : : ‘ -6 . : - : :
0 5 10 15 20 25 0 5 10 15 20 25
Time(hours) Time(hours)

Figure 9. (a) Reward in MGL1 during scenariol and (b) Reward in MG2 during scenariol.
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4. Training Progress (07-Feb-2025 14:39:07)

Training Progress (07-Feb-2025 14:39:07)
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Figure 10. Convergence and Loss in LSTM SAC simulation with 250 iterations.

The LSTM network comprises hidden units: 200, training options: adam, MaxEpochs: 250, and
Error: Root mean square error (RMSE). The convergence in the LSTM network is shown in Figure
10. Stochastic scheduling has been implemented in peer-to-peer energy trading while energy storages
are incorporated to improve resiliency.

7. Conclusions

In this paper, a multi-LSTM-SAC RL for the resilient energy management of microgrids was
proposed for secure and resilient peer-to-peer energy trading. This proposed mechanism was tested
in a networked microgrid system comprised of an IEEE 14 bus with energy storage devices and
electric vehicles. The MG was trained with LSTM-SAC RL for different scenarios, such as the
failure of generation by one or more than one generator or the occurrence of a fault in the
transmission line. During the extreme conditions, secure and resilient peer-to-peer energy trading
was designed. At different time intervals of extreme events, the optimal power generation, the
surplus or deficit power, the state of charge of energy storage devices, and the electric vehicle power
were evaluated. The convergence in the proposed learning scheme is obtained and optimal actions
were obtained for different extreme events. This learning scheme did not use gradient descent;
otherwise, the LSTM algorithm was used to estimate the Q values. Furthermore, this learning
scheme avoids overestimating the Q values for resilient energy management. The convergence in the
learning mechanism was obtained and loss was minimized. The proposed LSTM-SAC resilient
peer-to-peer energy trading creates a platform to maximize profit under extreme conditions.
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