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Abstract: On the whole, the present microgrid constitutes numerous actors in highly decentralized 

environments and liberalized electricity markets. The networked microgrid system must be capable 

of detecting electricity price changes and unknown variations in the presence of rare and extreme 

events. The networked microgrid system comprised of interconnected microgrids must be adaptive 

and resilient to undesirable environmental conditions such as the occurrence of different kinds of 

faults and interruptions in the main grid supply. The uncertainties and stochasticity in the load and 

distributed generation are considered. In this study, we propose resilient energy trading incorporating 

DC-OPF, which takes generator failures and line outages (topology change) into account. This paper 

proposes a design of Long Short-Term Memory (LSTM) - soft actor-critic (SAC) reinforcement 

learning for the development of a platform to obtain resilient peer-to-peer energy trading in 

networked microgrid systems during extreme events. A Markov Decision Process (MDP) is used to 

develop the reinforcement learning-based resilient energy trade process that includes the state 

transition probability and a grid resilience factor for networked microgrid systems. LSTM-SAC 

continuously refines policies in real-time, thus ensuring optimal trading strategies in rapidly 

changing energy markets. The LSTM networks have been used to estimate the optimal Q-values in 

soft actor-critic reinforcement learning. This learning mechanism takes care of the out-of-range 

estimates of Q-values while reducing the gradient problems. The optimal actions are decided with 

maximized rewards for peer-to-peer resilient energy trading. The networked microgrid system is 

trained with the proposed learning mechanism for resilient energy trading. The proposed LSTM-SAC 

reinforcement learning is tested on a networked microgrid system comprised of IEEE 14 bus 

systems. 
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1. Introduction  

Renewable Energy (RE) is vital to building a resilient and secure future energy system. The 

penetration of distributed energy resources (DER) into the entire power system facilitates the 

liberalization of electricity markets, the availability of standby capacity for peak demand, the 

enhancement in reliability and power quality, the augmentation of the local electricity network, the 

support to the existing grid, the combined generation of electricity and heat, the efficient use of 

low-priced fuel, etc. [1]. Now, one question that arises is, "What should be the business and 

technology platforms that can manage the variability of a generation of DER, diversity, and 

complexity in the transfer of electricity to end-users?" [2]. New technologies, which are also to be 

developed, should have capabilities to interface the augmented power system infrastructure with 

power market stakeholders. System operators and other entities who deal with electricity markets 

should possess the controllability and visibility of different DERs; moreover, there should be 

requisite interfacing between these system components to achieve optimized monitoring and control 

operations [3]. New acceptable business models need to be created along with an expansion in power 

system elements due to trading entities as per the repercussion of the enhancement in investment in 

DER, wholesale electricity market, demand response programs, energy storages, and plug-in-electric 

vehicles (PEVs) technologies. Consumers are gaining a prime importance in whole power system 

developments due to the following objectives: a) to estimate and predict the proportion of customer 

participation in demand reduction; b) to identify the localized demand response and its impact on a 

utilities’ distribution system; c) to include the demand response and distributed energy resources into 

the utilities' action plan; and d) to identify the effect of the reduction of load on the utilities’ 

procurement plan [4,5].  

There must be some ways to utilize demand reduction by consumers during peak and non-peak 

hours. The possibilities are to be examined such that a DER and a combination of DER at the local 

level not affecting that does not affect the power grid can have the generation capacity to cater to the 

consumers' demand, at most, during peak hours, and to identify whether the production capacity of 

DER is surplus during peak hours and non-peak hours [6]. It is a challenging task to sum up the 

surplus power generation of different DERs that posses the stochastic generation capacity. It is not 

clear whether and by which ways it is possible to utilize the aggregated power available from 

dispersedly interconnected DER and demand reduction of numerous heterogeneous loads and then 

postpone new power system infrastructure developments with an uprise of the power demand. The 

aggregated power from DERs should be available for sale in electricity markets with many 

bids/offers [7]. 

In the cyber-physical system of microgrids, distributed control schemes are found to be better in 

solving economic dispatch problems compared to central control schemes because distributed control 

schemes are robust, easily scalable, and possess a lower cost of implementation. Though distributed 

control schemes show advantages over central control schemes, these are prone to cyber-attacks. 

Therefore, to mitigate the effects of cyber-attacks, an attack-robust distributed economic dispatch 

strategy is designed. In a transactive energy framework, microgrid (MG) aims to schedule an optimal 
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hourly strategy in the day-ahead market to maximize profits. Next, MGs try to minimize the 

imbalance of cost in the real-time market. The installation of a microgrid provides a lucrative 

solution to dependency on the supply of power from the main grid and obtains economic benefits 

from locally generated power [8]. The basic architecture of the microgrid is shown in Figure 1.  

Attack-resilient intelligent power management has been developed such that the efficient 

operation of an emergency power system in the presence of a cyber-attack can be ensured. An 

adaptive neuro-fuzzy inference system (ANFIS) based methodology can validate the integrity of 

critical data about an energy management system and is capable of detecting the occurrence of 

cyber-attacks [9]. The various energy management systems (EMS) available in the literature have 

pros and cons based on the minimum operating cost, customer privacy, flexibility, computation 

power reduction, reliability, and resiliency. In islanded mode, a microgrid operates independently; 

hence, there is a possibility that the microgrid may become less tolerant to faults and its resiliency 

gets affected.  

A mechanism has to be developed to improve the resiliency of the independent microgrid [10]. 

By promoting the dispersion of power resources, the resiliency of the microgrid can be 

improved [11]. The feasibility of the resilient operation is to be analyzed with three actions unit 

commitments, energy storage schedules, load curtailment, and adjustable load schedules. The 

resiliency-oriented optimal scheduling model for the microgrid was developed in [12]. A mechanism 

must be developed to ensure the economically optimal operation, a robustness against uncertainties 

present in the system, and a fast-islanding operation with minimum consumer inconvenience. The 

mathematical modeling of optimal scheduling that considers resiliency for microgrids is not widely 

available. To build a resilient and environment-friendly microgrid that emphasizes customers, an 

intelligent and distributed autonomous framework was developed [13]. In this model, the occurrence 

of major outages due to natural disasters such as floods, tsunamis, earthquakes, heavy rains, etc. was 

considered. The severity and occurrence of these events may increase in the future [14]. In the 

grid-connected mode, a proactive operation model was implemented while considering a scheduling 

horizon of 24 hours. This proactive scheme works on initial warnings created well before the 

occurrence of major outages. The resilient-oriented operation scheme for microgrids considers the 

major outages. A cyber-physical system of the multi-energy system is prone to Denial of Service 

(DoS) attacks; consequently, the implementation of distributed energy management algorithms is 

affected [15]. In the load-shedding algorithm, the possibility of maximum load curtailment has to be 

identified. In the ramp-down algorithm, the maximum possible generation and the remaining amount 

of surplus power at different time instants has to be identified.  

The approach of reinforcement learning (RL) is goal-directed while learning from the given 

environment. In reinforcement learning, the agents are software programs. First, these agents discern 

the environment and make decisions accordingly for an action. The actions of the agents must be 

optimal and superior. The environment of an RL space should be either deterministic, observable, 

discrete, or continuous, and either single or multi-agent. The variables of the RL algorithm known as 

hyperparameters are set for the model. These are different from the parameters of the model. The 

hyperparameters are epsilon, alpha, and gamma, where epsilon is a greedy factor, alpha is the 

learning rate, and gamma is the discount factor [16,17]. RL-based energy management has been 

implemented in the creation of an energy management system for an electrified powertrain [18]. The 

design of a resilient multi-energy microgrid system faces the challenges of stochastic uncertainties of 

renewable generation, the development of model-free control schemes under undesirable conditions, 

and the achievement of robust and efficient operations [19]. A multi-agent deep RL algorithm has 
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been designed for the resilience-driven routing and scheduling operations of the mobile energy 

storage system [20]. The resilience quantification and planning of the power distribution grid were 

analyzed with a zigzag topological approach [21].  

In order to achieve several goals, such as lowering operating expenses and guaranteeing power 

supply dependability, a deep reinforcement learning-based energy scheduling approach is 

suggested [22]. To enhance the control performance of energy management system (EMS), SAC is 

applied to the EMS of an electric vehicle (EV) equipped with a hybrid energy storage system 

(HESS) [23]. The deep reinforcement learning algorithm is used to identify and calibrate problematic 

parameters using PMU measurements [24]. By maintaining the variance of the state-action returns 

within a tolerable range, a deep off-policy actor-critic variation is proposed to learn a continuous 

return distribution [25]. In order to maximize their financial benefits and enhance system reliability, a 

study suggests a residential demand response strategic bidding approach for load aggregators with 

deep reinforcement learning [26]. To harness energy flexibility, a major commercial building's 

cooling setpoint has been controlled using deep reinforcement learning based on Soft Actor 

Critic [27] 

1.1. Resilient energy trading  

The components and stakeholders of a cyber-physical system of microgrids are shown in 

Figure 1. In a networked microgrid, a resilient energy trading system is crucial to ensure the energy 

security and price stability, especially as the world faces increasing climate risks and the transition to 

more sustainable energy sources. A networked microgrid consists of multiple interconnected 

microgrids that can operate either autonomously or in coordination with a main power grid. This 

structure enhances the resilience, flexibility, and efficiency in energy management. Peer-to-peer 

energy trading in networked microgrids enables prosumers (producers + consumers) to trade excess 

energy directly with consumers. When resilience is incorporated, the trading mechanism ensures the 

fault tolerance, cybersecurity, and adaptability against disruptions (e.g., cyberattacks, extreme 

weather, or grid failures), as seen in Figure 2. 

In energy trading, resilience is key to ensuring the continued flow of electricity, even in the face 

of disruptions such as supply shocks, demand volatility, technological changes, or environmental 

challenges. To build resilience in energy trading, the following strategies must be adopted: 

 Sourcing energy from a variety of regions and suppliers to reduce the dependence on any one 

source; 

 Using AI and machine learning to predict market trends and quickly respond to disruptions; 

 Modernizing grids and storage solutions to effectively handle fluctuations in the supply and 

demand ; and 

 Creating policies that encourage market transparency and provide support during crises. 

1.2. Causes impacting resilient energy trading  

Resilient energy trading ensures stable, secure, and adaptive transactions, even under uncertain 

conditions. However, several factors can impact its efficiency and robustness. These causes can be 

categorized into technical, economic, cyber, environmental, and regulatory factors. Resilient energy 

trading is influenced by multiple factors, including technical, economic, cyber, and environmental 
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challenges, as shown in Table 1. 

 

A. Impact on Trading due to Transmission line faults ( Short Circuits, Overloads ) 

 Power flow disruptions affect the energy prices and trading stability. 

 Some buses become isolated, thus causing supply shortages. 

 Increased congestion in unaffected transmission lines. 

B. Impact on Trading due to Generator Failure (Bus Outage, Frequency Instability) 

 Sudden loss of generation capacity causes price spikes. 

 Microgrid-dependent areas face severe power shortages. 

 Market participants hoard energy, thus leading to unfair pricing. 

1.3. Long short-term memory and soft actor-critic algorithms 

The Long Short-Term Memory (LSTM) network is part of the deep recurrent neural network 

(RNN) class with backpropagation and does not use gradients. Various memory gates are added in 

the LSTM network, which possess the blocks that are comprised of gates to manage the block's state 

and output [28,29]. The text classification tasks have been solved using optimal LSTM topologies. 

The soft actor-critic (SAC) algorithm, including maximum entropy with LSTM, has been considered 

for the energy management of multi-energy systems [30]. The workload prediction model was 

designed considering the LSTM model [31]. In time series forecasting, the LSTM model was used 

in [32]. The spiking neural P (SNP) based LSTM model was created to process sequential data [33]. 

The stock market values were predicted using the LSTM model [34]. A method was suggested to 

predict the parts with the highest frequency with the Random Forest (RF), while LSTM predicted the 

remaining parts [35]. A multi-scale FCN (MFCN) and LSTM network were considered for learning 

spatial and temporal features [36]. In the error detection of electroencephalography (EEG), a 

bidirectional LSTM neural network was implemented. The electrocardiogram signals were 

partitioned into normal and abnormal using LSTM [37]. The multi-series classification has been 

performed with a full convolution network- LSTM [38]. The levelized cost of electricity (LCOE) and 

payback period approach was used to assess the solar-powered microgrid's economic viability [39]. A 

technique for transferring tokens between networked microgrids with interoperable blockchains has 

been created. A technique for token transfers between networked microgrid interoperable blockchains 

has been devised for safe and private smart power contracts between electricity suppliers and 

customers [40]. Under grid-to-vehicle and vehicle-to-grid systems, the electric vehicle network hub 

enables blockchain-based safe and robust energy trading [41]. 

1.4. Research gap 

Resilient energy trading ensures the secure, adaptive, and efficient energy exchange in 

decentralized networks. However, several research gaps hinder its full potential. The major points in 

the research gap are highlighted below: 
 

 Existing optimization models fail to adapt to dynamic price fluctuations, grid failures, and 

adversarial conditions; 

 Current energy trading frameworks struggle with data privacy, non-independent and identically 
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distributed (IID) data distribution, and communication failures; 

 Vulnerabilities to DDoS attacks, data poisoning, and blockchain smart contract exploits threaten 

the resilience of energy trading; 

 Current models do not address climate-induced disruptions (e.g., wildfires, hurricanes) that 

affect the energy trading resilience; 

 There is a lack of holistic models that integrate renewable energy, microgrids, and energy 

storage; and 

 Limited research has been done on the design of quantification techniques for real-time energy 

resilience. 
 

Addressing these research gaps requires integrating RL, federated learning, blockchain security, 

and real-world validation. Advancing resilient energy trading frameworks will enhance the stability, 

security, and efficiency in decentralized energy markets. 

1.5. Contributions 

In this paper, LSTM-soft actor-critic (SAC) RL-based resilient energy management is suggested 

for a networked microgrid system. In the networked microgrid system, the peer-to-peer resilient 

energy trading mechanism is adaptive and robust to undesirable scenarios such as the occurrence of 

faults in transmission lines, the failure of generators, and the failure of supply from the main grid. 

The LSTM-SAC reinforcement learning is proposed to train the networked MG system to make it 

resilient and adaptive. The state observations comprise the expected values of the electrical load 

demand, power generations by the distributed generators, and the state of charge (SoC) and state of 

health (SoH) of energy storage devices and electric vehicles. The action part contains either buying 

or selling rates for surplus and deficit power, charging and discharging rates of energy storage 

devices, and electric vehicles. The LSTM-SAC RL finds the actions for optimal Q values that 

maximize the reward for different scenarios of undesirable events in a microgrid. 

The proposed LSTM-SAC for Resilient Energy Trading is comprised of the following major 

features, particularly in dynamic and uncertain energy markets:  

 Unlike standard SAC, integrating LSTM enables the model to learn from past energy trading 

patterns, grid conditions, and demand fluctuations; 

 SAC-LSTM recognizes trends and adjusts strategies based on historical sequences, thus 

improving decision-making in volatile energy markets; 

 Multiple microgrids use SAC-LSTM, and they dynamically learn optimal trading strategies 

while ensuring resilience against failures; and 

 By considering past failures and recovery mechanisms, SAC-LSTM enhances the resilience of 

energy trading strategies.  

The major contributions of this paper are highlighted below:  

 This paper formulates the resilient energy trading process by incorporating DC-OPF that 

considers line outages (topology change) and generator failures; 

 The proposed LSTM-SAC network does not use the gradient descent technique to estimate 

Q-values, while the policy is maximized and avoids overestimates and underestimates of 

Q-values;  

 The networked microgrid is trained with the proposed LSTM-SAC algorithm that formulates the 

reward function comprised of microgrid losses and profits, which are determined based on the 
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surplus and deficit power and the time of occurrence of fault; and  

 A Markov Decision Process (MDP) is used to develop the RL-based resilient energy trade 

problem.  
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Figure 1. Basic architecture of cyber-physical system microgrid. 

 

Figure 2. Peer-to-peer resilient energy trading in networked microgrid. 

Table 1. Impact on trading due to various faults. 

Sr No  Fault Type Impact on trading  

1 Line Faults Power congestion, price fluctuations 

2 Generator Failure 
 

Demand-supply imbalance, blackouts 

3 Bus Outages Complete trading failure, cascading blackouts 

4 Cyber Attacks Price manipulation, fake trading data 

1.6. Paper organization  

This paper is organized as follows: Section 1 covers the introduction; Section 2 includes the 

basic concepts of RL; Section 3 focuses on the resilient energy trading problem formulation; Section 

4 discusses RL-based secure and resilient energy trading; Section 5 covers the proposed LSTM-SAC 
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RL scheme for resilient energy trading systems; Section 6 includes a simulation and results; and 

Section 7 concludes the paper.  

2. Reinforcement learning: An introduction  

The approach of RL is goal-directed while learning from the given environment. In RL, the 

agents are software programs. First, these agents discern the environment and make decisions 

accordingly for an action. The actions of the agents must be optimal and best. The environment of 

the RL space should be deterministic, observable, discrete or continuous, and single or multi-agent. 

There are four main parts of RL such as a policy, a reward signal, a value function, and/or a model 

function [42,43].  

a. Policy: A policy is the learning process and behavior of the agent in the environment. A policy 

defines the action to be taken out of discerned states from the environment. The policy is the 

core part of the RL and maybe a simple function or a look-up table.  

b. Reward: The reward is the goal of the RL problem. At each discrete time step, an agent receives 

a reward, which is a number from the environment. The objective of the agent is to maximize its 

reward. The reward the agents receive depends on the good or bad events. The reward of any 

number to the agent depends on the stochastic functions of the environment and the agent's 

actions.  

c. Value function: A value function indicates the good things that will occur in the long run. The 

value function depends on an agent who expects to collect the reward in future actions. The 

environment directly gives a reward to the agents with an estimation of values on the actions 

during their entire lifetime.  

RL is based on mathematical principles from MDPs, probability, optimization, and dynamic 

programming. An MDP is defined by a tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝛾),  

where 𝑆  is the set of state, 𝐴 is the set of actions, 𝑃 𝑠′  𝑠, 𝑎) is the transition probability from state 

𝑠 to 𝑠′  given action, 𝑟(𝑠, 𝑎) is the reward function, and 𝛾 is the discount factor (0 ≤ 𝛾 ≤ 1). 

The state value function is shown below: 

𝑉𝜋 𝑠 ∈ 𝐸𝜋  𝛾𝑡𝑟(𝑠𝑡
∞
𝑡=0 , 𝑎𝑡)|𝑠0 = 𝑠 .        (1) 

It represents the expected cumulative reward when starting from state 𝑠 and following the policy.  

The action –value function is shown below:  

𝑄𝜋 𝑠, 𝑎 = 𝐸𝜋  𝛾𝑡𝑟(𝑠𝑡
∞
𝑡=0 , 𝑎𝑡)|𝑠0 = 𝑠, 𝑎0 = 𝑎 .      (2) 

It represents the expected cumulative reward starting from state 𝑠, taking action 𝑎, and then 

following the policy 𝜋. The Bellman equation expresses the recursive relationship of the value 

function: 

𝑉𝜋(𝑠) =  𝜋 𝑎 𝑠  𝑃(𝑠′𝑠′𝑎 |𝑠, 𝑎)[𝑟 𝑠, 𝑎 + 𝛾𝑉𝜋 𝑠′ .     (3) 

The Bellman Equation for the Q-Function is as follows: 

𝑄𝜋 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾  𝑃(𝑠′ |(𝑠, 𝑎) 𝜋(𝑎′ |𝑠′𝑎 ′𝑠′ )𝑄𝜋 𝑠′ , 𝑎′ .     (4) 

For the optimal policy 𝜋∗, the value function satisfies the following:  
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𝑉∗ 𝑠 = max
𝑎

𝑄∗  𝑠, 𝑎 . (5) 

The optimal Q-function satisfies the Bellman optimality equation: 

𝑄∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 𝑃(𝑠′ |𝑠, 𝑎

𝑠′

) max
𝑎 ′

𝑄∗  𝑠′ , 𝑎′ . 
  

(6) 

Using the Q-function, the policy is improved using the following:  

𝜋 ′ 𝑠 = 𝑎𝑟𝑔 max
𝑎

𝑄𝜋  𝑠, 𝑎 .  (7) 

This interprets the action that maximizes the expected reward. The temporal difference learning 

updates the value function as follows: 

𝑉 𝑠 ← 𝑉 𝑠 + 𝛼 𝑟 + 𝛾𝑉 𝑠′ − 𝑉 𝑠  , 
   (8) 

where α is the learning rate. Q-learning is an off-policy learning method with the following update 

rule: 

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼(𝑟 + 𝛾max
𝑎 ′

𝑄(𝑠′ , 𝑎′) − 𝑄(𝑠, 𝑎)),   (9) 

where max𝑎 ′ 𝑄(𝑠′ , 𝑎′) represents the best possible future value.  

3. Resilient energy trading system: Problem formulation  

An adaptive neuro-fuzzy inference system is developed to make the attack-resilient energy 

management of a microgrid. In a multi-energy system, the optimal operation of each energy hub and 

optimal energy trading path are considered during DoS attacks [9]. A load shedding of a non-critical 

load is implemented in a microgrid that is islanded after a disaster in a networked microgrid 

system [10]. In the islanded mode, a microgrid gets disconnected from the main grid and, 

consequently, becomes less tolerant to faults; then, the resiliency of the microgrid is affected [11,12]. 

The system must be smart enough to anticipate such as electricity price changes and unknown 

fluctuations. However, some events are rare and extreme, which deeply affects the system. 

Resiliency is described as the capability of the system to adapt itself during the occurrence of these 

rare and extreme events and be robust enough to these events [13]. A resiliency-oriented microgrid 

optimal scheduling model has been developed. The operating model employed a normal and resilient 

operation. The capability of the microgrid has to be identified to supply loads during main grid 

supply interruptions. The networked microgrid system must be robust and adaptive to operational 

uncertainties of loads and non-dispatchable generation. The worst-case scenarios with prevailing 

uncertainties are to be considered to make the system robust and resilient [14,15].  

Considering the uncertainty of the DG, the total generation cost of MG k is given below:  

𝑇𝐶𝑘(𝑡) =  𝐶𝑖
𝑘  𝔼(𝑃𝑔,𝑖

𝑘  𝑡  𝑖∈𝑁𝑔 ,                     (10) 

where 𝑁𝑔  is the total number of distributed generating units in the network microgrid system, T is 

the total number of time intervals, 𝔼(𝑃𝑔,𝑖
𝑘  𝑡 ) = 𝑃 𝑔,𝑖

𝑘  𝑡 + ∆𝑃𝑔,𝑖
𝑘 (𝑡) is the expected value of power 

generation, and 𝑃 𝑔,𝑖
𝑘  𝑡  is the forecasted value of power generation by DG i. 

∆𝑃𝑔,𝑖
𝑘 < max(∆𝑃𝑔,𝑖

𝑘,) represents an uncertainty part of DG i and is limited by a maximum value in the 
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worst-case scenario. 

The operating limits (superscript 𝑘 is dropped for simplicity) are as follows: 

𝑃𝑔,𝑖
𝑚𝑖𝑛 < 𝑃𝑔,𝑖 <  𝑃𝑔,𝑖

𝑚𝑎𝑥  , 𝑖 ∈ 𝑁𝑔 ,                     (11) 

𝑃𝑔,𝑖 𝑡 − 𝑃𝑔,𝑖 𝑡 − 1 ≤ ∆𝑢𝑝 ,           (12) 

𝑃𝑔,𝑖 𝑡 − 1 − 𝑃𝑔,𝑖 𝑡 ≤ ∆𝑑𝑜𝑤𝑛 ,             (13) 

 𝑃𝑔,𝑖 ≥ 𝐿𝑡𝑖∈𝑁𝑔 ,            (14) 

where 𝐿𝑡  is the total demand. The state of charge of the energy storage system is as follows: 

𝑆𝑂𝐶𝑏𝑡 ,𝑖 𝑡 = 𝑆𝑂𝐶𝑏𝑡 ,𝑖 𝑡 − 1 −  𝑃𝑏𝑡 ,𝑖
𝑐  𝑡 𝜂𝑐 −

𝑃𝑏𝑡 ,𝑖
𝑑  𝑡  𝑡 

𝜂𝑑
 ∆𝑇  ,       (15) 

where 𝑃𝑏𝑡
𝑐  and 𝑃𝑏𝑡

𝑑  are the charging and discharging power of energy storage devices, respectively, 

with constraints 𝑃𝑚𝑖𝑛
𝑐 ≤ 𝑃𝑏𝑡

𝑐 (𝑡) ≤ 𝑃𝑚𝑎𝑥
𝑐  and 𝑃𝑚𝑖𝑛

𝑐 ≤ 𝑃𝑏𝑡
𝑐 (𝑡) ≤ 𝑃𝑚𝑎𝑥

𝑐 . 

The state of charge of an electric vehicle is shown below: 

𝑆𝑂𝐶𝑒𝑣,𝑖 𝑡 = 𝑆𝑂𝐶𝑒𝑣,𝑖 𝑡 − 1 −  𝑃𝑒𝑣,𝑖
𝑐  𝑡 𝜂𝑐 −

𝑃𝑒𝑣,𝑖
𝑑  𝑡 

𝜂𝑑
 ∆𝑇,      (16) 

where 𝑃𝑒𝑣
𝑐  and 𝑃𝑒𝑣

𝑑  are the charging and discharging power of electric vehicles, respectively, with 

the constraints 𝑃𝑚𝑖𝑛
𝑐 ≤ 𝑃𝑒𝑣

𝑐 (𝑡) ≤ 𝑃𝑚𝑎𝑥
𝑐  and 𝑃𝑚𝑖𝑛

𝑑 ≤ 𝑃𝑒𝑣
𝑑 (𝑡) ≤ 𝑃𝑚𝑎𝑥

𝑑 .  

3.1. Operative schedule of energy storage devices and electric vehicles 

It is required to completely charge the battery after different operations in a day so that a fully 

charged battery will be available for the next day's operations. To obtain a fully charged battery, a set 

of intervals is reserved for charging, as shown below: 

𝛺𝑐
𝑟 =  𝑇𝑐  , 𝑇𝑐 + 1,…… . , 𝑇  𝑤𝑕𝑒𝑟𝑒   𝑇𝑐 = 𝑇 − 𝑁𝑐

𝑓
,        (17) 

where 𝑁𝑐
𝑓
 is the cardinality of set 𝛺𝑐

𝑟  and can be found as follows: 

𝑞 = {
(𝑆𝑂𝐶𝑚𝑎𝑥 −𝑆𝑂𝐶𝑚𝑖𝑛 )𝐸𝑏𝑡 ,𝑚𝑎𝑥

𝜂𝑐𝑕𝑎𝑟𝑔𝑒  𝑃𝑏𝑡 ,𝑚𝑎𝑥
            (18) 

and    𝑁𝑐
𝑓

= ⌈𝑞⌉.             (19) 

3.2. Operation and maintenance cost 

The operation and maintenance cost in a microgrid is formulated as follows: 

𝐶𝑂𝑀 𝑡 =  𝐶𝑂𝑀
𝑃𝑉𝑃𝑝𝑣  𝑡 + 𝐶𝑂𝑀

𝑊𝑇𝑃𝑤𝑡  𝑡   + 𝐶𝑂𝑀
𝑀𝑔𝑇

𝑃𝑀𝑔𝑇  𝑡 +𝐶𝑂𝑀
𝑒𝑠 𝑃𝑒𝑠 𝑡 .      (20) 

3.3. Surplus and deficit power 

At a particular time instant 𝑡, the surplus or deficit power in MG is described as follows, while 
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the uncertainty of the system is considered. At time instant 𝑡, let ∆Pk  be the surplus or deficit 

power in MG k; then, 

∆𝑃𝑘 𝑡 =

  𝔼(𝑃𝑔,𝑖
𝑘  𝑡 ) 𝑖∈𝑁𝑔 − 𝔼(𝑃𝑎𝑔𝑔

𝑘 (𝑡)) −   𝛼𝑏𝑡 ,𝑗𝑃𝑏𝑡 ,𝑗
𝑘  𝑡  𝑗∈𝑁𝑏 −   𝛼𝑒𝑣,𝑙𝑃𝑒𝑣,𝑙

𝑘  𝑡  𝑙∈𝑁𝑒𝑣 , 

      

 

                

(21)                                                                                                                           

where 𝛼𝑏𝑡 ,𝑗  and 𝛼𝑒𝑣,𝑙  are the binary parameters defined for energy storage system j and electric 

vehicle 𝑙. These parameters are 1 for charging and -1 for the discharging mode. 𝔼(𝑃𝑎𝑔𝑔
𝑘 (𝑡)) is the 

expected aggregated load demand and 𝔼(𝑃𝑔,𝑖
𝑘  𝑡 ) is the expected power generation by DG 𝑖 at time 

𝑡 in MG, and Ng  is the number of distributed generators in the microgrid. 

The objective is to minimize the overall cost of the microgrid. For each node in the microgrid, 

the overall cost includes the following components: 

a. The cost of power purchased from the utility grid or prosumers, and  

b. The cost of the power generated by the distributed generator. 

The operational and maintenance costs include the cost of the battery wear due to charging and 

discharging. If the microgrid is in surplus power, then it can sell energy to the distribution network 

operator (DNO), other MG, prosumers, and utility grid and generate revenues and follows: 

𝑀𝐺𝑝𝑟𝑜𝑓  𝑡  𝑜𝑟 𝑀𝐺𝑙𝑜𝑠𝑠  𝑡 = 𝑀𝐺𝑟𝑒𝑣
𝑘  ∆Pk t  − 𝑀𝐺𝑐𝑜𝑠𝑡

𝑘  𝑡 + 𝐶𝑟𝑒𝑠(𝑡),    (22) 

where 𝑀𝐺𝑐𝑜𝑠𝑡
𝑘 = 𝑇𝐶𝑘 𝑡 + 𝐶𝑂𝑀 𝑡 , 𝑀𝐺𝑝𝑟𝑜𝑓  𝑡  is the profit, 𝑀𝐺𝑙𝑜𝑠𝑠 (𝑡)  is the loss of the 

microgrid, and 𝐶𝑟𝑒𝑠  is resilient energy trading.  

3.4. Resilient optimal power flow: An overview  

The security of the electrical distribution network is an important criterion. The network must 

be capable to withstand any sudden loss of a part of the network. One of the goals of the work is to 

design a resilient energy management system. Resilient energy management develops a mechanism 

to withstand the different sorts of faults such as line faults, distributed grid faults, power outages, and 

communication network faults. 

A. Transmission line fault  

During the occurrence of faults, the power could not flow through the faulty transmission line. 

In this energy management system, this power flow is described as follows:  

𝑃𝐿 𝑡 = 0, ∀𝑡 ∈ [𝑡𝐿
0, 𝑡𝐿

𝑓
].            (23) 

The power flow has been set equal to zero through the faulty line. The 𝑡𝐿
0 is the occurrence time of 

the fault, and 𝑡𝐿
𝑓
 is the final time of the fault duration. If the information of the fault duration is not 

known, then a future time instant constraint must be imposed. Consequently, the power has to be 

transferred through the other transmission lines to avoid overloading the other transmission lines. If 

the fault occurs in the radial transmission, then it is cumbersome to deliver power to the disconnected 

MG.  
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B. Distribution Grid Fault  

During a distribution grid fault, the MG is unable to draw power from the utility grid until 

recovery. This is described as a constraint:  

𝑃𝑔
𝑡 = 0, ∀𝑖 ∈  1,… ,𝑁𝑔 , ∀𝑡 ∈ [𝑡𝑔 

𝑖 , 𝑡𝑔 
𝑓

],         (24) 

where 𝑡𝑔 
𝑖  is the initial time of grid fault, and 𝑡𝑔 

𝑓
 is the final fault time. In all cases of a fault 

occurrence, the constraints related to the faults are included in the optimization problem. 

C. Communication network fault  

A communication network fault may occur if the communication link is physically disconnected 

or if the link may fail due to a cyber attack. The sort of fault can be described in the adjacency matrix, 

𝐵, as if the communication link between node/agent fails; then, 

𝑏𝑖,𝑗 = 𝑏𝑗 ,𝑖 = 0,       (25)                                                                                                              

where 𝑏𝑖,𝑗 ∈ 𝐵 represents the communication link between two nodes 𝑖 and 𝑗 in the networked 

microgrid system. Due to the occurrence of faults, the performance of the energy management 

algorithm diminishes and convergence problems may occur.  

3.5. DC optimal power flow (DC-OPF) for resilient energy management 

Resilient Energy Management (REM) ensures stable and efficient power distribution under 

uncertainties such as cyberattacks, equipment failures, or natural disasters. DC Optimal Power Flow 

(DC-OPF) plays a key role in optimizing the power dispatch while enhancing the system resilience. 

DC-OPF is a linear approximation of the AC power flow problem and is widely used in power system 

operations for economic dispatch and congestion management. In the presence of faults, the topology 

of the network may change due to line outages, bus faults, or generator failures, thus requiring 

modifications in the standard DC-OPF formulation.  

The classical DC-OPF problem aims to minimize the generation cost while satisfying a power 

balance and transmission constraints. In the presence of faults (e.g., line tripping, generator failure, or 

bus outage), the network topology and constraints change of DC-OPF is written below. 

The standard DC-OPF objective is to minimize the total power generation cost as follows: 

𝑚𝑖𝑛 𝐶𝑖(𝑃𝑔𝑖𝑖∈𝐺 ),                (26) 

where the quadratic cost function for generator 𝑖 is as follows: 

𝐶𝑖 𝑃𝑖 = 𝑎𝑖𝑃𝑔𝑖
2 + 𝑏𝑖𝑃𝑔𝑖 + 𝑐𝑖 .              (27) 

Subject to constraints   

a. Generator limits   

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖

𝑚𝑎𝑥  , ∀𝑖 ∈ 𝐺           (28) 

b. Transmission Line Flow Limits  

−𝑃𝑖𝑗
𝑚𝑎𝑥 ≤ 𝐵𝑖𝑗 (𝜃𝑖 − 𝜃𝑗 ) ≤ 𝑃𝑖𝑗

𝑚𝑖𝑛                 (29) 
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c. Line outages (Topology Change)  

If a line  𝑖, 𝑗  is outaged due to a fault, it is removed from the system, thereby modifying the 

admittance matrix and power flow equations as follows:  

𝑃𝑖𝑗 =  
𝜃𝑖−𝜃𝑗

𝑥𝑖𝑗
𝑗∈𝑁\{𝑗 ′ }  , ∀(𝑖, 𝑗′) ∈ ℱ,           (30) 

where ℱ  is the set of faulted lines, 𝜃𝑖  and  𝜃𝑗  are the voltage phase angles at buses 𝑖  and 𝑗 , 

respectively, 𝑥𝑖𝑗  is the reactance of the transmission line between buses 𝑖  and 𝑗. The reactance 

matrix 𝑋 and the incidence matrix B are updated to reflect the removal of the affected lines. 

To ensure robustness, 

−𝑃𝑖𝑗
𝑚𝑎𝑥  ℱ ≤ 𝑃𝑖𝑗  ℱ ≤ −𝑃𝑖𝑗

𝑚𝑖𝑛  ℱ .         (31) 

d. If a generator at bus 𝑖 fails, then  

𝑃𝑔𝑖 = 0, ∀𝑖 ∈ 𝒢𝑓𝑎𝑢𝑙𝑡𝑒𝑑 ,                               (32) 

where 𝒢𝑓𝑎𝑢𝑙𝑡𝑒𝑑  represents the set of failed generators. The system needs dispatching of the remaining 

generators to maintain a power balance as follows:  

𝑃𝑔𝑖 𝓕 +  𝑷𝒅𝒋𝒋∈𝑫  𝓕 = 𝟎, ∀𝓕 ∈ С, 
                                      

(33) 

where С is the possible contingencies, and 𝑃𝑑𝑗  is the power demand at the bus. 

The line power flow has to be calculated using the following DC power flow equation: 

𝑃𝐿
𝑡 = 𝑏𝐴𝑏

𝐿𝐵−1𝑃𝑔
𝑡 ,            (34) 

where 𝑃𝐿
𝑡 ∈ ℛ𝑁𝐿  is the vector obtained by stacking the power flows in each line at time 𝑡. 

𝑏 ∈ ℛ𝑁𝐿×𝑁𝐿  is a diagonal matrix in which each element 𝑏(𝑖, 𝑗) is the susceptance of line 𝑖 . 
𝐵 ∈ ℛ𝑁𝐵×𝑁𝐵  is the admittance matrix, and 𝑃𝑔 ∈ ℛ𝑁𝐵  is the vector obtained by stacking all the bus 

power injections. The elements of the adjacency matrix of the microgrid 𝐴𝑏
𝐿 ∈ ℛ𝑁𝐿×𝑁𝐿  are 

𝐴𝑏
𝐿 𝑖, 𝑗 ∈  0,1 − 1  if line 𝑖 and bus are not connected, line 𝑖 starts at bus 𝑗, or line 𝑖 ends at the 

bus, respectively.  

3.6. Resilient energy trading in networked microgrids 

The microgrid seeks to minimize the cost of buying energy and maximize the revenue from 

selling energy. The Resilient energy trading is formulated while considering the DC-OPF in the 

presence of faults as follows:  

𝐶𝑟𝑒𝑠 = max
𝑃𝑝
𝑡 ,𝑃𝑠

𝑡 ,𝑃𝑠𝑡
𝑡
   𝜆1𝐶𝑠

𝑡𝑃𝑠
𝑡 − 𝜆2𝐶𝑏

𝑡𝑃𝑏
𝑡 + 𝜆3𝐶𝑠𝑡

𝑡 𝑃𝑠𝑡
𝑡 + 𝜆3𝐶𝑝

𝑡𝑃𝑝
𝑡 

𝑇

𝑡=1

 , 

                              

(35) 

subject to (26), 

where 𝐶𝑠
𝑡 , 𝐶𝑏

𝑡  are the selling and buying market prices, respectively, 𝐶𝑠𝑡
𝑡  is the price to store the 

energy, 𝐶𝑝
𝑡  is the peer-to-peer trading price, 𝑃𝑠

𝑡  and 𝑃𝑏
𝑡  are the power sold and bought to the main 

grid, respectively, and 𝜆1 , 𝜆2, 𝜆3, 𝜆4 are the weighting factors.  
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3.7. Particle Swarm Optimization  

PSO optimizes DC-OPF by iteratively updating a population of candidate solutions (particles) 

based on their velocity and position updates as follows: 

1. Initialize the particles (each particle represents a possible set of generator outputs 𝑃𝑔𝑖  ) 

2. Evaluate the fitness function (generation cost) 

3. Update the particle velocity and position  

𝑣𝑖
𝑡+1 = 𝑤𝑣𝑖

𝑡 + 𝑐1𝑟1 𝑝𝑏𝑒𝑠𝑡 ,𝑖 − 𝑃𝑔𝑖
𝑡  + 𝑐2𝑟𝑟(𝑔𝑏𝑒𝑠𝑡 − 𝑃𝑔𝑖

𝑡 ),       (36) 

𝑃𝑔𝑖
𝑡+1 = 𝑃𝑔𝑖

𝑡 + 𝑣𝑖
𝑡+1,         (37) 

where 𝑤  is the inertia weight, 𝑐1  and 𝑐2  are acceleration coefficients, 𝑟1  and 𝑟2  are random 

numbers in [0, 1], 𝑝𝑏𝑒𝑠𝑡 ,𝑖  is the personal best position of particle 𝑖, and 𝑔𝑏𝑒𝑠𝑡  is the global best 

position among all the particles. Repeat until the convergence criteria is met. 

4. Reinforcement learning for resilient energy trading system 

The RL-based resilient energy trading problem is formulated as an MDP:  

𝑀 = (𝑆, 𝐴, 𝒫, 𝑟, 𝛾, 𝑅𝑡  , 𝑁𝑟𝑒𝑙 ,𝑶𝒍𝒕𝒐𝒕𝒂𝒍)   (38) 

𝑆  is the state space representing the energy market, demand, price, and grid conditions. 

𝐴  is the action space for trading decisions (buy/sell/store energy). 

𝒫  is the state transition probability. 

𝑟  is the reward function modeling profits, resilience, and stability. 

𝛾  is the discount factor balancing short-term vs. long-term rewards. 

𝑁𝑟𝑒𝑙 = Network reliability  

𝑶𝒍𝒕𝒐𝒕𝒂𝒍 = Operating loss in resilient energy trading 

𝑅𝑡  is grid resilience index that measures how well the energy trading system maintains functionality 

and restores operations after a fault. The Grid Resilience index in energy trading quantifies the power 

grid’s ability to maintain the stability, efficiency, and reliability while enabling seamless energy 

transactions under normal and stressed conditions. It ensures that the energy market remains 

functional despite disruptions such as cyberattacks, equipment failures, demand surges, or renewable 

intermittency. Before any fault or disruption occurs, the grid operates under normal trading 

conditions with optimal pricing, demand-supply balance, and stable grid parameters. Once a 

disruption (fault, cyberattack, or market instability) occurs, post-fault resilience determines the 

system’s ability to either maintain or restore trading operations with a minimal impact. 

It is expressed as follows: 

𝑅𝑡 =
𝐸𝑝𝑜𝑠𝑡  𝑓𝑎𝑢𝑙𝑡

𝐸𝑝𝑟𝑒  𝑓𝑎𝑢𝑙𝑡
× 100%,             (39) 

where:  

𝐸𝑝𝑜𝑠𝑡  𝑓𝑎𝑢𝑙𝑡 ∶ Total energy traded before the fault 

𝐸𝑝𝑟𝑒  𝑓𝑎𝑢𝑙𝑡 : Total energy traded after the fault 
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If 𝑅𝑡 = 100%, then the system is fully resilient (no impact of faults). If 𝑅𝑡  < 100%, then there is 

degradation in trading due to faults. 

Pre-Fault Energy Trading is affected by the following factors:  

 Availability of power from conventional and renewable sources, 

 Diversity of generation sources (coal, nuclear, solar, wind, hydropower), 

 Real-time energy consumption patterns of industries, households, and businesses, 

 Demand-response mechanisms to prevent extreme price hikes, and 

 Consistent pricing to ensure fair transactions and minimal volatility. 

The post fault energy trading is affected by the following factors: 

 Amount of energy that can be quickly restored after a fault, 

 Availability of backup power sources such as microgrids or battery storage, 

 Sudden price spikes or fluctuations due to power shortages, 

 Impact on energy buyers and sellers, and 

 How quickly the grid can isolate faults and reroute power. 

4.1. Network reliability in resilient energy trading 

It refers to the ability of the energy trading systems to maintain stable, secure, and continuous 

operations despite faults, cyber threats, market fluctuations, and physical grid failures. Several factors 

influence the network reliability, which are categorized based on technical, economic, and security 

aspects. Network reliability in energy trading is defined as the probability that all critical components 

(power grid, trading platform, cybersecurity, and market operations) function properly. The network 

reliability index is defined as follows: 

𝑵𝒓𝒆𝒍 =
𝑷𝒈.𝑷𝒕𝒓𝒂𝒅.𝑷𝒄𝒚𝒃.𝑷𝒎𝒂𝒓

𝟏+𝑷𝒈+𝑷𝒕𝒓𝒂𝒅+𝑷𝒄𝒚𝒃+𝑷𝒎𝒂𝒓
,            (40) 

where 𝑃𝑔= Probability that the power grid is operational, 

𝑃𝑡𝑟𝑎𝑑  = Probability that the energy trading platform is functioning, 

𝑃𝑐𝑦𝑏 = Probability that the cybersecurity system is intact, and 

𝑃𝑚𝑎𝑟 =Probability that the energy market remains stable. 

The state transition probability is defined  below.  

4.2. Operating loss in resilient energy trading 

The operating loss in resilient energy trading refers to the financial and energy losses that occur 

due to system failures, cyber threats, market disruptions, and grid instabilities. These losses are 

categorized into direct financial losses, energy loss, opportunity cost, and recovery expenses. The 

total operating loss in a resilient energy trading system is expressed as follows: 

𝑶𝒍𝒕𝒐𝒕𝒂𝒍 = 𝑶𝒍𝒆𝒏𝒆𝒓𝒈𝒚 + 𝑶𝒍𝒎𝒂𝒓𝒌𝒆𝒕 + 𝑶𝒍𝒄𝒚𝒃𝒆𝒓 + 𝑶𝒍𝒓𝒆𝒗, 
(41) 

where: 
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𝑶𝒍𝒆𝒏𝒆𝒓𝒈𝒚 = Loss due to untraded energy 

𝑶𝒍𝒎𝒂𝒓𝒌𝒆𝒕 = Loss due to market price fluctuations 

𝑶𝒍𝒄𝒚𝒃𝒆𝒓 = Loss from cyberattacks or data breaches 

𝑶𝒍𝒓𝒆𝒗 = Cost of restoring operations after failure 

𝒫(𝑡) = 𝑒𝐴𝑡𝒫(0), (42) 

where 𝐴  is the transition rate matrix and is defined as follows: 

𝐴 =

 
 
 
 
 
−𝜎0 𝜎0 0 ⋯ 0
𝜇1 −(𝜎1 + 𝜇1) 𝜆1 ⋯ 0

0
⋮
0

𝜇2

⋮
0

−(𝜎2 + 𝜇2)
⋮
0

⋯
⋱
𝜇𝑛

0
0

−𝜇𝑛 
 
 
 
 

, 

 (43) 

where 𝜆𝑖 = failure rate at state 𝑖, and 𝜇𝑖 = Recovery rate due to self-healing. 

Let us consider the nodes in the microgrid defined as an agent. At some discrete-time interval t, 

the variables considered are load demand, distributed generation, SoC and SoH, and profit. Under 

extreme and normal conditions, the system state for an MG is described as follows: 

𝑠𝑘 𝑡 =  
 𝔼  𝑃𝑔,𝑖

k  𝑡   . 𝔼  𝑆𝑂𝐶𝑏𝑡 ,𝑗
𝑘  𝑡  ,

𝔼   𝑆𝑂𝐶𝑏𝑡 ,𝑙
𝑘  𝑡  , 𝔼(Pagg

k )
  , 

     

 (44)                                                                          

  

where 𝑖 = 1,2,3… . , 𝑁𝑑𝑔 , 𝑗 = 1,2,3… . , 𝑁𝑏𝑡 , 𝑙 = 1,2,3… . , 𝑁𝑒𝑣 , and 𝑠𝑘 ∈ 𝑆 and 

𝑆 = { 𝑠1 , 𝑠2 …… . , 𝑠𝑛}. 

𝑆 represents the set of all feasible system states in the system of MG. 𝑠𝑘  stands for a feasible state, 

and n is the number of all feasible system states. All feasible system states concerns all possible 

values of the electricity demand, distributed power generation, and SOC/SOH of the battery. Next, 

the action of MG is defined on the following decision variables:  

𝑎𝑘 𝑡 = { 𝐶𝑡
𝑠  , 𝐶𝑡

𝑏  , 𝐶𝑡
𝑠𝑡 , 𝐶𝑡

𝑝
},  (45) 

where 𝑎𝑘 𝑘 ∈ 𝑈, 𝑈 = {𝑎1, 𝑎2,……., 𝑎𝑛}, 𝑈 is the set of all feasible actions of corresponding 

states, and 𝑁𝑏𝑡  and 𝑁𝑒𝑣  are the numbers of the energy storage devices and electric vehicles, 

respectively.  

4.3. The reward function for resilient energy trading 

The reward function is formulated for resilient energy trading (44). At time 𝑡, the reward 

function is comprised of three components: the profit or loss of MG, the surplus or deficit power, and 

the duration of the occurrence of a fault, 

𝑟 𝑡 = 𝛽𝑝 × 𝑀𝐺𝑝𝑟𝑜𝑓
𝑘  𝑡 − 𝛽𝑙 × 𝑀𝐺𝑙𝑜𝑠𝑠

𝑘  𝑡 + 𝜔 × 𝑓 ∆𝑃𝑘(𝑡) − 𝜑𝑓𝑎𝑢𝑙𝑡 𝑇𝑓𝑎𝑢𝑙𝑡 ,     (46) 

where  ∆𝑃𝑘 = ∆𝑃𝑘/(1 + ln(|∆𝑃𝑘 |) 𝑇𝑓𝑎𝑢𝑙𝑡 = |𝑡𝑓𝑎𝑢𝑙𝑡
𝑓

− 𝑡𝑓𝑎𝑢𝑙𝑡
𝑖 |, 𝑇𝑓𝑎𝑢𝑙𝑡  is the duration of the fault, 
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𝑡𝑓𝑎𝑢𝑙𝑡
𝑖  is the time of occurrence of fault, and 𝑡𝑓𝑎𝑢𝑙𝑡

𝑓
 is the time of the end of the fault. 𝛽𝑝  is 1 if MG 

is in profit, else 0 similarly, 𝛽𝑙 = 1 if MG is in loss, else it is zero, and 𝜑𝑓𝑎𝑢𝑙𝑡  is 1 if fault occurs 

else it is 0.  

The reward function is defined based on either the surplus or deficit power. The first component 

is related to the profit of the microgrid, and the second component is related to the loss incurred in 

the microgrid. The third component is related to the surplus or deficit power. The 𝛽 and 𝜔 are the 

weighting factors to scale the components. There is an objective to choose 𝑄 values that generate 

greater values of reward.  

5. Proposed LSTM SAC reinforcement learning strategy 

At a time index, the LSTM cell is comprised of three types of gates, such as Forget 𝑓𝑡 , an Input 

gate with an input 𝑖𝑡  and an update 𝑔𝑡 , and an output 𝑜𝑡 . The LSTM focuses on time-series 

forecasting. Let, {𝑥𝑡−1, 𝑥𝑡−2, … . . , 𝑥𝑡−𝑛  } denote the input sequence. The suitable weight matrices 

are considered for corresponding inputs of the network activation functions. The internal memory 

cell state 𝐶𝑡−1 defines elements of the internal state vector that need to be maintained, updated, or 

crashed through interaction with outputs of the previous time step 𝑕𝑡−1 and the inputs of the current 

time step 𝑥𝑡 . The sigmoid activation function is used in the forget gate. The sigmoidal function (or 

Relu function) and hyperbolic tangent functions are used for the input and the update of the Input 

gate. The output gate decides what to forget from the previous state 𝑕𝑡−1 and updates cell state 𝑐𝑡 , 

and which value will pass the output gate. 𝑓𝑡 , 𝑖𝑡 , 𝑔𝑡 ,   and 𝑜𝑡  are defined as follows: 

𝑓𝑡 = 𝑠𝑖𝑔𝑚(𝑊𝑓𝑥𝑥𝑡 + 𝑊𝑓𝑕𝑕𝑡−1 + 𝑏𝑓),         (47) 

𝑖𝑡 = 𝑠𝑖𝑔𝑚(𝑊𝑖𝑥𝑥𝑡 + 𝑊𝑖𝑕𝑕𝑡−1 + 𝑏𝑖),         (48) 

𝑔𝑡 = 𝑡𝑎𝑛𝑕 𝑊𝑔𝑥𝑥𝑡 + 𝑊𝑔𝑕𝑕𝑡−1 + 𝑏𝑔 ,        (49) 

𝑜𝑡 = 𝑠𝑖𝑔𝑚(𝑊𝑜𝑥𝑥𝑡 + 𝑊𝑜𝑕𝑕𝑡−1 + 𝑏𝑜).        (50) 

The cell memory is recursively updated by interactions with the previous time step value and with 

the values of 𝑓𝑡  and 𝑔𝑡  gates. The process continues to repeat for the next time step. 

𝐶𝑡 = 𝑓𝑡 ⊙𝐶𝑡−1 + 𝑖𝑡 ⊙𝑔𝑡  (51)                                                                                                                    

In the proposed scheme, the Q-function and policy are simultaneously learned. It considers 

off-policy data and the Bellman equation to learn the Q-function that is used in computing the policy. 

The optimal action is chosen by taking argmax over the Q-values of all actions. Thus, the actor is the 

policy network that directly outputs the action. For exploration promotion, some Gaussian noise is 

included in the action that is determined by the policy. The actor output is fed to the Q network to 

calculate the Q-value. The target networks are created for both the critics and actors. The target 

networks are updated based on the main networks. The actor (policy network) loss is the sum of the 

Q-values of the states. The critic network is used to compute the Q-values. The action network 

computes the action that is passed to the critic network. Using the reward function (44), the error 

propagates back to update the LSTM CRITIC and LSTM ACTOR networks, as shown in Figure 3.  
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Figure 3. LSTM-based soft actor-critic network. 

5.1. Soft Actor-Critic (SAC) with LSTM for resilient energy trading 

SAC is a model-free, off-policy RL algorithm that optimizes both reward maximization and 

entropy regularization for better exploration. Integrating LSTM into SAC improves its ability to 

handle sequential dependencies in energy trading, thus making it more resilient to uncertainties in 

decentralized markets. 

Energy trading in decentralized markets is highly dynamic due to the following: 

 Fluctuations in the energy demand and supply; 

 Uncertain energy prices; and  

 Cyber threats and adversarial conditions. 

 

The proposed SAC-LSTM algorithm has the following features:  

Temporal awareness: LSTM captures past energy trading patterns. 

Exploration-exploitation balance: SAC’s entropy regularization ensures robust decision-making. 

Resilience: SAC can adapt to adversarial trading conditions and market fluctuations 

5.2. SAC with LSTM policy and Q-Functions 

The policy network outputs a stochastic action distribution using LSTM embeddings: 

𝝅𝝑 𝑎𝑡 , 𝑠𝑡 = 𝑁(𝜇𝜃 𝑕𝑡 , 𝜎𝜃 𝑕𝑡 ),          (52) 

where 𝑕𝑡 = 𝐿𝑆𝑇𝑀(𝑠𝑡  , 𝑕𝑡−1) represents the hidden state, and 𝜇𝜃 𝑕𝑡  and 𝜎𝜃 𝑕𝑡  are the mean 

and variance of the active distribution, respectively. The objective function includes entropy 

regularization, 

where 𝐻 𝜋𝜃 = − 𝜋𝜃 log 𝜋𝜃  is the entropy that controls exploration (automatically tuned in SAC). 

Critic (Q-Value) Network with LSTM 

The Q-function is learned using two critics to reduce overestimation bias. 
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The target Q-function follows soft Bellman updates, 

where the target value is as follows: 

𝑦𝑡 = 𝑟𝑡 + 𝛾[min𝑖=1,2 𝑄𝜙 ′  𝑠𝑡+1 , 𝑎𝑡+1 − 𝛼𝐻(𝜋(𝑎𝑡+1, , 𝑠𝑡+1)].    (53) 

Automatic Temperature (α\alphaα) Adjustment 

SAC dynamically adjusts the entropy weight 𝛼: 

 𝛼 = 𝐸𝑎𝑡~𝜋
[−𝛼𝑙𝑜𝑔𝜋 𝑎𝑡 𝑠𝑡 − 𝛼𝐻0],       (54) 

where 𝐻0 is the target entropy. 

_______________________________________ 

Steps of Proposed LSTM- SAC algorithm for resilient energy trading  

______________________________________ 

1. Input: Consider States in the environment 

            𝑠𝑘 𝑡 =  
 𝔼  𝑃𝑑𝑔,𝑖

k  𝑡   . 𝔼  𝑆𝑂𝐶𝑏𝑡 ,𝑗
𝑘  𝑡  , 𝔼   𝑆𝑂𝐶𝑏𝑡 ,𝑙

𝑘  𝑡  ,

𝔼(Pagg
k )

  

2. Output: Action taken in the environment 

𝑎𝑘 𝑡 = { 𝐶𝑡
𝑠  , 𝐶𝑡

𝑏  , 𝐶𝑡
𝑠𝑡 , 𝐶𝑡

𝑝
} 

3. Set 𝛽𝑝 , 𝛽𝑙 , 𝜔, 𝜑𝑓𝑎𝑢𝑙𝑡  and 𝑄𝑡𝑕  

4. Initialize the replay buffer D 

5. Set two different target network parameters as follows: 

             𝛷𝑡𝑎𝑟𝑔 ,1 ← 𝛷1 and 𝛷𝑡𝑎𝑟𝑔 ,2 ← 𝛷2 and 

6. For episode 1,2,3,……N  do 

Initialize states of peer-to-peer resilient energy trading parameters of microgrid for different 

scenarios, 

7. For time slot 𝑡 = 1,2,3……… . . , 𝑇,    𝑑𝑜 

Evaluate reward 𝑟 𝑡  where  

𝑟 𝑡 = 𝛽𝑝 × 𝑀𝐺𝑝𝑟𝑜𝑓 ,𝑖
𝑘  𝑡 − 𝛽𝑙 × 𝑀𝐺𝑙𝑜𝑠𝑠 ,𝑖

𝑘  𝑡 + 𝜔 × 𝑓 ∆𝑃𝑘(𝑡) − 𝜑𝑓𝑎𝑢𝑙𝑡 𝑇𝑓𝑎𝑢𝑙𝑡  

8. For different  𝑠, 𝑎  pair 

Derive the optimal control action 𝑎∗ = 𝑎𝑟𝑔max𝑎 𝑄
∗(𝑠, 𝑎) 

Execute the control action in the environment  

9. Update the state 𝑆′ , store the transition in replay buffer D 

10. Building LSTM network for the actor and critic for the optimal 𝑄∗ 𝑠, 𝑎  

11. Check for overestimates 𝑄∗ 𝑠, 𝑎 ≤ 𝑄𝑡𝑕  

Model = sequential(); 

Model.add (LSTM (neurons), activation = RELU, return_sequences = True) 

Model.compile (Loss = RMSE, optimizer = ADAM); 
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12. While epoch =1,2,….. DO 

       Train model; 

       Validate model; 

       Return model 

     End  

 Evaluate future state optimal target Q-function 𝑄∗(𝑠′ , 𝑎′) 

 𝑡 ← 𝑡 + 1  

   End 

6. Results and discussions  

A networked microgrid comprised of 04 IEEE 14 bus system is considered with different 

capacities of distributed generations, energy storage devices, and electric vehicles. The stochastic 

values of the generation capacity of distributed generators and electricity demand are considered. In 

an MG, 10 distributed generators (DGs), 04 energy storage devices, and 02 electric vehicles are 

available in the system. The minimum and maximum power generation by the distributed generators 

are in the range of 45 MW and 3500 MW. 

It is assumed that the MG is facilitated to also get power from the main grid. The simulation 

work was performed using the GAMS software and MATLAB. The adjacency matrix varies during 

normal conditions and the occurrence of extreme events. During different scenarios, state-action 

pairs are generated and 𝑄(𝑠, 𝑎) values are approximated using the LSTM network for SAC RL. In 

the environment, the optimal 𝑄∗(𝑠, 𝑎) value and 𝑎∗, which maximize the reward, are obtained.  

At a time instant with an aggregated load demand, the generations by different distributed 

generators are obtained under normal conditions. The optimal power generations of different DGs 

have been obtained using (26) to (33) and (36) to (37); then, the surplus or deficit power changes 

were calculated during normal and extreme conditions. The charging schedules of Electric vehicles 

and energy storage devices were obtained using (17). Due to the occurrence of extreme events, there 

may be several scenarios on networked microgrids. Out of various scenarios, only one scenario was 

considered for resilient peer-to-peer energy trading, which is shown in Table 2. Let extreme events 

occurs at time 𝑡 = 10 𝑕𝑜𝑢𝑟𝑠, and the system is recovered at 𝑡 = 20  𝑕𝑜𝑢𝑟𝑠 so the duration of the 

fault is 𝑇𝑓𝑎𝑢𝑙𝑡 = 10 𝑕𝑜𝑢𝑟𝑠.  

Accordingly, the profit or loss of the MG is evaluated in Equation (22). The MG is trained for 

different scenarios using a LSTM-SAC RL algorithm. The optimal Q values (9) are obtained and the 

corresponding optimal action (45) and reward (46) are evaluated. The optimal action 𝑎∗ is obtained 

with optimal 𝑄∗ values, while rewards at different time intervals are generated and maximized. To 

avoid a gradient descent, the LSTM neural network is implemented to generate an optimal 𝑄∗ while 

the reward is maximized. For different scenarios, such as the occurrence of a fault on a transmission 

line, the failure of distributed generators, or the failure of supply from the main grid, the networked 

microgrid system is trained for optimal actions while the reward is maximized. In a scenario, in MG1, 

the distributed generators 9 and 10 fail, and in MG2, the distributed generators 5 and 6 fail. As 

shown in Table 2, during the scenario of extreme conditions, the optimal power generation (36)-(37) 

using the PSO algorithm by microgrid 1 and microgrid 2 are obtained, and are shown in Figures 4 

and 5, respectively. The state of charge of the energy storage devices and electric vehicles are 
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computed and shown in Figures 6 and 7, respectively. For microgrid 1 and microgrid 2, during this 

scenario, the surplus and deficit powers are evaluated at different time intervals, which is shown in 

Figure 8. The rewards of microgrids 1 and 2 are calculated and shown in Figure 9 during time 

intervals of extreme conditions. For scenario 1, the grid resilient factor was calculated to 90% (39). 

Table 2. Impact of extreme conditions on microgrids 1 and 2. 

Scenario MG1 MG2 

1  Occurrence of fault at transmission 

line 6-8 

 Occurrence of fault at transmission 

line 3-4 

2  Failure of DGs 9 and 10  Failure of DG 5 and 6 

 

Figure 4. Power generations in MG1 during scenario1. 

 

Figure 5. Power generation in MG2 during scenario1. 

 

Figure 6. SoC of Energy storage device(ES) and Electrical vehicle(EV) during scenario 1 in MG1. 
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Figure 7. SoC of Energy storage device(ES) and Electrical vehicle(EV) during scenario 1 in MG2. 

In the learning process, the rewards were obtained for microgrid 1 and microgrid 2, and the time 

intervals were identified while the rewards were negative. The negative rewards show that the 

microgrid has a loss during the occurrence of extreme events for peer-to-peer energy trading. 

 
 

Figure 8. (a) Surplus and deficit power in MG1 during scenario1 and (b) Surplus and 

deficit power in MG2 during scenario1. 

  

Figure 9. (a) Reward in MG1 during scenario1 and (b) Reward in MG2 during scenario1. 
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Figure 10. Convergence and Loss in LSTM SAC simulation with 250 iterations. 

The LSTM network comprises hidden units: 200, training options: adam, MaxEpochs: 250, and 

Error: Root mean square error (RMSE). The convergence in the LSTM network is shown in Figure 

10. Stochastic scheduling has been implemented in peer-to-peer energy trading while energy storages 

are incorporated to improve resiliency. 

7. Conclusions  

In this paper, a multi-LSTM-SAC RL for the resilient energy management of microgrids was 

proposed for secure and resilient peer-to-peer energy trading. This proposed mechanism was tested 

in a networked microgrid system comprised of an IEEE 14 bus with energy storage devices and 

electric vehicles. The MG was trained with LSTM-SAC RL for different scenarios, such as the 

failure of generation by one or more than one generator or the occurrence of a fault in the 

transmission line. During the extreme conditions, secure and resilient peer-to-peer energy trading 

was designed. At different time intervals of extreme events, the optimal power generation, the 

surplus or deficit power, the state of charge of energy storage devices, and the electric vehicle power 

were evaluated. The convergence in the proposed learning scheme is obtained and optimal actions 

were obtained for different extreme events. This learning scheme did not use gradient descent; 

otherwise, the LSTM algorithm was used to estimate the Q values. Furthermore, this learning 

scheme avoids overestimating the Q values for resilient energy management. The convergence in the 

learning mechanism was obtained and loss was minimized. The proposed LSTM-SAC resilient 

peer-to-peer energy trading creates a platform to maximize profit under extreme conditions. 
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