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Abstract: Classification algorithms based on data mining tools show good performances for the 
automatic diagnosis of systems. However, these performances degrade quickly when the database is 
not exhaustive. This happens, for example, when a new class appears. This class could correspond to 
a previous unknown fault or to an unknown combination of simultaneous faults. Described algorithm 
in this paper proposes a solution to this issue. It combines Support Vector Machine (SVM), fuzzy 
membership functions (mbf) and fuzzy information fusion. It results in the construction of a matrix 
of memberships to known classes U_class and a vector of membership to unknown classes U_others. 
Then, from these values, indicators of distance and ambiguity of the observations can be computed. 
These indicators allow setting a simple rejection rule with a threshold classifier. The algorithm is 
validated by using Cross-Validation (CV) on experimental data on an induction motor faults supplied 
by a voltage-source inverter. The results show the good performances of the proposed algorithms and 
its suitability for transportation systems like aircrafts. 
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Nomenclature 

X Matrix [m, d] of observations     Y Vector [m, 1] of labels 

x Observation         y Label of x 

α Lagrange Multipliers       s Support Vector (SV) 

K Kernel function        𝜃௄ Parameters of K 

b Bias term         d Distance to the separating hyperplane 

c Number of classes       u Membership function 

  mbd Membership degree       γ Membership degree of SV 

φ T or S-Norm         ψ Fusion operator based on φ 

u1 Membership to class for which y = –1   u2 Membership to class for which y = +1 

 𝑔௞ Center of gravity of class k     ID Indicator of Distance 

IA Indicator of Ambiguity      IAth1 First threshold on IA (for decision rules) 

IAth2 Second threshold on IA (for decision rules)  D Defined classes (in learning base) 

ND Undefined classes       𝑃௞ Power related fault features  

𝐻௞ Harmonics related fault features    𝑆௞ Fault features based on stator currents 

MDL Fuzzy SVM binary model    

MLFZS SVM-MBF multi class model (trained and set) 

Uclass Matrix [m, c] of membership to the classes 

Uothers Vector [m, 1] of membership to unknown classes 

IDth1  First threshold on ID (for decision rules)    

IDth2  Second threshold on ID (for decision rules) 

1. Introduction 

Maintenance costs are a limiting factor to the economical performances of industrial processes. 
All industries are impacted by this and more particularly transportation industries: maritime [1], 
railway [2] and aeronautics [3]. Among the existing methods, predictive maintenance is a 
promising family of tools to help reducing the cost while increasing the availability of industrial 
systems. These methods consist in analyzing measurements on the system/process to estimate the 
state of degradation of the system and, if there is a fault, to detect its localization. It allows 
reducing costs up to 30% in the power generation and in the oil/gas industry [4]. It might also help 
to increase the availability of aircrafts by over 35% [4]. Most of these methods suppose that a 
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representative database on the system operating states has been built. This database should contain 
observations for the healthy case and main faulty cases, i.e., the most frequent and the most critical 
faults. 

However, if a new type of fault appears, the algorithm will not be able to detect it. It may 
classify it in one of the defined/identified faults or even as healthy operating. The proposed algorithm 
in this paper provides a solution to this problem. It is a two-level classifier. The first one is based on 
support vector machines (SVM), fuzzy membership functions (mbf) and fuzzy fusion (FF). Its 
outputs allow computing rejection and ambiguity features. These features feed a simple threshold 
classifier in order to determine if the points belong to a single fault mode, to a combined fault mode 
(ambiguity) or to an unknown fault mode (rejection). Other SVM algorithms with rejection option 
exist in the literature [5–7]. However, they do not distinguish rejection in distance from rejection in 
ambiguity. Moreover, there is no degree level associated to the rejection. Here, the proposed 
algorithm solves these two issues. Indeed, other versions of fuzzy SVM exist [8–10]. Unlike these 
methods, the proposed algorithm can classify an observation to several classes and to unknown 
classes, i.e., those not defined in the training database. 

In this paper, to assess performances of the proposed algorithm, it is applied to an induction 
motor. This type of motor is widely used in industry including transportation systems [11–13]. 
Recent investigations are made on the diagnosis of induction motors [14–17,19,20], but none of them 
consider the case of unknown faults.  

Here is the organization of this paper: a short reminder on support vector machine is given first 
(Section 2). Then, the proposed multi-classes fuzzy SVM-MBF is explained in Section 3. It allows 
ambiguity and distance rejection options. The principle of the automatic detection of unknown 
classes is also presented in detail in Section 4. The general architecture is detailed in Section 5. Then, 
Section 6 describes the experimental tests emulating induction motor faults. These tests are used to 
create a database, which is used to validate the algorithm. The optimal selection of signature of fault 
is realized in Section 7. Experimental results validate the approach in Section 8. A comparison with 
classical classifier is made in Section 9. 

2. Support vector machine 

2.1. Binary case classifier 

The aim of training a SVM model is to find a hyperplane allowing separating two classes of 
observations [18]. It is computed by maximizing the margin between the hyperplane and the nearest 
observations and so, generating support vectors (SV). The classification of a new observation is 
made by computing the distance between this observation and the hyperplane. If the distance is 
positive, then the label of the observation is +1. If not, its label is −1. The distance is computed for an 
observation 𝑥௡௘௪  ∈  ℝ௣ using the following equation [21]:  

   𝑑ሺ𝑥௡௘௪ሻ ൌ  ∑ 𝛼௜ 𝑦௜𝐾ሺ 𝑠௜, 𝑥௡௘௪ሻ ൅ 𝑏ேೞ
௜ୀଵ           (1) 

where  𝑠௜  ∈  ሼ1, . . , 𝑁௦ሽ is a support vector (observation for which 𝑑ሺ 𝑠௜ሻ ൌ േ1, 𝛼௜ : the Lagrange 
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multipliers, 𝑦௜ : label of  𝑠௜, 𝑏 : the bias and 𝐾 the kernel function.  

The Lagrange multipliers are computed by maximizing the following cost function:  

   𝐿஽ ൌ ∑ 𝛼௜
௟
௜ୀଵ െ ∑ ∑  𝛼௜ 𝛼௝𝑦௜𝑦௝𝐾൫𝑥௜, 𝑥௝൯௠

௝ୀଵ
௠
௜ୀଵ         (2) 

under the following constraints:  

   𝐶 ൒ 𝛼௜  ൒ 0                (3)  

   ∑ 𝛼௜
௟
௜ୀଵ 𝑦௜ ൌ 0               (4)  

with C as the regularization parameter allowing us to set the bias/variance trade-off of the SVM 
model and 𝑚 the number of observations in the training database.  

This formulation of the SVM learning problem is a quadratic optimization problem. Therefore, 
a quadratic optimization solver has to be applied to solve it [22]. The kernel function is a kind of 
similarity measure. The function must verify some properties like continuity, symmetry and 
semi-definite positive [18]. This function and its parameters have to be chosen regarding the database. 
Some examples of kernel functions are given in Table 1.  

Table 1. Kernel functions. 

Name Parameters 

 (𝜃௄ሻ 
Formula 

Linear   𝐾൫𝑥௜, 𝑥௝൯ ൌ 𝑥௜. 𝑥௝ 

Polynomial 𝑝 
𝐾൫𝑥௜, 𝑥௝൯ ൌ ൫𝑥௜. 𝑥௝ ൅ 1൯

௣
 

Radial Basis Function (RBF) 𝜎 
𝐾൫𝑥௜, 𝑥௝൯ ൌ 𝑒

ฮ௫೔ି௫ೕฮ
మ

ଶఙ²   

Sigmoidal 𝑎  ;  𝑏  𝐾൫𝑥௜, 𝑥௝൯ ൌ tanhሺ𝑎 ∗ 𝑥௜. 𝑥௝ ൅ 𝑏ሻ 

2.2. Multi-class case classifier 

SVM can be generalized to multi-class cases by combining several binary SVM. Two main 
techniques exist in the literature. 

2.2.1. One vs All 

The “One vs All” method is illustrated in Figure 1.  
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Figure 1. “One vs All” method. 

This method consists in splitting classes in two groups. One of them is made of only one class. 
The other one gathers all the other ones. The considered class is labeled as +1 and the other ones are 
labeled as −1. Then, all the classes are successively labeled as +1. Therefore, for a 𝑐 class problem, 
the method will result in the combination of 𝑐 hyperplanes. 

2.2.2. One vs One  

The “One vs One” method is illustrated in Figure 2.  

 

Figure 2. “One vs One” method. 

This method consists in processing successively each pair of classes, without considering the 
other classes. Therefore, for a 𝑐  class problem, the method will count the combination of 
𝑐ሺ𝑐 െ 1ሻ 2⁄  hyperplanes. It is generally more accurate than the “One vs All”. However, its 
computation costs are also higher, for both training and test phases. For this reason, the “One vs All” 
is used in the rest of the paper. 

3. Presentation of the new fuzzy SVM classifier: SVM-MBF 

A method to combine SVM with fuzzy membership functions is now introduced. 

3.1 Binary case 

First, for the binary case of SVM, the membership degree (mbd) of an observation to a class is 
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introduced. We remind that the “binary case” means classification between two classes. The notion 
of membership degree is based on Zadeh’s fuzzy set theory [23]. A membership function (mbf) is 
attributed to each class. For a given observation, the mbf are calculated from the distance between 
the observation and the separating hyperplane 𝑑௦௩ as illustrated in Figure 3. 

 

Figure 3. Process to compute fuzzy mbf parameters (SV stands for Support Vector). 

Membership functions can have different forms: trapezoidal, polynomial, sigmoidal, etc. They 
must meet the following requirements:  

 The mbf corresponding to the positive class 𝑢ଶ should be symmetric around the hyperplane 
to the one corresponding to the negative class 𝑢ଵ.  

 The two mbf represent a strong fuzzy partition of the distance set. This means that 
 𝑢ଵሺ𝑑௫ሻ ൅ 𝑢ଶሺ𝑑௫ሻ ൌ 1, ∀  𝑑௫, with 𝑑௫: distance to the hyperplane of an observation 𝑥.  

 The mbd of the support vector represents the confidence in the quality of the training data. 
The higher it is, the better the training data is. This level of confidence is noted 𝛾 ∈ ሾ0.5, 1ሿ.  

An example of fuzzy partitions of the distance, for polynomials mbf, is given in Figure 4. 

 

Figure 4. Membership functions (top) and the SVM (bottom). 

Two misclassified points by the classical SVM are encircled in black in Figure 4. Though these 
points have non-zero memberships for both classes, their affiliation to a class could avoid some 
classification error by considering a threshold  𝑢௧௛  ∈ ሾ0.5, 𝛾ሿ in the case of the fuzzy SVM. 
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Clearly speaking, if  𝑢ሺ𝑥ሻ  ൐  𝑢௧௛ , then the observation is classified. Otherwise, further 
investigations are required for this observation. 

3.2. Multi-class case 

This is the same principle as for classical multi-class SVM. Several binary fuzzy SVM models 
are trained using one of the multi-class methods. Then, during the classification phase, the computed 
membership degrees (mbd) for binary case are combined by using triangular operators [24] and 
complement to one [25], as explained later in this paper. This allows building a matrix 𝑈௖௟௔௦௦, of 𝑚 
rows and 𝑐 columns. It represents the mbd of the observations to the classes. It also allows building 
a vector 𝑈௢௧௛௘௥௦, representing the mbd of the observation to unknown classes.  

3.2.1. Fusion of membership degrees 

To merge the membership degrees during the different steps of the fuzzy SVM process, 
triangular operators are used. T-Norm (equivalent to intersection) and T-Conorm (or S-Norm, 
equivalent to union) operators must be commutative, associative and monotone [24]. Zero is the 
neutral element for the S-norm. Similarly, one is the neutral element for the T-Norm. Usual triangular 
operators are gathered in Table 2, with 𝑎 ∈ ሾ0, 1ሿ, 𝑏 ∈ ሾ0, 1ሿ. 

Table 2. T-Norm and S-Norm. 

Name T-Norm S-Norm 

Max/Min min ሺ𝑎, 𝑏ሻ  max ሺ𝑎, 𝑏ሻ 

Probabilistic 𝑎 ∗ 𝑏  𝑎 ൅ 𝑏 െ 𝑎 ∗ 𝑏 

Lukasiewicz max ሺ0, ሺ𝑎 ൅ 𝑏 െ 1ሻሻ  min ሺ1, ሺ𝑎 ൅ 𝑏ሻሻ 

Einstein 𝑎 ∗ 𝑏
1 ൅ ሺ1 െ 𝑎ሻ ∗ ሺ1 െ 𝑏ሻ

 
𝑎 ൅ 𝑏

1 ൅ 𝑎 ∗ 𝑏
 

Let’s consider an observation 𝑥 belonging to class 𝑎 with a degree 𝑢௔ሺ𝑥ሻ, to class 𝑏 with a 
degree  𝑢௕ሺ𝑥ሻ and to class 𝑐 with a degree 𝑢௖ሺ𝑥ሻ. Then, the membership degree of 𝑥 to known 
classes  ሺ𝑎, 𝑏 or 𝑐) is given by:  

    𝑢௔௟௟ሺ𝑥ሻ ൌ ⊥ ሺ 𝑢௔ሺ𝑥ሻ, 𝑢௕ሺ𝑥ሻ, 𝑢௖ሺ𝑥ሻሻ          (5) 

where ⊥ stands for an S-Norm [24].  

Because of the operator properties (commutability and associativity), this operation is 
equivalent to: 

𝑢௔௟௟ሺ𝑥௡௘௪ሻ ൌ ⊥ ሾ 𝑢௔ሺ𝑥ሻ, ⊥ ሺ𝑢௕ሺ𝑥ሻ, 𝑢௖ሺ𝑥ሻሻ ሿ        (6) 
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In the same way, suppose several membership degrees of 𝑥 to a class 𝑑 are computed: 
𝑢ௗଵሺ𝑥ሻ, 𝑢ௗଶሺ𝑥ሻ and 𝑢ௗଷሺ𝑥ሻ. The combination of all these degrees will be obtained by:  

𝑢ௗሺ𝑥ሻ ൌ  ⊤ሺ 𝑢ௗଵሺ𝑥ሻ, 𝑢ௗଶሺ𝑥ሻ, 𝑢ௗଷሺ𝑥ሻሻ          (7) 

with ⊤ as a T-Norm.  

Likewise, because of the operator properties, this can be written as:  

𝑢ௗሺ𝑥ሻ ൌ  ⊤ሾ 𝑢ௗଵሺ𝑥ሻ,   ⊤ሺ𝑢ௗଶሺ𝑥ሻ, 𝑢ௗଷሺ𝑥ሻሻሿ         (8) 

Then, an information fusion operator  𝛹, based on a triangular operator 𝜑 (T or S-Norm) is defined.  

                         𝑀௠,௖ሺℝሻ ↦ 𝑀௠,ଵሺℝሻ  

      𝛹 ∶ ൭
𝑢ଵଵ 𝑢ଵଶ ⋯ 𝑢ଵ௖

⋮ ⋱ ⋯ ⋮
𝑢௠ଵ ⋯ ⋯ 𝑢௠௖

൱ ↦ ൮
𝜑ሺ𝑢ଵଵ, 𝜑 ቀ𝑢ଵଶ, 𝜑൫𝑢ଵଷ,…൯ቁሻ

…
𝜑ሺ𝑢௠ଵ, 𝜑 ቀ𝑢௠ଶ, 𝜑൫𝑢௠ଷ,…൯ቁሻ

൲     (9) 

where 𝑀௠,௖ሺℝሻ is a matrix of 𝑚 raws and 𝑐 columns with elements 𝑢௜௝ in ℝ (𝑖 ∈ ሼ1, . . 𝑚ሽ, 𝑗 ∈
ሼ1, . . , 𝑐ሽ).  

The application of this fusion operator will be explained in the following paragraphs. Let’s 
consider that a multi-class SVM model 𝑀𝐷𝐿 is set and trained on a representative dataset. Each 
binary SVM model composing this multi-class model is noted  𝑀𝐷𝐿௞ (𝑘 ∈ ሼ1, . . ሽ).  

3.2.2. One vs All 

The algorithm, which computes  𝑈௖௟௔௦௦ and  𝑈௢௧௛௘௥௦ for a test set of 𝑚 observations, is given 
in Table 3. It uses a “One vs All” model. The fusion operator 𝛹 used here is based on a T-Norm  𝜑.  

Table 3. Membership computations for “One vs All” SVM Model. 

Step Actions during the step 

1 Initializations  

Initialize  𝑈௖௟௔௦௦ and 𝑈௔௟௟ as ሺ𝑚, 𝑐ሻ matrix of zeros 

Initialize  𝑈௢௧ℎ௘௥௦ as ሺ𝑚, 1ሻ vector of zeros 

 

2 

Membership Computations  

For 𝑘 from 1 to 𝑐 

Compute 𝑢ଵ and 𝑢ଶ from  𝑀𝐷𝐿௞  

Replace the 𝑘௧ℎ column of  𝑈௖௟௔௦௦ by 𝑢ଶ 

Replace the 𝑘௧ℎ column of 𝑈௔௟௟ by 𝑢ଵ 
End For 

 

3 

 𝑼𝒐𝒕𝒉𝒆𝒓𝒔 Computation  

 𝑈௢௧ℎ௘௥௦ ൌ  𝛹ሺ 𝑈௔௟௟ሻ  

 



67 

 

AIMS Electronics and Electrical Engineering  Volume 2, Issue 3, 59–84. 

An intermediate matrix  𝑈௔௟௟  is also used. This matrix represents the membership of the 
observations to the “All” side of the “One vs All”. Applying the information fusion to this matrix, 
one obtains the membership degrees of unknown classes 𝑈௢௧௛௘௥௦. 

3.2.3. One vs One 

The algorithm, which computes  𝑈௖௟௔௦௦ and  𝑈௢௧௛௘௥௦ with a “One vs One” model is given in 
Table 4. Two fusion operators are used:  𝛹ଵ based on a T-Norm 𝜑ଵ and 𝛹ଶ based on a S-Norm 
 𝜑ଶ. For a binary model  𝑀𝐷𝐿௞, we note 𝑘ା the class considered as ൅1, respectively 𝑘ି for the 
class considered as െ1 . The matrix 𝑈௖௟௔௦௦_௤  ( 𝑞 ∈ ሼ1, . . , 𝑐ሽ ) represents all the mbd of the 
observations to classes. The vector 𝑈௥௘௟  represents the relevance of the observations (membership 
degree of the observation to the group of known classes).  

Table 4. Membership computations for “One vs One” SVM Model. 

Step Actions during the step 

1 Initializations  

Initialize 𝑈௖௟௔௦௦ as ሺ𝑚, 𝑐ሻ matrix of zeros 

Initialize 𝑈௢௧ℎ௘௥௦  and  𝑈௥௘௟ as ሺ𝑚, 1ሻ vector of zeros 

2 Membership Computations

For 𝑘 form 1 to  
௖ሺ௖ିଵሻ

ଶ
 

Compute 𝑢ଵ and 𝑢ଶ  from  𝑀𝐷𝐿௞ 
Save 𝑢ଶ in  𝑈௖௟௔௦௦_௞శ

 

Save 𝑢ଵ in  𝑈௖௟௔௦௦_௞ష
 

End For 

3 Fusion for each class 
For 𝑙 form 1 to  𝑐 

Replace the 𝑙௧ℎ column of 𝑈௖௟௔௦௦ by 𝛹ଵሺ𝑈௖௟௔௦௦_௟ሻ  
End For 

4 Fusion on all the class (relevance vector)

𝑈௥௘௟ ൌ  𝛹ଶሺ 𝑈௖௟௔௦௦ሻ  
5  𝑼𝒐𝒕𝒉𝒆𝒓𝒔 Computation 

 𝑈௢௧ℎ௘௥௦ ൌ 1 െ  𝑈௥௘௟ 
(with respect to dimensions)

4. Automatic detection of new classes 

From the matrix  𝑈௖௟௔௦௦ and the vector  𝑈௢௧௛௘௥௦, a method to detect new classes is presented in 
this section. It is based on indicators of novelty which are attributed for a second-class classifier.  

4.1. Indicators of novelty 
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4.1.1 Detection of a whole new class (new fault) 

The hypothesis is made that a new class is going to present high  𝑈௢௧௛௘௥௦ values. Therefore, an 
indicator of distance, for an observation  𝑥, can be computed by:  

   𝐼𝐷ሺ𝑥ሻ ൌ  
௨೚೟೓೐ೝೞሺ௫ሻ

୫ୟ୶ೖ ∈ሼభ,..,೎ሽሼ௄ሺ௚భ,௫ሻ;….௄ሺ௚ೖ,௫ሻ ;… ௄ሺ௚೎,௫ሻሽ
       (10) 

with 𝑢௢௧௛௘௥௦ሺ𝑥ሻ: the membership degree of 𝑥 to unknown classes, 𝐾ሺ𝑔௞, 𝑥ሻ: the kernel between 
the center of gravity 𝑔௞ of class 𝑘 and the observation. 𝑢௢௧௛௘௥௦ሺ𝑥ሻ is computed in the same way as 
presented in Table 3. 

4.1.2. Detection of an ambiguous class (combined fault) 

An ambiguous class can correspond to combined fault cases. The hypothesis is made that this 
type of new classes is going to present close membership degrees to two (or more) classes. Therefore, 
an indicator of ambiguity, for an observation 𝑥, can be computed by:  

   𝐼𝐴ሺ𝑥ሻ ൌ  
௠௔௫൛௄൫௚ೖభ,௫൯ ; ௄ሺ௚మ,௫ሻ ൟ

∆௨೎೗ೌೞೞೖభೖమሺ௫ሻ
          (11) 

with 𝑘ଵ : class for which 𝑢ሺ𝑥ሻ  is maximum, 𝑘ଶ : class for which 𝑢ሺ𝑥ሻ  reaches its second 
maximum value, 𝑢௖௟௔௦௦ೖభೖమ

ሺ𝑥ሻ ൌ  𝑢௖௟௔௦௦ೖభ
ሺ𝑥ሻ െ 𝑢௖௟௔௦௦ೖమ

ሺ𝑥ሻ.  

4.1.3. Indicators of references 

It is supposed that the training base 𝑋௔ has been correctly pre-processed and that it is cleaned, 
i.e., no outliers, no misclassified observations … Then, the reference values for the indicators are 
defined by:  

   𝐼𝐷௥௘௙ ൌ  max௫ ∈ ௑ೌ
ሼ𝐼𝐷ሺ𝑥ሻሽ            (12) 

   𝐼𝐴௥௘௙ ൌ  max௫ ∈ ௑ೌ
ሼ𝐼𝐴ሺ𝑥ሻሽ            (13) 

As presented in the next subsection, the above references are used in the rest of the paper to 
normalize corresponding indicators before making decision on rejection/acceptance of a new 
observation to a known class. 

4.2. Decision map 

A decision rulebase can be expressed by selecting four thresholds on the normalized indicators 
(𝐼𝐷 𝐼𝐷௥௘௙⁄  and 𝐼𝐴 𝐼𝐴௥௘௙⁄ ). This allows representing these rules by a map composed of nine areas 
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such as shown in Figure 5 where zones are limited by thresholds IDth1, IDth2, IATh1 and IAth2. 

 

Figure 5. Representation of the rejection rulebase. 

The Normal zone corresponds to observations belonging to known classes. For the points in this 
area, the algorithm classifies the observation in the class for which its mbd is the highest and gives 
this degree as a level of confidence. The Ambiguity zones correspond to combined fault modes. For 
these points, the algorithm associates the observation to the two classes with the highest mbd and 
derives a level of confidence from the two mbds. The Distance zones correspond to unknown fault 
modes. Points in these zones are given to experts for further analysis, possibly leading to new classes. 
The choice has been made, for safety issues, to make the distance prior to the ambiguity. Thus, there 
are five zones for distance and only three for ambiguity.  

The different thresholds are defined empirically according to the application and the level of 
confidence. 

5. Architecture of the classification algorithm 

The global architecture of the proposed classification algorithm can now be introduced. The 
training phase is shown in Figure 6. 

The parameterized and trained model is noted  𝑀𝐿𝐹𝑍௦. The kernel function is set here as for the 
classical SVM. Then, the type of membership functions is chosen regarding the classifier in charge 
of novelty detection. Therefore, the SVM kernel is first designed (Choice of the kernel, of the 
Lagrange parameter C). Then, the fuzzy part is defined (Membership function, Method of fusion, ID 
and IA thresholds). 

The test procedure on a base 𝑋௧ is given in Figure 7.  
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Figure 6. Flowchart for the training and parameterization procedure. 

 

Figure 7. Flowchart for the test procedure. 
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With new samples, we first compute the membership functions and ID and IA indicators. 
According to the results, we define the health state and the membership values or send the rejected 
point to an expert. 

6. Experimental tests 

6.1. Test campaign 

Faults were physically realized on a 5.5 kW induction motor powered by an inverter and loaded 
by a powder brake. The database comes from a previous work [26]. Figure 8 shows the experimental 
test bench. 

 

Figure 8. Experimental test bench. 

The induction machine is on the left and the brake on the right. Acquisition has been realized 
with an Odyssey recorder from Nicolet. This bench was equipped with temperature, vibration, 
current and voltage sensors. The motor parameters are given in Table 5. 

Table 5. Parameters of the induction motor. 

Parameter (Unit) Value 

Nominal Voltage between Phases (V) 400 

Power Frequency (Hz) 50 

Nominal Speed (r/min) 1440 

Nominal Useful Power (kW) 5.5 

Power Factor 0.84 

Pair of Poles 4 

Number of rotor slots 28 

Number of stator slots 48 

Three faults were considered from a previous work performed by the authors [27]. The first one 
is related to the roller bearings [27,28]. It was realized by removing the healthy bearings of the 
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machine and replacing them by pre-aged bearings. The second one is the rotor broken bars [27,29]. It 
was created by drilling holes in the conductors of the squirrel cage as illustrated in Figure 9. The last 
fault concerns the electrolytic capacitor bank of the inverter [30]. It was emulated by replacing a 
healthy bank by a pre-aged one. The healthy set of inverter-machine and the three cases of fault were 
tested at nominal speed for no load, half load and full load. The motor’s speed, currents and voltages 
were acquired at a sampling frequency of 20 kHz. 

 

Figure 9. Emulation of the broken bar fault. 

6.2. Features of faults 

Features of faults are computed from the measurements. These features are based on specific 
harmonics [31,32], harmonics of the fundamental, active and reactive powers [33] and Park’s 
current [34]. They are all given in [27]. Please note that all the signals are normalized by the 
technique of the first harmonic: each signal is divided by the amplitude of its fundamental. This 
allows gathering in one class observations of the same fault, but with different load levels. 

6.3. Databases 

From the computed features, two databases are created. They are detailed in Table 6 and Table 7.  

Table 6. First database (Fault Detection). 

N° Class Number of Observations 

1 (D) Healthy motor and inverter 30 

2 (D) Damaged bearings and healthy inverter 30 

3 (D) Broken bars (1,3,4 bars) and healthy inverter 30 (10 for each) 

4 (ND) Healthy motor and damaged capacitor 30 

For the second database, the inverter is always healthy. During the validation process, some 
classes are used for both training and test and are called as “Known” or “Defined” (D). For the test 
phase, an extra class, called “Unknown” or “Not Defined” (ND), is added. For the first database, the 
ND-class should be located in the distance zones of the decision map in Figure 5. For the second 
database, it should be detected in ambiguity zones. 
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Table 7. Second database (Fault Severity). 

N° Class Number of Observations 

1 (D) Healthy motor  30 

2 (D) One broken bar 30 

3 (ND) Three broken bars 30 

4 (D) Four broken bars 30 

For each database, all the observations of the parameters are normalized between 0 and 1.  

7. Feature vector 

7.1. Feature selection 

In both databases, 48 features are computed [27]. All are based on electrical, mechanical or 
thermal measurements. Among all the features, some are particularly sensitive to faults. To identify 
them, a “Sequential Backward Selection” (SBS) is performed on the observations in D-classes [35]. 
This method allows selecting a set of parameters 𝑑′ optimizing a given criterion. The criterion used 
here is the Fisher criterion given by:  

 𝐽 ൌ ∑ ∑ ௚ೖି௚೔

௡ೖఙೖ²ି௡೔ఙ೔²
௖ିଵ
௜ୀଵ

௖
௞ୀଵ             (14) 

with 𝑐: number of classes, 𝑔௞: center of gravity of class 𝑘, 𝑛௞: number of observations in class 𝑘 
and 𝜎௞: variance of observations in class 𝑘 given by:  

 𝜎௞  ൌ  
∑ ሺ௫ೖೕି ௚ೖሻ

೙ೖ
ೕసభ

௡ೖ
              (15) 

where 𝑥௞௝ is the 𝑗௧ℎ observation belonging to class 𝑘. 

The numerator of the criterion deals with the objective of maximizing the separation between 
classes. The denominator is related to the objective of maximizing the compactness of each class. 
The application of the SBS to the first database is illustrated in Figure 10. The x-axis represents 
the iteration of the method and the y-axis the features. For each iteration, the least influent 
parameter, regarding to the criterion, is eliminated. The algorithm iterates from forty-seven 
parameters to one.  

The variation of the criterion with the number of parameters is given in the following Figures 
(Figures 11 and 12).  
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Figure 10. SBS on the first database. 

 

Figure 11. Cost regarding the number of selected features – Database 1 (zoom). 

The optimal number of parameters depends on the significant slope change on the curve. Here, 
this number is between 4 and 13 features. During the setting of the SVM parameters, all the 
combination of features between 4 and 13 were tested. The best results were obtained for a number 
of parameters  𝑑௢௣௧ଵ ൌ 11. The same study was performed for the second database and resulted in 
 𝑑௢௣௧ଶ ൌ 4.  
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Figure 12. Cost regarding the number of selected features – Database 2 (zoom). 

7.2. Details of features 

The details of the optimal features are given in the following Tables. They are based on the type 
of physical values. Features given in Table 8 correspond to power related features.  

Table 8. Features based on powers. 

Numeration Denomination (Unit) 

𝑃ଵ Average Active Power (W) 

𝑃ଶ Average Reactive Power (VA) 

𝑃ଷ Loss Power (W) 

𝑃ସ Heating of the armature (K) 

Features in Table 9 are related to specific current harmonics. We noted  𝑓௦ the frequency of the 
stator currents (Hz) and 𝑓௥ the frequency of the rotor (Hz). 

Table 9. Features based on current harmonics. 

Numeration Denomination (Unit) 

𝐻ଵ Amplitude of 𝑓௦ ൅ 𝑓௥ signal (A) 

𝐻ଶ Amplitude of 5𝑓௦ (A) 

𝐻ଷ Amplitude of 7𝑓௦ (A) 

In Table 10, features correspond to characteristics of the currents in the stator reference frame. 
We note 𝐼௦ఈ the stator current component in the 𝛼 axis and 𝐼௦ఉ the stator current component in the 
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𝛽 axis. The complex stator current 𝐼௦ is computed by:  

    𝐼௦ ൌ  𝐼௦ఈ ൅ 𝑗 ∗ 𝐼௦ఉ             (16) 

Table 10. Features based on the stator current components. 

Numeration Denomination (Unit) 

 𝑆ଵ Deformation 𝐼௦ఉሺ𝐼௦ఈ) in 𝛼 axis 

 𝑆ଶ Standard deviation of 𝐼௦ఈ 

 𝑆ଷ Standard deviation of 𝐼௦ఉ 

 𝑆ସ Standard deviation of ‖𝐼௦‖ 

Finally, the direct impedance 𝑍ௗ is also a sensitive feature.  

7.3. Feature vector 

Table 11 summarizes selected features for each database.  

Table 11. Selected features for the two databases. 

Database Selected Features 

1 𝑃ଵ ; 𝑃ଶ ; 𝑃ଷ ; 𝑃ସ ; 𝐻ଵ ; 𝐻ଶ ; 𝐻ଷ ; 𝑆ଶ ; 𝑆ଷ ; 𝑆ସ ; 𝑍ௗ 

2 𝑃ଵ ; 𝑃ଶ ; 𝑆ଵ ; 𝑆ଷ 

8. Experimental results: validation of the diagnosis process with the induction machine data base 

8.1. Validation procedure 

To validate the robustness of the proposed algorithm, a 5-fold out cross validation (CV) 
is used [36,37]. These types of method lead to a pessimistic estimation of the generalization 
error [37–39]. Then, for both databases, the training phase uses 4/5 of the observations of the 
D-classes. The test phase uses 1/5 of the observations of the D-classes and the entire 
ND-class. The precision of the classification is computed by:  

    𝑃 ൌ 1 െ
∑ ூሺ௬ೕ,௬ොೕሻ ೙

ೕసభ

௡
             (17) 

where 𝑛  is the number of observations; 𝑦௝ is the class of observation 𝑗; 𝑦ො௝ is the predicted class 
of observation 𝑗 (class which maximizes 𝑢ሺ𝑥ሻ); 𝐼ሺ𝑎, 𝑏ሻ ൌ 1 if 𝑎 ് 𝑏 and 0 otherwise. 

Please note that the average precision on all the CV iterations will be given throughout the 
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paper. For each validation test, 90 points belong to D-classes and 30 belong to the ND-class.  
The validation procedure was performed on a laptop with an Intel i5 CPU, 4 cores, computing at 

2.7 GHz with 8 GB RAM.  

8.2. Setting the parameters 

The Radial Basis Function (RBF) kernel and the “One vs All” method are used for both 
databases. In order to set the parameters, the model is trained on the training database and then tested 
on the test database. Values of the parameters are modified by trial and error, until suitable 
performances are reached in terms of rate of well classified points. So, these parameters are 
optimized in the framework of the studied application (Table 12).  

Table 12. One vs All parameters. 

Parameter Value 

C 100 

Type of Kernel RBF 

Parameter of Kernel 0.3 

Type of FA Sigmoïdal 

Parameter of FA 0.8 

Type of Norm Max / Min 

8.3. Diagnosis of an induction motor 

The obtained results by the proposed algorithm applied to the first database are given in Table 13.  

Table 13. Results for rejection (Database 1). 

Type of 

observations 

Number of well 

Classified/Rejected observations 

Total number of 

observations  

 Rate of well 

classified (%) 

D – classes 87 90 96.7 

ND – class 30 30 100 

With the rejection rule and the threshold defined in Figure 5, three points of D-classes have 
been rejected (3 points over 90). This makes a precision of 96.7% on the D-classes (87 points on 90 
well classified). Furthermore, all the unknown observations are classed in the ND-class and more 
specifically, in the distance zones. So, they are all rejected (see Figures 13 and 14). Therefore, the 
overall precision is 97.5%: 87/90 D-classes and 30/30 ND-class giving 117/120 points. This result is 
quite satisfactory considering that one class is unknown. Without the rejection rule, the precision is 
75% (90/120 points), because in this case, all 90 known points are well detected and put in the 
D-classes while 30 unknown points are wrongly classed in the D-classes. It should be noted that 
when you look closer, the three rejected points with the proposed algorithm are very noisy.  
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Figure 13. Decision map for the first database. 

 

Figure 14. Decision map for the first database (zoom). 

Finally, the computation costs for training and test phases are given in the following table (Table 
14). The presented characteristics (minimum, average, maximum) are obtained from the computation 
times on all CV iterations.  

Table 14. Computation costs (Database 1). 

Step Min  Average  Max  

Training (s) 1.67 1.93 2.27 

Test (ms) 6.58 8.18 12.2 
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Please note that the test phase computation costs are in milliseconds. These results have to be 
linked to the number of observations trained, which is 96, and those tested, which is 24, at each 
iteration. This low computation times could make the algorithm suitable for transportation systems. 
These results must be confirmed on more complex problems with higher number of classes and 
features. 

8.4. Detection of combined faults 

The application of the proposed algorithm to the second database gives the results shown in 
Table 15. 

Table 15. Results for classification and rejection (Database 2). 

Type of 
observations 

Number of well Classified/Rejected 
observations 

Total number of 
observations  

Rate (%) 

D – classes 85 90 85.44 
ND – class 26 30 86.67 

The “Rate” in this table is defined by the ratio of well classified (without taking into account the 
rejected samples) over the total number of observations. 

Like the previous case, when we do not use the rejection rule all of the known observations are 
correctly classified and all of the unknown points are misclassified. With the rejection rule and the 
threshold defined in Figure 5, five known points are rejected and the others are well classified in 
their corresponding D-classes. This provides a precision of 94.4% (85 well classified points over 90). 
Then, 26 unknown observations over 30 are detected as ND-class in the ambiguity zones (see 
Figures 15 and 16). Therefore, the precision is around 92.5 % for the whole process (D-classes and 
ND-class: 111 well classified points over 120). This precision should be compared to the case that no 
rejection rule exists. Indeed, in the latter case, the precision is 75% (90/120 points).  

It can be seen in Figures 14 and 15 that suitable thresholds are difficult to determine. One 
explanation is that the ND-class, which is used here, is not really a combination of the two other 
faulty classes; it is not a case of combined faults. Another is related to the fact that threshold 
classifiers are very basic. A more evolved classifier could improve the accuracy.  

For the second database, the computation times are given in Table 16. They are obtained from 
the computation times on all CV iterations.  

Table 16. Computation costs (Database 2). 

Step Min  Average  Max  

Training (s) 1.76 1.97 2.51 

Test (ms) 6.06 9.29 16.6 

Once again, it should be noticed that these results depend to the number of observations trained 
and tested. These numbers are the same as those used in the first database. They confirm the 
suitability of the method for transportation applications.  



80 

 

AIMS Electronics and Electrical Engineering  Volume 2, Issue 3, 59–84. 

 

 

Figure 15. Decision map for the second database. 

 

Figure 16. Decision map for the second database (zoom). 

9. Comparison with other classifiers 

We compared the proposed classifier with some classical ones. The comparison was held on the 
database obtained on the above multi-fault induction machine. Techniques like Fuzzy Support 
Vector Machine (SVM-FA), Decision Tree (ADD), K Nearest Neighbours (KNN) and Naive 
Bayesian Network (BN) were compared. The comparison results are given in Tables 17 to 19 in 
terms of the rate of well-classified samples, the amount of memory that is necessary to realize the 
algorithm and the computing time to classify the whole test database. 
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Table 17. Precision. 

Precision P (%) SVM – FA ADD KNN BN 

Maximum 100 75 75 75 

Mean 97.5 73.34 71.67 74.17 

Minimum 91.67 70.84 70.84 70.84 

Table 18. Memory. 

Memory (kB) SVM – FA ADD KNN BN 

Amount (kB) 14.5 28.2 18.5 17.6 

Table 19. Computation time. 

Test time (ms) SVM – FA ADD KNN BN 

Maximum 102 6.67 14.5 83.9 

Mean 47.4 2.84 5.04 38.2 

Minimum 24.3 0.40 1.30 17.8 

It can be noticed that SVM-FA presents the best performance in terms of precision and memory 
while the highest computation time remains still fully acceptable for electrified transportation 
systems applications. 

10. Conclusion 

A new algorithm for classification of faults with detection of unknown classes is proposed in 
this paper. This algorithm is based on support vector machine, fuzzy membership functions and 
information fusion through triangular norms. It produces distance and ambiguity indicators. These 
indicators allow detecting observations belonging to unknown classes. These classes can correspond 
to all new fault modes or to combined fault modes.  

The algorithm was validated on an experimental database via cross validation method. The 
database contains common faults for an induction motor fed by a voltage-source inverter. The results 
show the good robustness and the short computation time of the algorithm compared to constraints in 
aeronautics. Therefore, the proposed algorithm seems suitable for transportation systems like more 
electric aircrafts.  

Nevertheless, more validation tests should be performed, especially for the ambiguity 
indicator. Database with combined fault modes, for example bearings and capacitor faults, should 
be tested. More work is planned regarding the indicators and the rejection classifier especially for 
discovering the novelty. Another future work is on the completion of incomplete databases to get 
them be closer to aeronautic applications. And finally, this work will be the basis of a study on 
faults prognosis.  
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