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Abstract: The global well-posedness theory and viscosity vanishing limit of the initial-boundary
value problem on two/three-dimensional (2D/3D) incompressible Navier-Stokes (NS) equations and/or
Boussinesq equations with nonlinear boundary conditions are studied. The global existence of weak
solution to the initial boundary value problem for 2D/3D incompressible NS equation with one kind
of boundary of pressure-velocity’s relation and the global existence and uniqueness of the smooth
solution to the corresponding problem in 2D case for large smooth initial data are proven. The viscosity
vanishing limit of the corresponding initial-boundary value problem for 2D/3D incompressible NS
equations in the bounded domain is also established. And the corresponding results are extended to the
2D/3D incompressible Boussinesq equations.
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1. Introduction

We study the global well-posedness theory and viscosity vanishing limit of the following problem
for two/three-dimensional (2D/3D) incompressible Navier-Stokes (NS) equations in the bounded
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domain 

vt + v · ∇v + ∇p = ε∆v + f0, x ∈ Ω, t > 0,
div v = 0, x ∈ Ω, t > 0,

ε
∂v
∂n
− pn −

1
2
|v|2n = k0v + g0, x ∈ ∂Ω, t > 0,

v(0, x) = v0(x), x ∈ Ω

(1.1)

and the following problem for 2D/3D incompressible Boussinesq equations in the bounded domain

vt + v · ∇v + ∇p = ε∆v + ϱe + f0, x ∈ Ω, t > 0,
div v = 0, x ∈ Ω, t > 0,
ϱt + v · ∇ϱ = κ∆ϱ + f1, x ∈ Ω, t > 0,

ε
∂v
∂n
− pn −

1
2
|v|2n = k0v + g0, x ∈ ∂Ω, t > 0,

κ
∂ϱ

∂n
−

1
2
ϱv · n = k1ϱ + g1, x ∈ ∂Ω, t > 0,

(v, ϱ)(0, x) = (v0, ϱ0)(x), x ∈ Ω.

(1.2)

Here the functions v = v(t) = v(t, x) and p = p(t) = p(t, x) are the velocity vector and scalar pressure of
the fluid respectively, and the function ϱ = ϱ(t) = ϱ(t, x) is the temperature or density, Ω is the smooth
bounded domain of Rd, d = 2, 3 with the boundary Γ = ∂Ω, n is the unit outer normal vector to Γ = ∂Ω,
x = (x′, xd) ∈ Ω with x′ = x1 when d = 2 and x′ = (x1, x2) when d = 3, the vector e denotes the unit
one of xd-direct, the constants ε > 0 and κ > 0 are the viscosity and diffusion coefficients, and k0, k1

are fixed given constants. Also, the functions f0 = f0(t) = f0(t, x), f1 = f1(t) = f1(t, x), g0 = g0(t) =
g0(t, x), g1 = g1(t) = g1(t, x) are the given forces satisfying div f0(t) = 0 and v0(x), ϱ0(x) are the given
initial data satisfying and div v0 = 0.

It is well known that the 3D incompressible NS equations (with homogeneous boundary conditions
in the case of the bounded domain) have at least one globally-in-time weak solution having the finite
energy [1–4]. But, the issue of the global regularity and uniqueness for the weak solution in 3D
case is still one open problem in the field of mathematical theory of fluid mechanics [5–11]. For global
wellposedness theory on the smooth solution to some special cases for 3D incompressible NS equation,
e.g., in the case of the axi-symmetric flow, see, for example, [6,8,12], in the case of the helical flow, see,
for example, [13], and in the case of the absence of simple hyperbolic blow-up regimes for the three-
dimensional incompressible Euler and quasi-geostrophic equations, see, for example, [14]. In the 2D
case, global wellposedness and regularity theory of incompressible NS equation in the whole space and
in the bounded domain with the classical boundary conditions, such as the Dirichlet boundary condition
and Navier boundary condition are well-known, see [4,6,11]. Recently, in [15], the globally dynamical
stabilizing effects of the geometry of the domain at which the flow locates and of the geometry structure
of the solution to 3D incompressible NS equations are investigated, and the existence and uniqueness of
the global and smooth solution to the Cauchy problem for 3D incompressible NS and Euler equations
for a class of the large and smooth initial data in orthogonal curvilinear coordinate systems are also
established.

Also, the two/three-dimensional incompressible Boussinesq equation is an important model in the
applied sciences such as atmospheric and oceanographic, see [12, 16–18]. There are many important
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progresses on global wellposedness on incompressible Boussinesq equations. For example, for global
smooth solution results of two-dimensional incompressible Boussinesq equations with the viscosity
or diffusive coefficients in the smooth large initial data, see, for example, [8, 19–22], for global
well-posedness in the 3D no-swirl case of axi-symmetric Boussinesq system with partial viscosity or
partial thermal diffusivity, see [23–25]. Of course, global regularity theory for three-dimensional
incompressible Boussinesq equation in the case of general smooth initial data is also still open.

Physically the boundary condition (1.1)3 represents that the normal stress of the fluid at the boundary
is a linear function of the velocity v if we use p + 1

2 |v|
2 as one new pressure function since we can re-

write the equation (1.1)1 into the form ∂tv + curl v × v + div (−ϵ∇v + (p + 1
2 |v|

2)I) = f0. Moreover, the
boundary condition (1.1)3 can be equivalently re-written into the following one

(ε
∂v
∂n
− k0v − g0) × n = 0, x ∈ Γ, t > 0,

p = ε
∂v
∂n
· n −

1
2
|v|2 − k0v · n − g0 · n, x ∈ Γ, t > 0.

Since, for the known study on wellposedness of initial-boundary value problem for incompressible
NS/Euler or Boussinesq equations in one bounded domain with the boundary, the boundary conditions
involved there are all given zero velocity Dirichlet/Navier boundary condition etc., so far we do not see
any study progress on the problems (1.1) and (1.2) for incompressible fluid. In this paper we establish
the global well-poseness theory and viscosity vanishing limit of a class of the initial-boundary value
problem for the incompressible fluid with non-homogeneous unknown nonlinear boundary conditions
of pressure-velocity relation’s type or pressure-velocity coupled with density-velocity relation’s type.
Our main purpose is that we obtain the existence of the global weak solution to the problems (1.1)
and (1.2) in 2D/3D cases and the global existence and uniqueness of the strong and smooth solution
for the problems (1.1) and (1.2) in 2D case for any smooth and large initial data. Also, we want to
establish the viscosity vanishing limit of the corresponding initial boundary value problem under the
suitable assumption on the solution to the initial-boundary value problem for 2D/3D incompressible
Euler equation with a class of nonlinear boundary condition.

Let us introduce basic difficulties and some key points of our success of this paper. Different from
the traditional Cauchy problem and initial boundary value problem with homogeneous boundary
condition for incompressible fluid, the main difficulty involved here is caused by the more complex
nonlinear boundary condition (1.1)3 or (1.2)4,5, which yields to that the vorticity equation can not be
used here since the boundary condition of the vorticity is very complex if one use the vorticity
equation. More interesting, the boundary condition (1.2)4,5 in the problem for incompressible
Boussinesq equation shows that the non-homogeneous boundary condition (1.2)4 for the velocity field
shall transfer to the density to get the coupled non-homogeneous density-velocity relation’s boundary
condition (1.2)5 due to the convection of the fluid. To deal with these complex boundary conditions,
motivated by [4], where the global existence and uniqueness of the weak solution for incompressible
NS fluid-structure interaction problem are established, we first introduce one new kind of definition of
a class of global weak solution to the problem (1.1) or the problem (1.2), which is transformed into
one equivalent integration system with nonlinear boundary integration term caused by the
non-homogeneous nonlinear boundary condition (1.1)3 or (1.2)4,5. In this definition, the appearance of
boundary integration term brings some difficulties when one obtain the more high regularities for the
incompressible velocity of the involved approximating system by the Galerkin method. For example,
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we need to establish one new trace theorem (see Proposition 1, below, in this section) for the
incompressible velocity field so as to obtain the uniform estimate of ∥∂tvl(0)∥ on l = 1, 2, · · · , see
(3.27) in section 3.1. Secondly, we construct the approximating solution by the Galerkin method and
establish the uniformly a priori estimates for the approximating solution so as to obtain global weak
solution by the compactness argument. In this steps, the key point of our success is to sufficiently use
the advantage of the positive viscosity coefficient and the positive diffusion coefficient so as to
perform the limit on nonlinear convection term and the boundary integration term in the present
definition of global weak solution. Then, we obtain the more better regularity estimates in the
boundary and also in the time direction so as to obtain the globally strong and smooth solution to the
problem (1.1) and the problem (1.2) in 2D case for smooth and large initial data, where some
important interpolation inequality and the trace inequality in two-dimensional case are used and the
regularity theory for the boundary value problem for the Stokes equation with Dirichlet boundary
condition can be used to conclude our desired results on the strong and smooth solution for smooth
initial data satisfying suitable compatibility conditions.

We also point out that the nonlinear boundary condition (1.1)3 or (1.2)4,5 involved in this paper is
in fact related to the free boundary value problem (see, for example, [26–31]) or the fluid structure
interaction problems (see, for example, [4, 32–34]) for the incompressible fluid, where the boundary
integration terms does not appear in the corresponding definition of the global weak solution because
of Lagrangian transform or the cancellation between the fluid and the structure at the interface.

Now we recall some preliminary knowledge and prove one theorem for the trace of incompressible
v velocity field, which will be used in our regularity estimates for the strong and smooth solution for
incompressible fluid.

We recall some standard Hilbert and Sobolev spaces as follows ( [6, 35–37]). The space L2(Ω) is
the Hilbert one with the inner product (v,w)Ω and L2(Ω) norm ∥ · ∥ = ∥ · ∥L2(Ω). The space H1(Ω) and
H s(Ω) are the standard Sobolev one, and H s(Γ) is the standard fractional order Sobolev’s space with
H−s(Γ) = (H s

0(Γ))′ for s > 0. The spaces W s,q(Ω) and W s,q(Γ) ⊂ Lq(Γ) are the Sobolev one. Denote
H = {v ∈ L2(Ω)| div v = 0}, V1 =

{
w ∈ H1(Ω)| div w = 0 on Ω

}
. Also, Y ′ denotes the dual space of

the space Y , v = (v1, ·, vd) ∈ Y denotes vi ∈ X, i = 1, · · · , d or v ∈ Yd = Y × · · · × Y , C > 0 denotes a
positive constant depending only upon the domain but independent of the given time T and C(T ) > 0
denotes a positive constant depending upon T and the domain.

Some basic embedding results and basic trace inequalities are needed as follows [6, 36, 37].

Lemma 1. If Ω ⊂ Rd is one given smooth bounded domain satisfying Γ = ∂Ω ⊂ Rd−1, or Ω = Rd
+ =

{x ∈ Rd|y′ = (y1, · · · , yd−1) ∈ Rd−1, yd > 0} is one half space with one boundary Γ = ∂Ω = {x ∈ Rd|y′ =
(y1, · · · , yd−1) ∈ Rd−1, yd = 0}, then the embedding

H s1(Ω) ↪→ Lq1(Ω), 1
q1
= 1

2 −
s1
d , 0 ≤ s1 <

d
2 , d = 1, 2, 3, (1.3)

H s2(Γ) ↪→ Lq2(Γ), 1
q2
= 1

2 −
s2

d−1 , 0 ≤ s2 <
d−1

2 , d = 2, 3 (1.4)

and

H s(Ω) ↪→ H s− 1
2 (Γ), s >

1
2
, d = 2, 3 (1.5)

are continuous. Moreover, there exists one linear continuous right inverse lifting mapping R : w ∈
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H
1
2 (Γ) 7→ Rw ∈ H1(Ω) satisfying

Rw|Γ = w, ∥Rw∥H1(Ω) ≤ C∥w∥
H

1
2 (Γ)

(1.6)

for some positive constant C.
Also, the following trace inequality is basic:∫

Γ

|u|2dΓ ≤ δ
∫
Ω

|∇u|2dx +C
∫
Ω

|u|2dx, v ∈ H1(Ω) (1.7)

for any δ > 0.

We also recall one regularity result on the Stokes problem, see [6, 11, 38].

Lemma 2. Assume that Ω ⊂ Rd, d = 2, 3, is one smooth bounded domain with the boundary Γ = ∂Ω ∈
C s, s = max{l, 2}. Assume that f1 ∈ W l−2,q(Ω), g1 ∈ W l−1,q(Ω),Φ1 ∈ W l− 1

q ,q(Γ), l ≥ 1, 1 < q < ∞, and∫
Ω

g1dx =
∫
Γ
Φ1 · ndΓ, where n is the unit outer normal vector on Γ. Then the solution (u, p) of the

Stokes problem 
∆u − ∇p = f1, x ∈ Ω,

div u = g1, x ∈ Ω,

u = Φ1, x ∈ Γ

(1.8)

satisfies the estimate

∥u∥W l,q(Ω) + ∥∇p∥W l−2,q(Ω) ≤ C(∥ f1∥W l−2,q(Ω) + ∥g1∥W l−1,q(Ω) + ∥Φ1∥W l− 1
q ,q(Γ)

). (1.9)

To establish our regularity results on the strong and smooth solution for incompressible fluid, we
state one theorem for the trace of incompressible velocity field v ∈ H, see, e.g., [39], and outline its
proof for completeness, based on the lifting operator technique in Lemma 1. We point out that this
result for general function v ∈ L2(Ω) does not hold, i.e., the general trace operator T0 : L2(Ω) 7→
H−

1
2 (Γ) is not continuous, see [36].

Proposition 1. The trace operator T : v ∈ H 7→ (v · n)|Γ ∈ H−
1
2 (Γ) is continuous, i.e., there exists a

positive constant C = C(Ω) such that, for v ∈ H, it holds

∥(v · n)|Γ∥H− 1
2 (Γ)
≤ C∥v∥. (1.10)

Proof. Here, for completeness, we outline the key points of the proof. For fixed v ∈ H and for any
w ∈ H

1
2 (Γ) = H

1
2
0 (Γ), we define one functional

Zv(w) =
∫
Ω

v · ∇(Rw)dx, (1.11)

where R : H
1
2 (Γ) 7→ H1(Ω) is any linear and continuous right inverse operator satisfying (1.6).

We want to verify that, for any given v ∈ H, Zv(w) is one bounded linear functional defined on
H

1
2 (Γ). Firstly, the operator Zv(w) is independent of the operator R. In fact, for any two operators

R1,R2 satisfying the property (1.6), we have (R1w − R2w)|Γ = w − w = 0 on Γ, and, hence∫
Ω

v · ∇(R1w − R2w)dx =
∫
Γ

(v · n)(R1w − R2w)dΓ −
∫
Ω

div v(R1w − R2w)dx = 0 (1.12)
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due to div v = 0. Thus, we get from (1.12) that the functional Zv(w) is independent of the operator R
and is determined uniquely by functions v ∈ H and w ∈ H

1
2 (Γ).

Secondly, the operator Zv(w) is bounded on H
1
2 (Γ). In fact, by the definition (1.11), for any w ∈

H
1
2 (Γ),

|Zv(w)| =|
∫
Ω

v · ∇(Rw)dx|

≤∥v∥∥∇(Rw)∥
≤∥v∥∥Rw∥H1(Ω)

≤C∥v∥∥w∥
H

1
2 (Γ)

.

(1.13)

Also, it is obvious that Zv(w) is linear with respect to w ∈ H
1
2 (Γ).

Lastly, by Riesz-Frechet representation theorem, there exists γ0v ∈ H−
1
2 (Γ) such that

Zv(w) = (γ0v,w)
H−

1
2 (Γ),H

1
2 (Γ)

, ∥γ0v∥
H−

1
2 (Γ)
≤ ∥Zv∥H−

1
2 (Γ)
≤ C∥v∥ (1.14)

by using (1.13). On the other hand, for v ∈ C1(Ω), div v = 0, and w ∈ C1(Ω), we have

Zv(w) =
∫
Ω

v · ∇R(w|Γ)dx =
∫
Ω

v · ∇wdx =
∫
Γ

v · nwdΓ = (v · n,w)
H−

1
2 (Γ),H

1
2 (Γ)

. (1.15)

Combining (1.14) and (1.15), we get γ0v = (v · n)|Γ and (1.10).
This completes the proof of Proposition 1. □

Finally, we recall one result on the functional analysis ( [40]).

Lemma 3. Let the space Y be a separable Hilbert space, then the space Y has a complete orthogonal
system consisting of an at most countable number of elements.

The rest of this paper is organized as follows. In section 2 we state the main results of this paper,
and section 3 gives the proofs of our main results.

2. Main Results

Introduce
aΩ(v,w) = (∇v,∇w)Ω, bΩ(v,w, z) = (v · ∇w, z)Ω.

2.1. On Incompressible Navier-Stokes equations

Definition 1. (The definition of the global weak solution to the problem (1.1)) (v, p) is called to be
one global weak solution to the problem (1.1) in time, if for any given positive T , there exists (v, p),
defined in the interval [0,T ], satisfying v ∈ L∞(0,T ; L2(Ω))

⋂
L2(0,T ; V1), ∂tv ∈ Ls(0,T ; V ′1) for some

constant s > 1,

(∂tv(t),w)Ω + εaΩ(v(t),w) + bΩ(v(t), v(t),w) −
1
2

∫
Γ

|v(t)|2n · wdΓ

=

∫
Γ

(k0v(t) + g0(t)) · wdΓ + ( f0(t),w)Ω,w ∈ V1, 0 ≤ t ≤ T,

v(0) = v0(x) in V ′1.

(2.1)
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Here dΓ is the arc differential for d = 2 and the area differential for d = 3.

Remark 1. We point out that if v is one global weak solution of the system (2.1) in the definition 1,
then there exists a function p such that (v, p) satisfies the system (1.1) almost everywhere for (x, t) in
some sense. In fact, setting w ∈ C∞0 (Ω) with div w = 0 in (2.1) and denoting

∂tv − ϵ∆v + v · ∇v − f0 = S ,

we have S ∈ ((D(Ω × (0,T )))′)d and (S ,w) = 0 in the sense of (D((0,T )))′ for any w ∈ C∞0 (Ω) with
div w = 0, which gives S = −∇p and the equation (1.1)1 for some p ∈ ((D(Ω× (0,T )))′)d. Also, (1.1)2

is obvious because v ∈ V1. Thus, the rest one is to verify the nonlinear boundary condition (1.1)3.
Multiplying (1.1)1 by w ∈ V1 and using integration by parts, we get

(∂tv,w)Ω + εaΩ(v,w) + bΩ(v, v,w) +
∫
Γ

(pn − ε
∂v
∂n

) · wdΓ

= ( f0,w)Ω,w ∈ V1, 0 ≤ t ≤ T,

which, together with (2.1), gives∫
Γ

(ε
∂v
∂n
− pn −

1
2
|v|2n − (k0v + g0)) · wdΓ = 0, v ∈ V1, 0 ≤ t ≤ T. (2.2)

Then (1.1)3 is obtained from (2.2) and
∫
Γ

n · wdΓ = 0 because w ∈ V1 is arbitrary.

Now we state the main results of this paper on the problem (1.1) for 2D/3D incompressible NS
equations.

Theorem 1. Assume that the domain Ω ⊂ Rd, d = 2, 3, is smooth and bounded. Also, assume that
Γ = ∂Ω ∈ C1, v0 ∈ H, f0 ∈ L2(0,∞; L2(Ω)) and g0 ∈ L2(0,∞; H1(Ω)). Then the problem (1.1) has one
global weak solution in time satisfying the the following energy inequality

∥v(t)∥2 + 2ε
∫ t

0 ∥∇v(t)∥2dt

≤ ∥v0∥
2 + 2

∫ t
0 {
∫
Γ
(k0v(t) + g0(t)) · v(t)dΓ +

∫
Ω

f0(t) · v(t))dx}dt (2.3)

for any 0 ≤ t ≤ T and any given T > 0. Moreover, the global weak solution to the problem (1.1) is
unique when d = 2.

Theorem 2. Set d = 2 and let Ω = T × [−1, 1], where T = R

2πZ is a torus. Assume that f0 ∈

H1(0,∞; L2(Ω))
⋂

L2(0,∞; H1(Ω)) and g0 ∈ H1(0,∞; H1(Ω))
⋂

L2(0,∞; H2(Ω)). Also, assume that
v0 ∈ V1

⋂
H2(Ω) satisfies the following zero order compatibility condition

ε
∂v0

∂n
− k0v0 − g0(0) = ((ε

∂v0

∂n
− k0v0 − g0(0)) · n)n, x ∈ ∂Ω = T × {−1, 1}, (2.4)

where n is the unit outer normal vector of the boundary Γ = ∂Ω. Then the problem (1.1) has one unique
and global strong solution in time satisfying

∂tv ∈ L∞(0,T ; L2(Ω))
⋂

L2(0,T ; V1)

v ∈ L∞(0,T ; V1)
⋂

L2(0,T ; H2(Ω)).
(2.5)

Furthermore, if f0, g0, v0 are smooth and satisfy suitable higher order compatibility conditions at the
boundary, then the global-in-time weak solution to the problem (1.1) is smooth.
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Theorem 3. (Viscosity vanishing limit ε → 0) Let f0(t), g0
0(t), v0

0 be the given smooth functions and
the assumptions in Theorem 1 hlod. Let (v, p) = (v, p)(t) be one solution to the problem (1.1) given
by Theorem 1, and let (v0, p0) = (v0, p0)(t) defined on the interval [0,T ] be one smooth solution to the
initial boundary value problem for 2D/3D incompressible Euler equations

v0
t + v0 · ∇v0 + ∇p0 = f0, x ∈ Ω, 0 ≤ t ≤ T,

div v0 = 0, x ∈ Ω, 0 ≤ t ≤ T,

p0 = −
1
2
|v0|2 − g0

0, x ∈ ∂Ω, 0 ≤ t ≤ T,

v(0, x) = v0
0(x), x ∈ Ω.

(2.6)

Also, assume that g0(t) = −k0v0(t) + g0
0(t)n and ∥v0 − v0

0∥ → 0 as ε→ 0. Then there exists one positive
constant K = K(T ) such that, for any k0 ≤ −K, it holds that ∥v(t) − v0(t)∥ → 0 for 0 ≤ t ≤ T when
ε→ 0.

Remark 2. If we replace the boundary condition (1.1)3 by the boundary condition

ε
∂v
∂n
− pn −

1
2

(v · n)v = k0v + g0, x ∈ ∂Ω, 0 ≤ t ≤ T,

then similar results to Theorem 1 and Theorem 2 hold. The similar results to Theorem 2 in the case of
the general bounded smooth domain is also true, which will be discussed in another paper.

Remark 3. If f0 = 0,∇g0
0 = 0, and the smooth function v0

0 , 0 satisfies div v0
0 = 0, curl v0

0 = 0,
(v0

0 · n)|Γ , 0, and (v0
0 × n)|Γ , 0, then (v0, p0)(t, x) = (v0

0,−
1
2 |v

0
0|

2 − g0
0)(x) is one smooth solution to

the system (2.6). But, the well-posedness locally in time for the incompressible Euler system (2.6) with
general initial data is open and will be remained to the future.

2.2. Extension to incompressible Boussinesq equations

Definition 2. (The definition of the global weak solution to the problem (1.2)) (v, p, ϱ) is called to
be one global-in-time weak solution to the problem (1.2), if for any T > 0, there exists the function
pairs (v, p, ϱ), defined in the time interval [0,T ], satisfying v ∈ L∞(0,T ; L2(Ω))

⋂
L2(0,T ; V1) and

ϱ ∈ L∞(0,T ; L2(Ω))
⋂

L2(0,T ; H1(Ω)) with ∂tv ∈ Ls(0,T ; V ′1) and ∂tϱ ∈ Ls(0,T ; (H1(Ω))′) for some
s > 1 satisfying

(∂tv(t),w)Ω + εaΩ(v(t),w) + bΩ(v(t), v(t),w) −
1
2

∫
Γ

|v(t)|2n · wdΓ

=

∫
Γ

(k0v(t) + g0(t)) · wdΓ + (ϱ(t)e + f0(t),w)Ω,w ∈ V1, 0 ≤ t ≤ T,

(∂tϱ(t), ψ) + κaΩ(ϱ(t), ψ) + bΩ(v(t), ϱ(t), ψ) −
1
2

∫
Γ

(ϱ(t)v(t) · n)ψdΓ

=

∫
Γ

(k1ϱ(t) + g1(t))ψdΓ + ( f1(t), ψ)Ω, ψ ∈ H1(Ω), 0 ≤ t ≤ T,

(v(0), ϱ(0)) = (v0(x), ϱ0(x)) in V ′1 × (H1(Ω))′.

(2.7)

Here dΓ is the arc differential for d = 2 and the area differential for d = 3.
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For the incompressible Boussinesq system, we state our results as follows.

Theorem 4. Assume that the domain Ω ⊂ Rd, d = 2, 3, is bounded and smooth. Also, assume that the
boundary Γ = ∂Ω ∈ C1, v0 ∈ H, ϱ0 ∈ L2(Ω), f0, f1 ∈ L2(0,∞; L2(Ω)) and g0, g1 ∈ L2(0,∞; H1(Ω)).
Then the problem (1.2) has one globally-in-time weak solution satisfying the following energy
inequality

∥(ϱ(t), v(t))∥2 + 2ε
∫ t

0
∥∇v(t)∥2dt + 2κ

∫ t

0
∥∇ϱ(t)∥2dt

≤ 2
∫ t

0
{

∫
Γ

(k0v(t) + g0(t)) · v(t)dΓ +
∫
Ω

(ϱ(t)e + f0(t)) · v(t)dx}dt

+ 2
∫ t

0
{

∫
Γ

(k1ϱ(t) + g1(t))ϱ(t)dΓ +
∫
Ω

f1(t)ϱ(t))dx}dt, 0 ≤ t ≤ T

(2.8)

for any given positive T . Moreover, the global-in-time weak solution to the problem (1.2) is unique
when d = 2.

Theorem 5. Let Ω = T × [−1, 1], where T = R

2πZ is the torus. Assume that
f0, f1 ∈ H1(0,∞; L2(Ω))

⋂
L2(0,∞; H1(Ω)) and g0, g1 ∈ H1(0,∞; H1(Ω))

⋂
L2(0,∞; H2(Ω)). Also,

assume that v0 ∈ V1
⋂

H2(Ω), ϱ0 ∈ H2(Ω) satisfies the following zero order compatibility condition

ε∂v0
∂n − k0v0 − g0(0) = ((ε∂v0

∂n − k0v0 − g0(0)) · n)n, x ∈ ∂Ω = T × {−1, 1},

κ ∂ϱ0
∂n −

1
2ϱ0v0 · n = k1ϱ0 + g1(0), x ∈ ∂Ω = T × {−1, 1}, (2.9)

where n is the unit outer normal vector of Γ = ∂Ω. Then the problem (1.2) has one unique and
globally-in-time strong solution satisfying

∂tv ∈ L∞(0,T ; L2(Ω))
⋂

L2(0,T ; V1), ∂tϱ ∈ L∞(0,T ; L2(Ω))
⋂

L2(0,T ; H1(Ω)),

v ∈ L∞(0,T ; V1)
⋂

L2(0,T ; H2(Ω)), ϱ ∈ L∞(0,T ; H1(Ω))
⋂

L2(0,T ; H2(Ω)).
(2.10)

Furthermore, if the functions f0, f1, g0, g1, ϱ0, v0 are smooth and satisfy suitable higher order
compatibility conditions at the boundary, then the globally-in-time weak solution to the problem (1.2)
is smooth.

Remark 4. We can not extend the present results in Theorems 3 and 4 to the case of κ = 0 and ε > 0 or
the case of κ > 0 and ε = 0 because the corresponding initial boundary value problem for the inviscid
or/and non-diffusive case for incompressible Boussinesq fluid in the bounded domain is different from
(1.2). The discussion of these cases will be considered in the future.

3. Proofs of our main Theorems

3.1. Proofs of Theorem 1 and Theorem 2

The proof of Theorem 1.
We prove Theorem 1 by constructing the approximating solution based on the Galerkin method and
by establishing the a priori estimates. Let T > 0 be an arbitrarily given positive constant. By using
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Lemma 3, there exists the orthogonal basis {el(x)}∞l=1 of the space V1
⋂

L2(Ω) with ∥el∥ = 1. For any
given l ≥ 1, we take the following l order approximating solution vl of the solution v to the problem
(1.1):

vl(t) = vl(t, x) =
m∑

j=1

gl
j(t)e j(x), l = 1, 2, · · · , (3.1)

where gl
j(t), j = 1, · · · , l, satisfies the system

(∂tvl(t), e j)Ω + εaΩ(vl(t), e j) + bΩ(vl(t), vl(t), e j) −
1
2

∫
Γ

|vl(t)|2n · e jdΓ

=

∫
Γ

(k0vl(t) + g0(t)) · e jdΓ + ( f0(t), e j)Ω, j = 1, 2, · · · , l, 0 ≤ t ≤ T,

vl(0) = vl
0(x) =

l∑
k=1

vk
0ek(x), v0(x) =

∞∑
l=1

vl
0el(x) ∈ V1,

(3.2)

which is one ordinary differential equations(ODE) for gl
j(t), j = 1, · · · , l. By standard existence and

uniqueness theory for the ODE, there exist some tl > 0 and one unique solution {gl
j(t)}

l
j=1 of the system

(3.2), defined in the interval [0, tl] and satisfying gl
j(t) ∈ H1(0, tl) and limt→tl− |gl

j(t)| = ∞ for some
j : 1 ≤ j ≤ l. Now we want to prove tl = T .
Step 1: The a priori L∞(0,T ; L2(Ω)) estimate for vl(t, x).

Multiplying (3.2) by gl
j(t) and summing the resulting one from j = 1 to l, by using the fact that

bΩ(vl, vl, vl) −
1
2

∫
Γ

|vl|2n · vldΓ = 0

according to div vl = 0, we have

1
2

d
dt
∥vl(t)∥2 + ε∥∇vl(t)∥2 =

∫
Γ

(k0vl(t) + g0) · vl(t)dΓ + ( f0(t), vl(t))Ω, 0 ≤ t ≤ T. (3.3)

With the help of the Young’s inequality and the trace inequality (1.7), it follows from (3.3) that

1
2

d
dt
∥vl(t)∥2 +

ε

2
∥∇vl(t)∥2 ≤ C∥vl(t)∥2 +

∫
Γ

|g0(t)|2dΓ + ∥ f0(t)∥2, 0 ≤ t ≤ T. (3.4)

By the Gronwall’s inequality, we get from (3.4) that

∥vl(t)∥2 + ε
∫ t

0
∥∇vl(t)∥2dt

≤ eCt(∥v0∥
2 +

∫ t

0

∫
Γ

|g0(t)|2dΓdt +
∫ t

0
∥ f0(t)∥2dt)

≤ C(T ) < ∞, 0 ≤ t ≤ T,

(3.5)

which implies that there exists a constant C(T ) > 0 such that |gl
j(t)| ≤ C(T ) < ∞ for any l ≥ 1,

j = 1, 2, · · · , l, and 0 ≤ t ≤ tl, and, hence, tl = T .
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Step 2: The a priori Lq(0,T ; V ′1) estimate for ∂tvl(t, x).
For j = 1, 2, · · · , l, noting the fact that vl|Γ , 0 and e j|Γ , 0, and by integration by parts, with the

help of the Holder inequality and the trace inequalities (1.7), from (3.2) we get

|(∂tvl(t), e j)Ω|

= | − εaΩ(vl(t), e j) + bΩ(vl(t), e j, vl(t)) −
∫
Γ

(vl(t) · n)(vl(t) · e j)dΓ

−
1
2

∫
Γ

|vl(t)|2n · e jdΓ +
∫
Γ

(k0vl(t) + g0(t)) · e jdΓ + ( f0(t), e j)Ω|

≤ ε∥∇vl(t)∥∥∇e j∥ + |bΩ(vl(t), e j, vl(t))|

+ | −

∫
Γ

(vl(t) · n)(vl(t) · e j)dΓ −
1
2

∫
Γ

|vl(t)|2n · e jdΓ|

+C(∥vl(t)∥H1(Ω) + ∥g0(t)∥H1(Ω))∥e j∥H1(Ω) + ∥ f0(t)∥∥e j∥.

(3.6)

To estimate the remaining integral terms in (3.6), we need the following basic inequality.
For any w ∈ H1(Ω), one have

∥w∥L4(Ω) ≤ C∥w∥
d
4
H1(Ω)∥w∥

1− d
4 , d = 2, 3 (3.7)

and

∥w|Γ∥L3(Γ) ≤ C∥w∥
d+2

6
H1(Ω)∥w∥

1− d+2
6 , d = 2, 3. (3.8)

In fact, on one hand, by taking q1 = 4 in (1.3) of Lemma 1 and using 1
4 =

1
2−

s1
d , we get H

d
4 (Ω) ↪→ L4(Ω),

which, together with the interpolation inequality ( [36, 41]), yields

∥w∥L4(Ω) ≤ C∥w∥
H

d
4 (Ω)
≤ C∥w∥

d
4
H1(Ω)∥w∥

1− d
4 , d = 2, 3,

which gives (3.7).
On the other hand, by taking q2 = 3 in (1.4) of Lemma 1 and using 1

3 =
1
2 −

s2
d−1 , we get H

d−1
6 (Γ) ↪→

L3(Γ), which, together with the trace inequality (1.5) and the interpolation inequality ( [36,41]), yields
to

∥w|Γ∥L3(Γ) ≤ C∥w|Γ∥H d−1
6 (Γ)
≤ C∥w∥

H
d−1

6 +
1
2 (Ω)
≤ C∥w∥

d+2
6

H1(Ω)∥w∥
1− d+2

6 , d = 2, 3,

which gives (3.8).
By the Holder’s inequality, using the fact that ∥n∥L∞ ≤ C < ∞ thanking to the smoothness of the

domain, (3.7), (3.8), and the estimate (3.5), we get, for j = 1, 2, · · · , l,

|bΩ(vl(t), e j, vl(t))| + | −
∫
Γ

(vl(t) · n)(vl(t) · e j)dΓ −
1
2

∫
Γ

|vl(t)|2n · e jdΓ|

≤ ∥vl(t)∥2L4(Ω)∥∇e j∥ +C∥vl(t)|Γ∥2L3(Γ)∥e j∥L3(Γ)

≤ C(T )(∥vl(t)∥
d
2
H1(Ω) + ∥v

l(t)∥
d+2

3
H1(Ω))∥e j∥H1(Ω)

(3.9)
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Combining (3.6) and (3.9), using the Young’s inequality and the fact that 1 ≤ d
2 ≤

d+2
3 < 2 for d = 2, 3,

we get, 0 ≤ t ≤ T ,

|(∂tvl(t), e j)Ω|

≤C(T )(∥vl(t)∥H1(Ω) + ∥vl(t)∥
d
2
H1(Ω) + ∥v

l(t)∥
d+2

3
H1(Ω) + ∥g0(t)∥H1(Ω) + ∥ f0(t)∥)∥e j∥H1(Ω)

≤C(T )(∥vl(t)∥
d+2

3
H1(Ω) + ∥g0(t)∥H1(Ω) + ∥ f0(t)∥ +C)∥e j∥H1(Ω),

which gives

∥∂tvl(t)∥V′1 ≤ C(T )(∥vl(t)∥
d+2

3
H1(Ω) + ∥g0(t)∥H1(Ω) + ∥ f0(t)∥ +C), t ∈ [0,T ], (3.10)

which implies that there exists a constant C(T ) > 0 such that

∥∂tvl(t)∥Lq(0,T ;V′1) ≤ C(T ) < ∞, 1 ≤ q =
6

d + 2
≤ 2, d = 2, 3. (3.11)

Combining the estimates (3.5) and (3.11), and using Lions-Aubin lemma, we have that there exists a
subsequence, denoted still by vl(t), satisfying, when l→ ∞,

∂tvl(t) ⇀ ∂tv(t) weakly in Lq(0,T ; V ′1), (3.12)
vl(t) ⇀ v(t) weakly* in L∞(0,T ; L2(Ω)), (3.13)
vl(t) ⇀ v(t) weakly in L2(0,T ; H1(Ω)), (3.14)

vl(t)→ v(t) strongly in L2(0,T ; H1−δ(Ω)), δ ∈ (0, 1
2 ). (3.15)

Furthermore, according to the fact that the embedding H1−δ(Ω) ↪→ L2(Γ) is compact when δ < 1
2 , we

have

vl(t)|Γ → v(t)|Γ strongly in L2(0,T ; L2(Γ)). (3.16)

Then, it follows from (3.15) and (3.16) that, for any w ∈ V1, when l→ ∞,

bΩ(vl(t), vl(t),w)→ bΩ(v(t), v(t),w) strongly in L1(0,T ), (3.17)

and

1
2

∫
Γ

|vl(t)|2n · wdΓ→
1
2

∫
Γ

|v(t)|2n · wdΓ strongly in L1(0,T ). (3.18)

Now, performing one limit as l → ∞ in the equation (3.2) and using (3.12)–(3.18), we know that v
satisfies the equation (2.1), and, then, integrating the equation (3.3) over [0,T ] with respect to the time
t, setting l→ ∞ in the resulting one and using the convergence (3.15) and (3.16), we obtain the desired
energy inequality (2.3) and the estimate

∥v(t)∥2 +
∫ t

0
∥∇v(t)∥2dt ≤ C(T ) < ∞, 0 ≤ t ≤ T. (3.19)

Step 3: Uniqueness of the solution when d = 2
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Let v, v∗ be any two solution to the problem (1.1). Then ω = v − v∗ satisfies

(∂tω,w)Ω + εaΩ(ω,w) + bΩ(v, ω,w) + bΩ(ω, v,w) − bΩ(ω,ω,w)

+
1
2

∫
Γ

|ω|2n · wdΓ −
∫
Γ

(ω · w)(n · w)dΓ

=

∫
Γ

k0ω · wdΓ,w ∈ V1, 0 ≤ t ≤ T,

ω(0) = 0.

(3.20)

Taking w = ω(t) in the system (3.20), one have

1
2

d
dt
∥ω(t)∥2 + ε∥∇ω(t)∥2

= − bΩ(ω(t), v(t), ω(t)) −
1
2

∫
Γ

|ω(t)|2n · v(t)dΓ

+

∫
Γ

(ω(t) · v(t))(n · ω(t))dΓ + k0

∫
Γ

|ω(t)|2dΓ.

(3.21)

By the inequalities (3.7) and (3.8) with d = 2, and using (3.19), the Holder inequality, the Young
inequality, and the trace inequality (1.7), we get

− bΩ(ω(t), v(t), ω(t))

≤|

∫
Ω

(ω(t) · ∇)v(t) · ω(t)dx|

≤∥∇v(t)∥∥ω(t)∥2L4(Ω)

≤C∥∇v(t)∥∥ω(t)∥H1(Ω)∥ω(t)∥

≤
ε

8
∥∇ω(t)∥2 +C∥ω(t)∥2 +C∥∇v(t)∥2∥ω(t)∥2,

(3.22)

−
1
2

∫
Γ

|ω(t)|2n · v(t)dΓ +
∫
Γ

(ω(t) · v(t))(n · ω(t))dΓ

≤C
∫
Γ

|ω(t)|2|v(t)|dΓ

≤C∥v(t)|Γ∥L3(Γ)∥ω(t)|Γ∥2L3(Γ)

≤C∥v(t)∥
2
3
H1(Ω)∥v(t)∥

1
3 ∥ω(t)∥

4
3
H1(Ω)∥ω(t)∥

2
3

≤
ε

8
∥∇ω(t)∥2 +C∥ω(t)∥2 +C∥v(t)∥2H1(Ω)∥v(t)∥∥ω(t)∥2

≤
ε

8
∥∇ω(t)∥2 +C(T )∥ω(t)∥2 +C(T )∥∇v(t)∥2∥ω(t)∥2

(3.23)

and

k0
∫
Γ
|ω(t)|2dΓ ≤ ε

8∥∇ω(t)∥2 +C∥ω(t)∥2. (3.24)
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Combining (3.21) with (3.22)–(3.24), we get

d
dt
∥ω(t)∥2 + ε∥∇ω(t)∥2 ≤ C∥ω(t)∥2 +C∥∇v(t)∥2∥ω(t)∥2. (3.25)

Using Gronwall’s inequality to (3.25), ω(0) = 0, and the inequality
∫ T

0 ∥∇v(t)∥2dt ≤ C(T ) < ∞ which
is given by (3.19), we obtain ω = 0 for 0 ≤ t ≤ T . This gives the uniqueness result on the global weak
solution in the case of d = 2.

The proof of Theorem 1 is complete.

The proof of Theorem 2

Based on the proof of Theorem 1, so as to get Theorem 2, we need establish the more regularity
estimates on the approximating solution vl(t) given by the system (3.1)-(3.2) when d = 2. To do this, we
choose the functions e j(x), j = 1, 2, · · · , to be the orthogonal basic function sequence of V1

⋂
H2(Ω)

and choose initial data vl
0(x) = vl(0) = vl(t = 0, x) satisfying

vl
0 → v0 strongly in V1

⋂
H2(Ω)

and

ε
∂vl

0

∂n
− k0vl

0 − g0(0) = ((ε
∂vl

0

∂n
− k0vl

0 − g0(0)) · n)n, x ∈ ∂Ω = T × {−1, 1}. (3.26)

Step 1: The estimate for the initial data ∥∂tvl(0)∥ uniformly on l.

We obtain one estimate for ∥∂tvl(0)∥ uniformly on l by using the trace theorem given by Proposition
1. By (3.2), using integration by parts, (3.26), the Holder’s inequality, and the trace property (1.10) in
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Proposition 1 thanking to the fact that div ∂tvl(0) = 0 due to (3.1) and e j ∈ V1, we get

∥∂tvl(0)∥2

=ε

∫
Ω

∆vl(0) · ∂tvl(0)dx − ε
∫
Γ

∂vl(0)
∂n

· ∂tvl(0)dΓ

− bΩ(vl(0), vl(0), ∂tvl(0)) +
1
2

∫
Γ

|vl(0)|2n · ∂tvl(0)dΓ

+

∫
Γ

(k0vl(0) + g0(0)) · ∂tvl(0)dΓ + ( f0(0), ∂tvl(0))Ω

=ε

∫
Ω

∆vl(0) · ∂tvl(0)dx − bΩ(vl(0), vl(0), ∂tvl(0))

−

∫
Γ

((ε
∂vl(0)
∂n

− k0vl(0) − g0(0)) · n)(n · ∂tvl(0))dΓ

+
1
2

∫
Γ

|vl(0)|2n · ∂tvl(0)dΓ + ( f0(0), ∂tvl(0))Ω

≤ε∥∆vl(0)∥∥∂tvl(0)∥ + ∥vl(0)∇vl(0)∥∥∂tvl(0)∥

+C∥(
∂vl(0)
∂n

, vl(0), g0(0))|Γ∥H 1
2 (Γ)
∥(n · ∂tvl(0))|Γ∥H− 1

2 (Γ)

+C∥|vl(0)|Γ|2∥H 1
2 (Γ)
∥(n · ∂tvl(0))|Γ∥H− 1

2 (Γ)
+ ∥ f0(0)∥∥∂tvl(0)∥

≤C∥∆vl(0)∥∥∂tvl(0)∥ +C∥vl(0)∥2H2(Ω)∥∂tvl(0)∥

+C(∥
∂vl(0)
∂n
∥H1(Ω) + ∥vl(0)∥H1(Ω) + ∥g0(0))∥H1(Ω))∥∂tvl(0)∥

+C∥vl(0)∥2H2(Ω)∥∂tvl(0)∥ + ∥ f0(0)∥∥∂tvl(0)∥

≤C(∥v0∥H2(Ω) + ∥v0∥
2
H2(Ω) + ∥g0(0)∥H1(Ω) + ∥ f0(0)∥)∥∂tvl(0)∥,

(3.27)

which gives

∥∂tvl(t)|t=0∥ ≤ C(∥v0∥H2(Ω) + ∥v0∥
2
H2(Ω) + ∥g0(0)∥H1(Ω) + ∥ f0(0)∥) ≤ C < ∞, (3.28)

which means that, by using (1.1)1 at t = 0,

∥∂tv|t=0∥ = ∥ε∆v0 − v0∇v0 − ∇p(t = 0) + f0(0)∥ ≤ C < ∞,

where the pressure function p(t = 0) = p0 = p(0, x) is solved by − ∆p0 = div (v0 · ∇v0 − f0(0)), x ∈ Ω,

p0 = ε
∂v0

∂n
· n −

1
2
|v0|

2 − k0v0 · n − g0(0) · n, x ∈ Γ = ∂Ω.
(3.29)

Thus, by comparing the condition (3.29)2 and the boundary condition (1.1)3, we know that the
compatibility condition (2.4) is necessary.
Step 2: L∞(0,T ; L2(Ω)) estimate for ∂tvl(t) and ∇vl(t).
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Differentiating the system (3.2) with respect to t, multiplying the resulting one by ∂tgl
j(t) and

summing from j = 1 to l, by noticing that

bΩ(vl, ∂tvl, ∂tvl) =
1
2

∫
Γ

|∂tvl|2n · vl(t)dΓ

due to div vl = 0, we get

1
2

d
dt
∥∂tvl(t)∥2 + ε∥∇∂tvl(t)∥2

= − bΩ(∂tvl, vl, ∂tvl) −
∫
Γ

[
1
2
|∂tvl|2n · vl(t) − (vl · ∂tvl(t))(n · ∂tvl(t))]dΓ

+

∫
Γ

(k0∂tvl(t) + ∂tg0(t)) · ∂tvl(t)dΓ + (∂t f0(t), ∂tvl(t))Ω, 0 ≤ t ≤ T.

(3.30)

Now we estimate each term in the right hand side of (3.30).
Using the inequality (3.7) with d = 2, with the help of the Holder’s inequality and the Young’s

inequality, we get

|bΩ(∂tvl, vl, ∂tvl)|
≤∥∇vl(t)∥∥∂tvl(t)∥2L4(Ω)

≤C∥∇vl(t)∥∥∂tvl(t)∥H1(Ω)∥∂tvl(t)∥

≤
ε

8
∥∇∂tvl(t)∥2 +C∥∂tvl(t)∥2 +C∥∇vl(t)∥2∥∂tvl(t)∥2.

(3.31)

Using the fact that n is one constant unit vector, the inequality (3.8) with d = 2 and the estimate (3.5),
with the help of the Holder’s inequality and the Young’s inequality, we get∫

Γ

[
1
2
|∂tvl|2|n · vl(t)| + |(vl · ∂tvl(t))(n · ∂tvl(t))|]dΓ

≤C(
∫
Γ

|∂tvl|3dΓ)
2
3 (
∫
Γ

|vl(t)|3dΓ)
1
3

≤C∥∂tvl(t)∥
4
3
H1(Ω)∥∂tvl(t)∥

2
3 ∥vl(t)∥

2
3
H1(Ω)∥v

l(t)∥
1
3

≤
ε

8
∥∇∂tvl(t)∥2 +

ε

8
∥∂tvl(t)∥2 +C∥∂tvl(t)∥2∥vl(t)∥2H1(Ω)∥v

l(t)∥

≤
ε

8
∥∇∂tvl(t)∥2 +C(T )∥∂tvl(t)∥2 +C(T )∥∇vl(t)∥2∥∂tvl(t)∥2.

(3.32)

Also, by the trace inequality (1.7), with the help of the Holder’s inequality and the Young’s inequality,
we get ∫

Γ

(k0∂tvl(t) + ∂tg0(t)) · ∂tvl(t)dΓ + (∂t f0(t), ∂tvl(t))Ω

≤
ε

8
∥∇∂tvl(t)∥2 +C∥∂tvl(t)∥2 +C∥∂tg0(t)∥2H1(Ω) +C∥∂t f0(t)∥2.

(3.33)
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Combining (3.30) and (3.31)–(3.33), we get

d
dt
∥∂tvl(t)∥2 + ε∥∇∂tvl(t)∥2

≤C(T )∥∂tvl(t)∥2 +C(T )∥∇vl(t)∥2∥∂tvl(t)∥2

+C∥∂tg0(t)∥2H1(Ω) +C∥∂t f0(t)∥2, 0 ≤ t ≤ T.

(3.34)

Using the estimate (3.5), with the help of Gronwall’s inequality, from (3.34), we get

∥∂tvl(t)∥2

≤eC(T )
∫ t

0 (1+∥∇vl(t)∥2)dt(∥∂tvl(0)∥2 +C
∫ t

0
(∥∂tg0(t)∥2H1(Ω) + ∥∂t f0(t)∥2)dt)

≤C(T ) < ∞, 0 ≤ t ≤ T.

(3.35)

Combining (3.34) and (3.35), we have

∥∂tvl(t)∥2 + ε
∫ t

0
∥∇∂tvl(t)∥2dt

≤C +C
∫ t

0
∥∂tg0(t)∥2H1(Ω)dt +

∫ t

0
∥∂t f0(t)∥2dt

≤C(T ) < ∞, 0 ≤ t ≤ T.

(3.36)

Hence, by (3.4), using (3.5), (3.36), the assumptions on f0(t) and g0(t), and the Holder’s inequality, we
get

∥∇vl(t)∥ ≤ C(T ) < ∞, 0 ≤ t ≤ T. (3.37)

Step 3: One L∞(0,T ; L2(Ω)) estimate for ∂x1v
l(t) and the boundary regularity estimate for vl(t) at

x2 = 0

In this case, we deal with the special domain Ω = T × [−1, 1], where T = R

2πZ . Thus, Γ = {x =
(x1, x2) ∈ R2|x1 ∈ T , x2 = −1, and x2 = 1}, dΓ = ds = dx1 on x ∈ Γ, n = {0, 1} in the line x2 = 1 and
n = {0,−1} in the line x2 = −1.

Denote Dhvl(t) = Dhvl(t, x) = vl(t,x1+h,x2)−vl(t,x1,x2)
h and

D−hDhvl(t, x) =
vl(t, x1 + h, x2) − 2vl(t, x1, x2) + vl(t, x1 − h, x2)

h2 .

Using (w,D−hDhw) = (Dhw,Dhw), Dh( f g) = hDh f Dhg + gDh f + f Dhg and noting that Dhn = 0 for
one constant vector n, we get

bΩ(vl, vl,D−hDhvl) −
1
2

∫
Γ

|vl|2n · D−hDhvmdΓ

=hbΩ(Dhvl,Dhvl,Dhvl) + bΩ(Dhvl, vl,Dhvl) + bΩ(vl,Dhvl,Dhvl)

−
1
2

∫
Γ

(h|Dhvl|2 + 2vl · Dhvl)n · DhvldΓ

=bΩ(Dhvl, vl,Dhvl) +
1
2

∫
Γ

|Dhvl|2(n · vl)dΓ −
∫
Γ

(vl · Dhvl)(n · Dhvl)dΓ.

(3.38)
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Taking w = D−hDhvl(t, x) in the equation (3.2) and using (w,D−hDhw(t, x)) = (Dhw,Dhw) and (3.38),
we get

1
2

d
dt
∥Dhvl(t)∥2 + ε∥∇Dhvl(t)∥2

= − bΩ(Dhvl(t), vl(t),Dhvl(t)) −
1
2

∫
Γ

|Dvul(t)|2(n · vl(t))dΓ

+

∫
Γ

(vl(t) · Dhvl(t))(n · Dhvl(t))dΓ

+

∫
Γ

(k0Dhvl(t) + Dhg0(t)) · Dhvl(t)dΓ + (Dh f0(t),Dhvl(t))Ω, 0 ≤ t ≤ T,

∥Dhvl(0)∥ ≤ ∥∂x1v0(x)∥ ≤ C < ∞, as h→ 0.

(3.39)

Because each term in the right hand side of (3.39) is completely similar to that of (3.30), as one deal
with each term in the right hand side of (3.30) in Step 2, by (3.39), with the help of (3.37) and the fact
that ∥Dhvl∥ ≤ C∥∂x1v

l∥ for small h, we can get

d
dt
∥Dhvl(t)∥2 + ε∥∇Dhvl(t)∥2

≤C(T )∥Dhvl(t)∥2 +C(T )∥∇vl(t)∥2∥Dhvl(t)∥2

+C∥Dhg0(t)∥2H1(Ω) +C∥Dh f0(t)∥2, 0 ≤ t ≤ T.

(3.40)

By (3.40) and using the estimate (3.19), the fact that ∥Dhw∥ ≤ C∥∂x1w∥, and the assumptions on f0(t)
and g0(t), with the help of Gronwall’s inequality, we have

∥Dhvl(t)∥2 + ε
∫ t

0
∥∇Dhvl(t)∥2dt ≤ C(T ) < ∞, 0 ≤ t ≤ T,

which gives

∥∂x1v
l(t)∥2 + ε

∫ t

0
∥∇∂x1v

l(t)∥2dt ≤ C(T ) < ∞, t ∈ [0,T ]. (3.41)

This means that ∂x1v
l(t, x) ∈ L2(0,T ; H1(Ω)). Using the trace’s theorem, we have

∂x1v
l(t)|Γ = ∂x1v

l(t, x1, x2 = ±1) ∈ L2(0,T ; H
1
2 (Γ)), i.e., vl(t)|Γ ∈ L2(0,T ; H

3
2 (Γ)) and

∥vl(t)|Γ∥L2(0,T ;H
3
2 (Γ))
≤ C(T ) < ∞. (3.42)

Also, it is easy to verify that vl(t) satisfies the following incompressible NS system in the weak sense
− ε∆vl + ∇pl = f0 − ∂tvl − vl · ∇vl, x ∈ Ω, t ∈ [0,T ],
div vl = 0, x ∈ Ω, t ∈ [0,T ],

vl = vl, x ∈ Γ, t ∈ [0,T ].
(3.43)

Applying Lemma 2 to (3.43), and using the Holder inequality and the Sobolev’s embedding inequality
H1(Ω) ↪→ L4(Ω), with the help of the Gagliardo-Nirenberg’s inequality ∥Dvl∥L4(Ω) ≤ C1∥vl∥

1
4 ∥D2vl∥

3
4 +
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C2∥vl∥ for some constants C1 > 0 and C2 > 0 (see [41]), we have

∥vl(t)∥H2(Ω) + ∥∇pl(t)∥L2(Ω)

≤C(∥( f0 − ∂tvl − vl · ∇vl)∥ + ∥vl(t)|Γ∥H 3
2 (Γ)

)

≤C(∥ f0(t)∥ + ∥∂tvl(t)∥ + ∥vl(t)∥L4(Ω)∥∇vl(t)∥L4(Ω) + ∥vl(t)|Γ∥H 3
2 (Γ)

)

≤C(∥ f0(t)∥ + ∥∂tvl(t)∥ + ∥vl(t)∥H1(Ω)∥vl(t)∥
1
4 ∥vl(t)∥

3
4
H2(Ω) + ∥v

l(t)|Γ∥H 3
2 (Γ)

).

(3.44)

Using f0(t) ∈ L2(0,T ; L2(Ω)) and the estimates (3.5), (3.36), (3.37), and (3.42), with the help of the
Young’s inequality, from (3.44) we obtain

∫ t

0
∥vl(t)∥2H2(Ω)dt

≤C
∫ t

0
(∥ f (t)∥2 + ∥∂tvl(t)∥2 + ∥vl(t)∥8H1(Ω)∥v

l(t)∥2)dt +C
∫ t

0
∥vl(t)|Γ∥2

H
3
2 (Γ)

dt

≤C(T ) < ∞, 0 ≤ t ≤ T.

(3.45)

Now, performing the limit l→ ∞ in (3.36), (3.37), and (3.45), we obtain the estimate (2.5).

Similarly, if the initial data is smooth and satisfies the more high compatibility conditions, the more
high regularity stated in Theorem 2 can also be established.

The proof of Theorem 2 is complete.

3.2. The proof of Theorem 3

We use so-called modified energy method. Firstly, it is easy to know that the strong solution to the
system (2.6) satisfies

(∂tv0(t),w)Ω + bΩ(v0(t), v0(t),w) −
1
2

∫
Γ

|v0(t)|2n · wdΓ

=

∫
Γ

(g0
0(t)n · wdΓ + ( f0(t),w)Ω,w ∈ V1, 0 ≤ t ≤ T, v0(0) = v0

0(x).
(3.46)

Now take w = v(t) − v0(t) ∈ V1 in (3.46), we have

(∂tv0(t), v(t) − v0(t))Ω + bΩ(v0(t), v0(t), v(t) − v0(t)) −
1
2

∫
Γ

|v0(t)|2n · (v(t) − v0(t))dΓ

=

∫
Γ

(g0
0(t)n · (v(t) − v0(t))dΓ + ( f0(t), v(t) − v0(t))Ω, 0 ≤ t ≤ T.

(3.47)
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Then, combining (2.1) with v = v(t) − v0(t) ∈ V1 and (3.47), by the direct computation, and noting that
g0(t) = −k0v0(t) + g0

0(t)n and the smoothness of v0(t), we get
1
2

d
dt

∫
Ω

|v(t) − v0(t)|2dx

=

∫
Ω

(∂tv(t) − ∂tv0(t)) · (v(t) − v0(t))dx

= − ε

∫
Ω1

∇v(t) · ∇(v(t) − v0(t))dx −
∫
Ω1

(v(t)∇v(t) − v0(t) · ∇v0(t)) · (v(t) − v0(t))dx

+
1
2

∫
Γ1

(|v(t)|2 − |v0(t)|2)n · (v(t) − v0(t))dΓ1

+

∫
Γ1

[k0(v(t) − v0(t)) · (v(t) − v0(t))dΓ1

= − ε

∫
Ω

|∇(v(t) − v0(t))|2dx − ε
∫
Ω

∇v0(t) · ∇(v(t) − v0(t))dx

−

∫
Ω

((v(t) − v0(t)) · ∇)v0(t) · (v(t) − v0(t))dx

+ k0

∫
Γ

|v(t) − v0(t)|2dΓ −
1
2

∫
Γ

|v(t) − v0(t)|2(v0(t) · n)dΓ

+

∫
Γ

((v(t) − v0(t)) · v0(t))((v(t) − v0(t)) · n)dΓ

≤ − ε

∫
Ω

|∇(v(t) − v0(t))|2dx − ε
∫
Ω

∇v0(t) · ∇(v(t) − v0(t))dx

−

∫
Ω

((v(t) − v0(t)) · ∇)v0(t) · (v(t) − v0(t))dx

+ (k0 +C(T ))
∫
Γ

|v(t) − v0(t)|2dΓ

(3.48)

for some C(T ) > 0. Thus, there exists a constant K = K(T ) > 0 such that k0 + C(T ) ≤ 0 for any
k0 ≤ −K and it holds, by using (3.48) and the Young’s inequality, that

1
2

d
dt

∫
Ω

|v(t) − v0(t)|2dx

≤ −
ε

2

∫
Ω

|∇(v(t) − v0(t))|2dx

+ ∥∇v0(t, x)∥L∞([0,T ]×Ω)

∫
Ω

|v(t) − v0(t)|2dx

+
ε

2

∫
Ω

|∇v0(t)|2dx

which yields to the desired convergence estimate∫
Ω

|v(t) − v0(t)|2dx ≤ C(T )
∫
Ω

|v0 − v0
0|

2dx +C(T )ε→ 0 as ε→ 0.

Here C(T ) > 0 is one constant depending upon v0(t).
The proof of Theorem 3 is complete.
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3.3. The proofs of Theorem 4 and Theorem 5

The proof of Theorem 4 are similar to that of Theorem 1 by constructing the following
approximating solution (vl, ϱl) of (v, ϱ) to the system (1.2):

vl(t) = vl(t, x) =
m∑

i=1

gl
i(t)ei(x), l = 1, 2, · · · ,

ϱl(t) = ϱl(t, x) =
l∑

i=1

ϱl
i(t)ϕi(x), l = 1, 2, · · · ,

where (gl
i, ϱ

l
i)(t), i = 1, · · · , l, satisfies the ODEs

(∂tvl(t), ei)Ω + εaΩ(vl(t), ei) + bΩ(vl(t), vl(t), ei) −
1
2

∫
Γ

|vl(t)|2n · eidΓ

=

∫
Γ

(k0vl(t) + g0(t)) · eidΓ + (ϱl(t)e + f0(t), ei)Ω, i = 1, 2, · · · , l, 0 ≤ t ≤ T,

(∂tϱ
l(t), ϕi)Ω + κaΩ(ϱl(t), ϕi) + bΩ(vl(t), ϱl(t), ϕi) −

1
2

∫
Γ

ϱl(t)vl(t) · nϕidΓ

=

∫
Γ

(k1ϱ
l(t) + g1(t))ϕidΓ + ( f0(t), ϕi)Ω, i = 1, 2, · · · , l, 0 ≤ t ≤ T,

vl(0) = vl
0(x) =

l∑
k=0

vk
0ek(x), v0(x) =

∞∑
k=0

vk
0ek(x) ∈ V1,

ϱl(0) = ϱl
0(x) =

l∑
k=0

ϱk
0ϕk(x)), ϱ0(x) =

∞∑
k=0

ϱk
0ϕk(x) ∈ H1(Ω),

and

−κ
∂ϱl(0)
∂n

+
1
2
ϱl(0)vl(0) · n + (k1ϱ

l(0) + g1(0)) = 0.

Here {ei}
∞
i=1 is chosen to be same as in the proof of Theorem 1 and {ϕi}

∞
i=1 is taken as an orthogonal

basic function sequence of the Hilbert space H1(Ω) with ∥ϕi∥ = 1.
Also the proof of Theorem 5 are similar to that of Theorem 2 by using the following fact that

∥∂tϱ
l(0)∥ = − κaΩ(ϱl(0), ∂tϱ

l(0)) − bΩ(vl(0), ϱl(0), ∂tϱ
l(0))

+
1
2

∫
Γ

ϱl(0)vl(0) · n∂tϱ
l(0)dΓ +

∫
Γ

(k1ϱ
l(0) + g1(0))∂tϱ

l(0)dΓ

=κ

∫
Ω

∆ϱl(0)∂tϱ
l(0)dx − bΩ(vl(0), ϱl(0), ∂tϱ

l(0))

+

∫
Γ

[−κ
∂ϱl(0)
∂n

+
1
2
ϱl(0)vl(0) · n + (k1ϱ

l(0) + g1(0))]∂tϱ
l(0)dΓ

=κ

∫
Ω

∆ϱl(0)∂tϱ
l(0)dx − bΩ(vl(0), ϱl(0), ∂tϱ

l(0))

≤C(∥ϱl(0)∥H2(Ω) + ∥vl(0)∥H1(Ω)∥ϱ
l(0)∥H2(Ω))∥∂tϱ

l(0)∥

due to another compatibility condition for ϱ0(x) on ∂Ω.
The details of the proofs of Theorem 4 and Theorem 5 are omitted.
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