

https://www.aimspress.com/journal/cam

Communications in Analysis and Mechanics, 17(2): 462–473.

DOI: 10.3934/cam.2025019 Received: 18 May 2024 Revised: 08 February 2025 Accepted: 15 April 2025

Published: 07 May 2025

Research article

Positive solutions for critical singular elliptic equations without Ambrosetti-Rabinowitz type conditions

Zhi-Yun Tang and Xianhua Tang*

School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, Hunan 410083, People's Republic of China

* Correspondence: Email: tangxh@mail.csu.edu.cn.

Abstract: We study the subcritical approximations to Li–Lin's open problem, proposed by Li and Lin (Arch Ration Mech Anal 203(3): 943-968, 2012). By applying the variational method, we obtain two positive solutions. We establish a nonexistence theorem for positive solutions. Finally, through the combination of the variational method and the sub-supersolution method, we find a global bifurcation phenomenon for positive solutions.

Keywords: Hardy-Sobolev critical exponents; positive solutions; mountain pass lemma; the least action principle; method of sub-supersolutions

Mathematics Subject Classification: 35D99, 35J15, 35J91

1. Introduction

Consider the Hardy-Sobolev's critical exponent problem

$$\begin{cases} -\Delta u = -\lambda |x|^{-s_1} |u|^{p-2} u + |x|^{-s_2} |u|^{q-2} u & \text{in } \Omega, \\ u(x) = 0 & \text{on } \partial \Omega, \end{cases}$$
(1.1)

where $\Omega \subset \mathbb{R}^N$, $N \ge 3$, $\lambda \in \mathbb{R}$, $0 \le s_1 < s_2 < 2$, $2^*(s) = \frac{2(N-s)}{N-2}$ for $0 \le s \le 2, 2 . We aim to study the existence of positive solutions of this problem when <math>q < 2^*(s_2)$.

In 1983, H. Brézis and L. Nirenberg [1] studied Problem (1.1) with Sobolev critical exponent where $s_1 = s_2 = 0$, p = 2, $q = 2^*(s_2) = 2^*(0) = \frac{2N}{N-2}$, and $\lambda \in (-\lambda_1, 0)$. Here, λ_1 is the first eigenvalue of $-\Delta$ with zero Dirichlet boundary condition. In 2000, N. Ghoussoub and C. Yuan [2] investigated the Hardy-Sobolev critical exponent problem where $0 \in \Omega$, $s_1 = 0$, $s_2 \neq 0$ and $\lambda < 0$. Instead of $0 \in \Omega$, N. Ghoussoub and X.S. Kang considered the Hardy-Sobolev critical exponent problem where $0 \in \partial \Omega$ in their work [3].

Then, in [4], Y. Li and C.-S. Lin studied Problem (1.1) with two Hardy-Sobolev critical exponents $(0 \in \partial\Omega, p = 2^*(s_1) < 2^*(s_2) = q, \lambda \in \mathbb{R})$ and posed an open question: Does the problem have a positive solution when $\lambda > 0$ and $p > q = 2^*(s_2)$? For convenience, we refer to the two-critical Li–Lin's open problem with $2^*(s_2) = q and the one-critical Li–Lin's open problem with <math>2^*(s_2) = q .$

Our motivation is to address the open question. For more details on recent progress see [5–10] and the references therein. Specially, in 2015, G. Cerami, X. Zhong and W. Zou [7] obtained some existence results of positive solutions by the perturbation approach and the monotonicity trick. The related results are the following two theorems.

Theorem 1. (see [7], Theorem 1.5) Suppose that $\Omega \subset \mathbb{R}^N$ is a C^1 bounded domain such that $0 \in \partial \Omega$. Assume that $\partial \Omega$ is C^2 at 0 and H(0) < 0. Let $0 \le s_1 < s_2 < 2$ and $2^*(s_2) . Then there exists <math>\lambda_0 > 0$ such that Problem (1.1) has a positive solution for all $\lambda \in (0, \lambda_0)$.

Theorem 2. (see [7], Theorem 1.6) Suppose that $\Omega \subset \mathbb{R}^N$ is a C^1 bounded domain such that $0 \in \partial \Omega$. Assume that $\partial \Omega$ is C^2 at 0 and H(0) < 0. Let $0 \le s_1 < s_2 < 2$ and $2^*(s_2) . Then, for almost every <math>\lambda > 0$, Problem (1.1) has a positive solution.

Recently, in [10], we presented the first nonexistence result for the two-critical case of Li–Lin's open problem employing proof by contradiction, along with the Hölder inequality, the Hardy inequality, and the Young inequality. Furthermore, we obtained a second existence result for the Li–Lin's open problem with $2^*(s_1) \ge p > q = 2^*(s_2)$ based on Theorem 2. The main theorems are as follows.

Theorem 3. (see [10], Theorem 1.1) Suppose that $\Omega \subset \mathbb{R}^N$ is a domain. Assume that $0 \le s_1 < s_2 < 2$, $p = 2^*(s_1)$ and $q = 2^*(s_2)$. Then there exists $\lambda_1 > 0$ such that Problem (1.1) has no nonzero solution for all $\lambda > \lambda_1$.

Theorem 4. (see [10], Theorem 1.4) Suppose that $\Omega \subset \mathbb{R}^N$ is a C^1 bounded domain such that $0 \in \partial \Omega$. Assume that $\partial \Omega$ is C^2 at 0 and H(0) < 0. Let $0 \le s_1 < s_2 < 2$, $q = 2^*(s_2)$, $2^*(s_1) - \frac{N(s_2 - s_1)}{(N - 2)(N + 1 - s_2)} and <math>2^*(s_1) - \frac{s_2 - s_1}{N - 2} \le p$. Let $\lambda_* = \sup\{\lambda \in \mathbb{R} \mid Problem$ (1.1) has a positive solution $\}$. Then $\lambda_* > 0$ and Problem (1.1) has at least a positive solution for all $\lambda \in (0, \lambda_*)$.

Clearly, the present results only deal with special cases of Li–Lin's open problem and are far from giving a full solution. The main difficulty of this problem is that it's impossible to obtain the boundedness of the (*PS*) sequences for the energy functional.

A natural question is: What will happen if we exchange the critical property of p and q in the one-critical Li–Lin's open problem, that is, $p = 2^*(s_1), 2 < q < 2^*(s_2)$? This question is the same as replacing $q = 2^*(s_2)$ with $q < 2^*(s_2)$ in the two-critical Li–Lin's open problem. In fact, obtaining the boundedness of the (PS) sequences for the energy functional is still a challenge. However, we have proved a new inequality to overcome this difficulty.

In this paper, we study more general questions, that is, $2 , <math>2 < q < 2^*(s_2)$. It is noteworthy that for small λ , we can obtain two positive solutions, while for large λ , there are no positive solutions. The main results are the following theorems.

Theorem 1.1. Assume that $\Omega \subset \mathbb{R}^N$ is a bounded domain with $0 \in \partial \Omega$, $\lambda > 0$, $0 \le s_1 < s_2 < 2$, $2 and <math>2 < q < \frac{2-s_2}{2-s_1}p + \frac{2s_2-2s_1}{2-s_1}$. Then there exists $\lambda_0 > 0$ such that Problem (1.1) has at least two positive solutions for all $\lambda \in (0, \lambda_0)$.

Corollary 1.2. Assume that $\Omega \subset \mathbb{R}^N$ is a bounded domain with $0 \in \partial \Omega$, $\lambda > 0, 0 \le s_1 < s_2 < 2$, $p = 2^*(s_1)$ and $2 < q < 2^*(s_2)$. Then there exists $\lambda_0 > 0$ such that Problem (1.1) has at least two positive solutions for all $\lambda \in (0, \lambda_0)$.

Theorem 1.3. Suppose that $\Omega \subset \mathbb{R}^N$ is a bounded domain with $0 \in \partial \Omega$, $\lambda > 0$, $0 \le s_1 < s_2 < 2$, $2 and <math>2 < q < \frac{N+2-2s_2}{N+2-2s_1}p + \frac{2s_2-2s_1}{N+2-2s_1}$. Then there exists $\lambda_* > 0$ such that Problem (1.1) has no positive solution for all $\lambda > \lambda_*$, and has at least one positive solution for all $\lambda \in (0, \lambda_*]$.

Corollary 1.4. Suppose that $\Omega \subset \mathbb{R}^N$ is a bounded domain with $0 \in \partial \Omega$, $\lambda > 0$, $0 \le s_1 < s_2 < 2$, $p = 2^*(s_1)$ and $2 < q < 2^*(s_2)$. Then there exists $\lambda_* > 0$ such that Problem (1.1) has no positive solution for all $\lambda > \lambda_*$, and has at least one positive solution for all $\lambda \in (0, \lambda_*]$.

Remark 1.5. This question is related to the subcritical approximations of the two-critical Li–Lin's open problem.

Remark 1.6. Theorem 1.3 represents a global bifurcation for positive solutions. Moreover, its proof is carried out using the variational method combined with the method of sub-supersolutions.

2. Preliminaries

We introduce the work space

$$E = H_0^1(\Omega)$$

with scalar product and norm given by

$$(u, v) = \int_{\Omega} \nabla u \cdot \nabla v dx$$
 and $||u|| = (u, u)^{\frac{1}{2}}$.

It is well-known that the solutions of problem (1.1) are precisely the critical points of the energy functional $I_{\lambda}: H_0^1(\Omega) \to \mathbb{R}$ defined by

$$I_{\lambda}(u) = \frac{1}{2}||u||^2 + \frac{\lambda}{p}\int_{\Omega}|x|^{-s_1}|u|^pdx - \frac{1}{q}\int_{\Omega}|x|^{-s_2}|u|^qdx.$$

It is easy to see that I_{λ} is well-defined and $I_{\lambda} \in C^1(H_0^1(\Omega), \mathbb{R})$. Then, for any $u, v \in H_0^1(\Omega)$,

$$\langle I_{\lambda}'(u), v \rangle \stackrel{\triangle}{=} \lim_{t \to 0} \frac{1}{t} [I_{\lambda}(u+tv) - I_{\lambda}(u)] = (u,v) + \lambda \int_{\Omega} |x|^{-s_1} |u|^{p-2} uv dx - \int_{\Omega} |x|^{-s_2} |u|^{q-2} uv dx$$

where $I'_{\lambda}(u)$ is the Gâteaux derivative of $I_{\lambda}(u)$.

Proposition 2.1. Suppose that $\Omega \subset \mathbb{R}^N$ is a bounded domain with $0 \in \partial \Omega$, $0 \le s_1 < s_2 < 2$, $2 and <math>2 < q < \frac{2-s_2}{2-s_1}p + \frac{2s_2-2s_1}{2-s_1}$. Then there exist three positive constants $\gamma_1, \gamma_2, \gamma_3$ with $\gamma_1 + \gamma_2 + \gamma_3 = 1$ such that

$$\int_{\Omega} |x|^{-s_2} |u|^q dx \le \left(\int_{\Omega} |x|^{-s_1} |u|^p dx \right)^{\gamma_1} \left(\int_{\Omega} |x|^{-2} |u|^2 dx \right)^{\gamma_2} |\Omega|^{\gamma_3}$$

for every $u \in H_0^1(\Omega)$.

Proof Let

$$\gamma_1 = \frac{2(q - s_2)}{2(p - s_1)},$$

$$\gamma_2 = \frac{ps_2 - qs_1}{2(p - s_1)},$$

$$\gamma_3 = \frac{(2 - s_2)p - (2 - s_1)q + 2(s_2 - s_1)}{2(p - s_1)}.$$

Then we have $\gamma_1, \gamma_2, \gamma_3 > 0$ and

$$p\gamma_1 + 2\gamma_2 = q,$$

 $s_1\gamma_1 + 2\gamma_2 = s_2,$
 $\gamma_1 + \gamma_2 + \gamma_3 = 1.$

It follows from the Hölder inequality that

$$\int_{\Omega} |x|^{-s_2} |u|^q dx = \int_{\Omega} |x|^{-s_1 \gamma_1} |u|^{p \gamma_1} \cdot |x|^{-2 \gamma_2} |u|^{2 \gamma_2} \cdot 1 dx
\leq \left(\int_{\Omega} |x|^{-s_1} |u|^p dx \right)^{\gamma_1} \left(\int_{\Omega} |x|^{-2} |u|^2 dx \right)^{\gamma_2} |\Omega|^{\gamma_3}$$

for every $u \in H_0^1(\Omega)$. This completes the proof of the proposition.

Lemma 2.2. Suppose that $\Omega \subset \mathbb{R}^N$ is a bounded domain with $0 \in \partial \Omega$, $\lambda > 0$, $0 \le s_1 < s_2 < 2$, $2 and <math>2 < q < \frac{2-s_2}{2-s_1}p + \frac{2s_2-2s_1}{2-s_1}$. Then there exists $\lambda_1 > 0$ such that Problem (1.1) has no nonzero solution for every $\lambda > \lambda_1$.

Proof Suppose that u is a nonzero solution of Problem (1.1). Then one has $I'_{\lambda}(u) = 0$. Hence, $\langle I'_{\lambda}(u), u \rangle = 0$, that is,

$$\int_{\Omega} |\nabla u|^2 dx + \lambda \int_{\Omega} |x|^{-s_1} |u|^p dx = \int_{\Omega} |x|^{-s_2} |u|^q dx, \tag{2.1}$$

which implies that

$$\int_{\Omega} |\nabla u|^2 dx \leq \int_{\Omega} |\nabla u|^2 dx + \lambda \int_{\Omega} |x|^{-s_1} |u|^p dx$$

$$= \int_{\Omega} |x|^{-s_2} |u|^q dx$$

$$\leq C \left(\int_{\Omega} |\nabla u|^2 dx \right)^{\frac{q}{2}}$$

for some constant C > 0 according to the Hardy-Sobolev inequality. It follows that

$$1 \le C^{\frac{2}{q-2}} \int_{\Omega} |\nabla u|^2 dx.$$

By Proposition 2.1 and the Hardy inequality (see [11], Theorem 4.1), we have

$$\int_{\Omega} |x|^{-s_2} |u|^q dx \leq \left(\int_{\Omega} |x|^{-s_1} |u|^p dx \right)^{\gamma_1} \left(\int_{\Omega} |x|^{-2} |u|^2 dx \right)^{\gamma_2} |\Omega|^{\gamma_3}$$

$$\leq \left(\int_{\Omega} |x|^{-s_{1}} |u|^{p} dx\right)^{\gamma_{1}} \left(C_{N} \int_{\Omega} |\nabla u|^{2} dx\right)^{\gamma_{2}} |\Omega|^{\gamma_{3}} \\
\leq \left(\int_{\Omega} |x|^{-s_{1}} |u|^{p} dx\right)^{\gamma_{1}} \left(C_{N} \int_{\Omega} |\nabla u|^{2} dx\right)^{\gamma_{2}} |\Omega|^{\gamma_{3}} C^{\frac{2\gamma_{3}}{q-2}} \left(\int_{\Omega} |\nabla u|^{2} dx\right)^{\gamma_{3}} \\
= \left((C_{N}^{\gamma_{2}} |\Omega|^{\gamma_{3}} C^{\frac{2\gamma_{3}}{q-2}})^{\frac{1}{\gamma_{1}}} \int_{\Omega} |x|^{-s_{1}} |u|^{p} dx\right)^{\gamma_{1}} \left(\int_{\Omega} |\nabla u|^{2} dx\right)^{\gamma_{2}+\gamma_{3}},$$

where $C_N = \left(\frac{2}{N-2}\right)^2$. It follows from the Young inequality that

$$\int_{\Omega} |\nabla u|^{2} dx + \lambda \int_{\Omega} |x|^{-s_{1}} |u|^{p} dx = \int_{\Omega} |x|^{-s_{2}} |u|^{q} dx
\leq \gamma_{1} (C_{N}^{\gamma_{2}} |\Omega|^{\gamma_{3}} C^{\frac{2\gamma_{3}}{q-2}})^{\frac{1}{\gamma_{1}}} \int_{\Omega} |x|^{-s_{1}} |u|^{p} dx
+ (\gamma_{2} + \gamma_{3}) \int_{\Omega} |\nabla u|^{2} dx
\leq \gamma_{1} (C_{N}^{\gamma_{2}} |\Omega|^{\gamma_{3}} C^{\frac{2\gamma_{3}}{q-2}})^{\frac{1}{\gamma_{1}}} \int_{\Omega} |x|^{-s_{1}} |u|^{p} dx
+ \int_{\Omega} |\nabla u|^{2} dx,$$

which implies that

$$\lambda \leq \gamma_1 (C_N^{\gamma_2} |\Omega|^{\gamma_3} C^{\frac{2\gamma_3}{q-2}})^{\frac{1}{\gamma_1}}$$

by (2.1). Let $\lambda_1 = \gamma_1 (C_N^{\gamma_2} |\Omega|^{\gamma_3} C^{\frac{2\gamma_3}{q-2}})^{\frac{1}{\gamma_1}}$, then Problem (1.1) has no nonzero solution for every $\lambda > \lambda_1$. \square

Lemma 2.3. Suppose that $\Omega \subset \mathbb{R}^N$ is a bounded domain with $0 \in \partial \Omega$, $0 \le s_1 < s_2 < 2$, $2 and <math>2 < q < \frac{2-s_2}{2-s_1}p + \frac{2s_2-2s_1}{2-s_1}$. Then the functional I_{λ} is coercive, i.e., $I_{\lambda}(u) \to +\infty$ as $||u|| \to \infty$. Moreover, the functional I_{λ} satisfies the $(PS)_c$ condition for every $c \in \mathbb{R}$. Specifically, if $I_{\lambda}(u_n) \to c$ and $I'_{\lambda}(u_n) \to 0$ as $n \to \infty$, then $\{u_n\}$ has a convergent subsequence.

Proof By Proposition 2.1, the Hardy inequality and the Young inequality, we have

$$\int_{\Omega} |x|^{-s_{2}} |u|^{q} dx \leq \left(\int_{\Omega} |x|^{-s_{1}} |u|^{p} dx \right)^{\gamma_{1}} \left(\int_{\Omega} |x|^{-2} |u|^{2} dx \right)^{\gamma_{2}} |\Omega|^{\gamma_{3}} \\
\leq \left(\int_{\Omega} |x|^{-s_{1}} |u|^{p} dx \right)^{\gamma_{1}} \left(C_{N} \int_{\Omega} |\nabla u|^{2} dx \right)^{\gamma_{2}} |\Omega|^{\gamma_{3}} \\
= \left(p^{-1} \lambda \int_{\Omega} |x|^{-s_{1}} |u|^{p} dx \right)^{\gamma_{1}} \left(A \int_{\Omega} |\nabla u|^{2} dx \right)^{\gamma_{2}} \\
= \left(p^{-1} \lambda \int_{\Omega} |x|^{-s_{1}} |u|^{p} dx \right)^{\gamma_{1}} \left\{ \left(A \int_{\Omega} |\nabla u|^{2} dx \right)^{\frac{\gamma_{2}}{1-\gamma_{1}}} \right\}^{1-\gamma_{1}} \\
\leq \gamma_{1} p^{-1} \lambda \int_{\Omega} |x|^{-s_{1}} |u|^{p} dx + (1-\gamma_{1}) A^{\frac{\gamma_{2}}{1-\gamma_{1}}} \left(\int_{\Omega} |\nabla u|^{2} dx \right)^{\frac{\gamma_{2}}{1-\gamma_{1}}}$$

$$\leq p^{-1}\lambda \int_{\Omega} |x|^{-s_1}|u|^p dx + A^{\frac{\gamma_2}{1-\gamma_1}} \left(\int_{\Omega} |\nabla u|^2 dx\right)^{\frac{\gamma_2}{1-\gamma_1}},$$

where $C_N = \left(\frac{2}{N-2}\right)^2$ and $A = C_N(p\lambda^{-1})^{\frac{\gamma_1}{\gamma_2}} |\Omega|^{\frac{\gamma_3}{\gamma_2}}$. It follows that

$$I_{\lambda}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^{2} dx + \frac{\lambda}{p} \int_{\Omega} |x|^{-s_{1}} |u|^{p} dx - \frac{1}{q} \int_{\Omega} |x|^{-s_{2}} |u|^{q} dx$$

$$\geq \frac{1}{2} \int_{\Omega} |\nabla u|^{2} dx - A^{\frac{\gamma_{2}}{1-\gamma_{1}}} \left(\int_{\Omega} |\nabla u|^{2} dx \right)^{\frac{\gamma_{2}}{1-\gamma_{1}}}$$

on $H_0^1(\Omega)$, which implies that the functional I_{λ} is coercive due to $0 < \frac{\gamma_2}{1-\gamma_1} < 1$.

Suppose that $\{u_n\}$ is a $(PS)_c$ sequence for some $c \in \mathbb{R}^N$, that is, $I_{\lambda}(u_n) \to c$ and $I'_{\lambda}(u_n) \to 0$. Then $\{u_n\}$ is bounded in $H_0^1(\Omega)$ by the coercivity of I_{λ} . Up to a subsequence, there is $u_0 \in H_0^1(\Omega)$ such that, as $n \to \infty$,

$$u_n \to u_0$$
 in $H_0^1(\Omega)$,
 $u_n \to u_0$ in $L^q(\Omega; |x|^{-s_2})$ for $q \in [2, 2^*(s_2))$,
 $u_n(x) \to u_0(x)$ a.e. in Ω .

By the definition of I'_{λ} we have

$$\langle I'_{\lambda}(u_{n}) - I'_{\lambda}(u_{0}), u_{n} - u_{0} \rangle = (u_{n} - u_{0}, u_{n} - u_{0})$$

$$+ \lambda \int_{\Omega} |x|^{-s_{1}} (|u_{n}|^{p-2}u_{n} - |u_{0}|^{p-2}u_{0})(u_{n} - u_{0}) dx$$

$$- \int_{\Omega} |x|^{-s_{2}} (|u_{n}|^{q-2}u_{n} - |u_{0}|^{q-2}u_{0})(u_{n} - u_{0}) dx$$

$$\geq ||u_{n} - u_{0}||^{2} - \int_{\Omega} |x|^{-s_{2}} (|u_{n}|^{q-2}u_{n} - |u_{0}|^{q-2}u_{0})(u_{n} - u_{0}) dx,$$

which implies that $u_n \to u_0$ in $H_0^1(\Omega)$ as $n \to \infty$ by

$$\begin{split} |\langle I_{\lambda}'(u_{n}) - I_{\lambda}'(u_{0}), \ u_{n} - u_{0} \rangle| & \leq \quad ||I_{\lambda}'(u_{n})|| ||u_{n} - u_{0}|| + |\langle I_{\lambda}'(u_{0}), \ u_{n} - u_{0} \rangle| \\ & \leq \quad C_{1} ||I_{\lambda}'(u_{n})|| + |\langle I_{\lambda}'(u_{0}), \ u_{n} - u_{0} \rangle| \\ & \rightarrow \quad 0 \end{split}$$

and

$$\left| \int_{\Omega} |x|^{-s_{2}} (|u_{n}|^{q-2}u_{n} - |u_{0}|^{q-2}u_{0})(u_{n} - u_{0})dx \right|$$

$$\leq \int_{\Omega} |x|^{-s_{2}} (|u_{n}|^{q-1} + |u_{0}|^{q-1})|u_{n} - u_{0}|dx$$

$$\leq \int_{\Omega} |x|^{-s_{2}} |u_{n}|^{q-1}|u_{n} - u_{0}|dx + \int_{\Omega} |x|^{-s_{2}} |u_{0}|^{q-1}|u_{n} - u_{0}|dx$$

$$\leq \left(\int_{\Omega} |x|^{-s_{2}} |u_{n}|^{q} dx \right)^{\frac{q-1}{q}} \left(\int_{\Omega} |x|^{-s_{2}} |u_{n} - u_{0}|^{q} dx \right)^{\frac{1}{q}}$$

$$+ \left(\int_{\Omega} |x|^{-s_2} |u_0|^q dx \right)^{\frac{q-1}{q}} \left(\int_{\Omega} |x|^{-s_2} |u_n - u_0|^q dx \right)^{\frac{1}{q}}$$

$$\leq C_2 \left(\int_{\Omega} |x|^{-s_2} |u_n - u_0|^q dx \right)^{\frac{1}{q}}$$

$$\to 0,$$

where C_1 and C_2 are some positive constants.

3. Proof of Theorems 1.1 and 1.3

3.1. Proof of Theorem 1.1

Proof At the beginning, we define

$$\lambda_0 \stackrel{\triangle}{=} \sup_{u\neq 0} \left\{ \frac{-\frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{1}{q} \int_{\Omega} |x|^{-s_2} |u|^q dx}{\frac{1}{p} \int_{\Omega} |x|^{-s_1} |u|^p dx} \right\}.$$

Our goal is to prove that $0 < \lambda_0 < +\infty$. We choose $u_0 \in H_0^1(\Omega) \setminus \{0\}$. Since q > 2, there exists $t_0 > 0$ such that

$$-\frac{1}{2}\int_{\Omega} |\nabla(t_0 u_0)|^2 dx + \frac{1}{q}\int_{\Omega} |x|^{-s_2} |t_0 u_0|^q dx > 0.$$

According to the definition of λ_0 , one has $\lambda_0 > 0$.

Now we prove $\lambda_0 < +\infty$. On the one hand, by the Hardy-Sobolev inequality, since 2 < q, there is a positive constant r_0 such that

$$\frac{-\frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{1}{q} \int_{\Omega} |x|^{-s_2} |u|^q dx}{\frac{1}{p} \int_{\Omega} |x|^{-s_1} |u|^p dx} \le 0$$

for all $u \in H_0^1(\Omega) \setminus \{0\}$ with $||u|| \le r_0$. On the other hand, for $||u|| > r_0$, we have

$$\int_{\Omega} |x|^{-s_{2}} |u|^{q} dx \leq \left(\int_{\Omega} |x|^{-s_{1}} |u|^{p} dx \right)^{\gamma_{1}} \left(\int_{\Omega} |x|^{-2} |u|^{2} dx \right)^{\gamma_{2}} |\Omega|^{\gamma_{3}} \\
\leq \left(\int_{\Omega} |x|^{-s_{1}} |u|^{p} dx \right)^{\gamma_{1}} \left(C_{N} \int_{\Omega} |\nabla u|^{2} dx \right)^{\gamma_{2}} |\Omega|^{\gamma_{3}} \\
\leq \left(\int_{\Omega} |x|^{-s_{1}} |u|^{p} dx \right)^{\gamma_{1}} \left(C_{N} \int_{\Omega} |\nabla u|^{2} dx \right)^{\gamma_{2}} |\Omega|^{\gamma_{3}} r_{0}^{-2\gamma_{3}} \left(\int_{\Omega} |\nabla u|^{2} dx \right)^{\gamma_{3}} \\
= \left((C_{N}^{\gamma_{2}} |\Omega|^{\gamma_{3}} r_{0}^{-2\gamma_{3}})^{\frac{1}{\gamma_{1}}} \int_{\Omega} |x|^{-s_{1}} |u|^{p} dx \right)^{\gamma_{1}} \left(\int_{\Omega} |\nabla u|^{2} dx \right)^{\gamma_{2} + \gamma_{3}}$$

by Proposition 2.1 and the Hardy inequality. Moreover, it follows from the Young inequality that

$$-\frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{1}{q} \int_{\Omega} |x|^{-s_2} |u|^q dx \leq \gamma_1 (C_N^{\gamma_2} |\Omega|^{\gamma_3} r_0^{-2\gamma_3})^{\frac{1}{\gamma_1}} \int_{\Omega} |x|^{-s_1} |u|^p dx$$

$$+ \left(\frac{\gamma_2 + \gamma_3}{q} - \frac{1}{2}\right) \int_{\Omega} |\nabla u|^2 dx$$

$$\leq \gamma_1 (C_N^{\gamma_2} |\Omega|^{\gamma_3} r_0^{-2\gamma_3})^{\frac{1}{\gamma_1}} \int_{\Omega} |x|^{-s_1} |u|^p dx.$$

Therefore,

$$\frac{-\frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{1}{q} \int_{\Omega} |x|^{-s_2} |u|^q dx}{\frac{1}{q} \int_{\Omega} |x|^{-s_1} |u|^p dx} \leq p \gamma_1 (C_N^{\gamma_2} |\Omega|^{\gamma_3} C^{\frac{2\gamma_3}{q-2}})^{\frac{1}{\gamma_1}}$$

for $||u|| > r_0$. By the definition of λ_0 , we can see that $\lambda_0 < +\infty$.

In conclusion, we have $0 < \lambda_0 < +\infty$.

Next, we define

$$m_{\lambda} \stackrel{\triangle}{=} \inf\{I_{\lambda}(u) \mid u \in H_0^1(\Omega)\}$$

and want to prove that $-\infty < m_{\lambda} < 0$ for every $\lambda \in (0, \lambda_0)$. By the definition of λ_0 , there exists $u_{\lambda} \in H_0^1(\Omega) \setminus \{0\}$ such that

$$\lambda < \frac{-\frac{1}{2} \int_{\Omega} |\nabla u_{\lambda}|^2 dx + \frac{1}{q} \int_{\Omega} |x|^{-s_2} |u_{\lambda}|^q dx}{\frac{1}{p} \int_{\Omega} |x|^{-s_1} |u_{\lambda}|^p dx},$$

which implies that

$$I_{\lambda}(u_{\lambda}) = \frac{1}{2} \int_{\Omega} |\nabla u_{\lambda}|^2 dx + \frac{\lambda}{p} \int_{\Omega} |x|^{-s_1} |u_{\lambda}|^p dx - \frac{1}{q} \int_{\Omega} |x|^{-s_2} |u_{\lambda}|^q dx < 0.$$

Thus, $m_{\lambda} < 0$. Furthermore, it follows from Lemma 2.3 and the boundedness of functional I_{λ} that $m_{\lambda} > -\infty$. Therefore, we have proven that $-\infty < m_{\lambda} < 0$.

Now we prove the existence of a positive solution, which is the local minimum point of the functional I_{λ} . Note that the functional I_{λ} is weakly lower semi-continuous since

$$I_1(u) \stackrel{\triangle}{=} \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{\lambda}{p} \int_{\Omega} |x|^{-s_1} |u|^p dx$$

is convex and continuous, and

$$I_2(u) \stackrel{\triangle}{=} -\frac{1}{q} \int_{\Omega} |x|^{-s_2} |u|^q dx$$

is weakly continuous. By the least action principle (see Theorem 1.1 in [12]), I_{λ} has a minimum point w_{λ} such that $I_{\lambda}(w_{\lambda}) = m_{\lambda}$. Due to $m_{\lambda} < 0$, one has $w_{\lambda} \neq 0$. Since $I_{\lambda}(|w_{\lambda}|) = I_{\lambda}(w_{\lambda}) = m_{\lambda}$, we may assume that $w_{\lambda} \geq 0$. Hence, w_{λ} is a nonzero nonnegative solution of Problem (1.1). It follows from the strong maximum principle (see [13]) that w_{λ} is a positive solution of Problem (1.1).

Finally, we consider another positive solution which is the mountain pass point of the functional I_{λ} . By the Hardy-Sobolev inequality, we have

$$\int_{\Omega} |x|^{-s_2} |u|^q dx \le C||u||^q$$

for all $u \in H_0^1(\Omega)$ and some constant C > 0. It follows that

$$I_{\lambda}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^{2} dx + \frac{\lambda}{p} \int_{\Omega} |x|^{-s_{1}} |u|^{p} dx - \frac{1}{q} \int_{\Omega} |x|^{-s_{2}} |u|^{q} dx$$

$$\geq \frac{1}{2} ||u||^{2} - C||u||^{q}$$

on $H_0^1(\Omega)$, which implies that $I_{\lambda}(u) \geq \frac{1}{4}\rho^2$ for $||u|| = \rho$ with $0 < \rho < \min\{||w_{\lambda}||, (4C)^{-\frac{1}{q-2}}\}$. Note that $I_{\lambda}(w_{\lambda}) = m_{\lambda} < 0$. Hence, the functional I_{λ} has a mountain pass geometry structure. Then we define the minimax value

$$c_{\lambda} := \inf_{\gamma \in \Gamma_{\lambda}} \max_{t \in [0,1]} I_{\lambda}(\gamma(t)),$$

where

$$\Gamma_{\lambda} := \left\{ \gamma \in C([0, 1], H_0^1(\Omega)) : \gamma(0) = 0 \text{ and } \gamma(1) = w_{\lambda} \right\}.$$

According to Lemma 2.3 and the mountain pass lemma (see [14]), I_{λ} has a mountain pass point v_{λ} such that $I_{\lambda}(v_{\lambda}) = c_{\lambda}$. Since $c_{\lambda} > 0$, we know that $v_{\lambda} \neq 0$. Also, because $I_{\lambda}(|v_{\lambda}|) = I_{\lambda}(v_{\lambda}) = c_{\lambda}$, we can assume that $v_{\lambda} \geq 0$. Consequently, v_{λ} is a nonzero nonnegative solution of Problem (1.1). By the strong maximum principle, v_{λ} is a positive solution of Problem (1.1). Moreover, since $I_{\lambda}(v_{\lambda}) = c_{\lambda} > 0 > m_{\lambda} = I_{\lambda}(w_{\lambda})$, we have $v_{\lambda} \neq w_{\lambda}$.

In conclusion, for all $\lambda \in (0, \lambda_0)$, Problem (1.1) has at least two positive solutions v_{λ} and w_{λ} .

3.2. Proof of Theorem 1.3

In this subsection, we will prove Theorem 1.3 using the method of sub-supersolutions and the variational method. Now, we recall the sub-supersolution method in [15].

Definition 3.1. (see [15], P2430, Definition 1.1) A function u is an L^1 -solution of

$$\begin{cases}
-\Delta u = f(x, u) & \text{in } \Omega, \\
u(x) = 0 & \text{on } \partial\Omega,
\end{cases}$$
(3.1)

where $\Omega \subset \mathbb{R}^N$ is a smooth bounded domain and $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function, if

- (*i*) $u \in L^1(\Omega)$;
- (ii) $f(\cdot, u)\rho_0 \in L^1(\Omega)$;

(iii)

$$-\int_{\Omega} u\Delta\varphi dx = \int_{\Omega} f(x,u)\varphi dx \ \forall \varphi \in C_0^2(\overline{\Omega}). \tag{3.2}$$

Here, $\rho_0(x) = d(x, \partial\Omega)$, $\forall x \in \Omega$, and $C_0^2(\overline{\Omega}) = \{ \varphi \in C^2(\overline{\Omega}) ; \varphi = 0 \text{ on } \partial\Omega \}.$

We also consider L^1 -subsolutions and L^1 -supersolutions in analogy with this definition. For instance, u is an L^1 -subsolution of Problem (3.1) if u satisfies (i)-(iii) with " \leq " instead of "=" in (3.2). We will systematically omit the term " L^1 " and simply say that u is a solution of Problem (3.1), which means that u satisfies (3.2); a similar convention applies to subsolutions and supersolutions.

Lemma 3.2. (see [15], P2436, Corollary 5.3) Let $v_1, v_2 \in L^1(\Omega)$ be a sub and a supersolution of Problem (3.1), respectively. Assume that $v_1 \le v_2$ a.e. and

$$f(\cdot, v) \in L^{\frac{2N}{N+2}}(\Omega)$$
 for every $v \in L^1(\Omega)$ such that $v_1 \le v \le v_2$ a.e. (3.3)

Then, Problem (3.1) has a solution $u \in H_0^1(\Omega)$ such that $v_1 \le u \le v_2$ a.e.

Proof of Theorem 1.3 We define

 $\lambda_* = \sup\{\lambda \in \mathbb{R} \mid \text{Problem } (1.1) \text{ has a positive solution}\}.$

From Theorem 1.1 and Lemma 2.2, we obtain $\lambda_* \in (0, +\infty)$. Hence, Problem (1.1) has no positive solution for all $\lambda > \lambda_*$.

By the definition of λ_* , for every $\lambda \in (0, \lambda_*)$, there exists $\mu \in (\lambda, \lambda_*)$ such that Problem (1.1) with $\lambda = \mu$ has a positive solution u_{μ} .

Let
$$v_1 = u_{\mu}$$
, $v_2(x) \stackrel{\triangle}{=} M|x|^{-\alpha}$, $\alpha \stackrel{\triangle}{=} \frac{s_2 - s_1}{p - q}$ and

$$M \stackrel{\triangle}{=} \max \left\{ \lambda^{-\frac{1}{p-q}}, \|u_{\mu}\|_{\infty} \sup \left\{ |x|^{\alpha} \middle| x \in \overline{\Omega} \right\} \right\}.$$

We have $\alpha \le N-2$, which follows from $q < \frac{N+2-2s_2}{N+2-2s_1}p + \frac{2s_2-2s_1}{N+2-2s_1}$. In a way similar to the proof in [10], one obtains that v_1 is a subsolution of Problem (1.1), v_2 is a supersolution of Problem (1.1) and $v_2(x) \ge v_1(x)$ for a.e. $x \in \Omega$.

By $q < \frac{N+2-2s_2}{N+2-2s_1}p + \frac{2s_2-2s_1}{N+2-2s_1}$, we have $[\alpha(p-1) + s_1]\frac{2N}{N+2} = [\alpha(q-1) + s_2]\frac{2N}{N+2} < N$, which implies that (3.3) holds. Hence, Problem (1.1) has at least one positive solution for all $\lambda \in (0, \lambda_*)$ by Lemma 3.2.

Next, we consider the case $\lambda = \lambda_*$. For an integer $n > \frac{1}{\lambda_*}$, there exists a positive $u_n \in H_0^1(\Omega)$ such that

$$\begin{cases} -\Delta u_n = -(\lambda_* - 1/n)|x|^{-s_1}|u_n|^{p-2}u_n + |x|^{-s_2}|u_n|^{q-2}u_n & \text{in } \Omega, \\ u_n(x) = 0 & \text{on } \partial\Omega. \end{cases}$$
(3.4)

For any $v \in H_0^1(\Omega)$, we have

$$\begin{aligned} |(u_{n},v)| &\leq (\lambda_{*}-1/n) \int_{\Omega} |x|^{-s_{1}} |u_{n}|^{p-1} |v| dx + \int_{\Omega} |x|^{-s_{2}} |u_{n}|^{q-1} |v| dx \\ &\leq \lambda_{*} \left(\int_{\Omega} |x|^{\frac{-2Ns_{1}}{N+2}} |u_{n}|^{\frac{2N(p-1)}{N+2}} dx \right)^{\frac{N+2}{2N}} \left(\int_{\Omega} |v|^{\frac{2N}{N-2}} dx \right)^{\frac{N-2}{2N}} \\ &+ \left(\int_{\Omega} |x|^{\frac{-2Ns_{2}}{N+2}} |u_{n}|^{\frac{2N(q-1)}{N+2}} dx \right)^{\frac{N+2}{2N}} \left(\int_{\Omega} |v|^{\frac{2N}{N-2}} dx \right)^{\frac{N-2}{2N}} \\ &\leq (\lambda_{*} M^{\frac{2N(p-1)}{N+2}} + M^{\frac{2N(q-1)}{N+2}}) \left(\int_{\Omega} |x|^{\frac{-2Ns_{1}}{N+2}} |x|^{\frac{-\alpha 2N(p-1)}{N+2}} dx \right)^{\frac{N+2}{2N}} \left(\int_{\Omega} |v|^{\frac{2N}{N-2}} dx \right)^{\frac{N-2}{2N}} \\ &\leq C||v|| \end{aligned}$$

for some positive constant C. So $||u_n|| \le C$, and $I_{\lambda_*}(u_n)$ is bounded. Without loss of generality, assume that $I_{\lambda_*}(u_n) \to c$ as $n \to \infty$ for some $c \in \mathbb{R}$. From (3.4), we get $I'_{\lambda_*}(u_n) = 1/n|x|^{-s_1}|u_n|^{p-2}u_n \to 0$ as $n \to \infty$. Thus, (u_n) is a $(PS)_c$ sequence of I_{λ_*} . According to Lemma 2.3, (u_n) has a convergent subsequence. We can assume that $u_n \to u_0$ as $n \to \infty$ for some $u_0 \in H_0^1(\Omega)$. Moreover, u_0 is a nonnegative nonzero solution of Problem (1.1) with $\lambda = \lambda_*$. By the strong maximum principle, u_0 is a positive solution of Problem (1.1) with $\lambda = \lambda_*$, which completes our proof.

Author contributions

Zhi-Yun Tang: Conceptualization, Writing-Original Draft, Writing-Review & Editing; Xianhua Tang: Supervision, Writing-Review & Editing.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This study was funded by the National Natural Science Foundation of China(No. 12371181) and the Fundamental Research Funds for the Central Universities of Central South University (No. 2024ZZTS0441).

Conflict of interest

The authors declare there is no conflict of interest.

References

- 1. H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, *Comm. Pure Appl. Math.*, **36** (1983), 437–477. https://doi.org/10.1002/cpa.3160360405
- 2. N. Ghoussoub, C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, *Trans. Amer. Math. Soc.*, **352** (2000), 5703–5743. https://doi.org/10.1090/S0002-9947-00-02560-5
- 3. N. Ghoussoub, X. S. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities, *Ann. Inst. H. Poincaré C Anal. Non Linéaire*, **21** (2004), 767–793. https://doi.org/10.1016/j.anihpc.2003.07.002
- 4. Y.Y. Li, C. S. Lin, A nonlinear elliptic PDE and two Sobolev-Hardy critical exponents, *Arch. Ration. Mech. Anal.*, **203** (2012), 943–968. https://doi.org/10.1007/s00205-011-0467-2
- 5. T. Jin, Symmetry and nonexistence of positive solutions of elliptic equations and systems with Hardy terms, *Ann. Inst. H. Poincaré C Anal. Non Linéaire*, **28** (2011), 965–981. https://doi.org/10.1016/j.anihpc.2011.07.003
- 6. S. Yan, J. Yang, Infinitely many solutions for an elliptic problem involving critical Sobolev and Hardy-Sobolev exponents, *Calc. Var. Partial Differential Equations*, **48** (2013), 587–610. https://doi.org/10.1007/s00526-012-0563-7
- 7. G. Cerami, X. Zhong, W. Zou, On some nonlinear elliptic PDEs with Sobolev-Hardy critical exponents and a Li-Lin open problem, *Calc. Var. Partial Differential Equations*, **54** (2015), 1793–1829. https://doi.org/10.1007/s00526-015-0844-z

- 8. X. Zhong, W. Zou, A nonlinear elliptic PDE with multiple Hardy-Sobolev critical exponents in \mathbb{R}^N , *J. Differential Equations*, **292** (2021), 354–387. https://doi.org/10.1016/j.jde.2021.05.027
- 9. C. Wang, J. Su, The ground state solutions of Hénon equation with upper weighted critical exponents, *J. Differential Equations*, **302** (2021), 444–473. https://doi.org/10.1016/j.jde.2021.09.007
- 10. Z. Y. Tang, X. H. Tang, On Li-Lin's open problem, *J. Differential Equations*, **435** (2025), 113244. https://doi.org/10.1016/j.jde.2025.113244
- 11. H. Brezis, J.L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, *Rev. Mat. Univ. Complut. Madrid*, **10** (1997), 443–469. https://doi.org/10.5209/rev_rema.1997.v10.n2.17459
- 12. J. Mawhin, M. Willem, *Critical point theory and Hamiltonian systems*, volume 74 of *Applied Mathematical Sciences*. Springer-Verlag, New York, 1989. https://doi.org/10.1007/978-1-4757-2061-7
- 13. D. Gilbarg, N.S. Trudinger, *Elliptic partial differential equations of second order*. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.
- 14. A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, *J. Functional Analysis*, **14** (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7
- 15. M. Montenegro, A. C. Ponce, The sub-supersolution method for weak solutions, *Proc. Amer. Math. Soc.*, **136** (2008), 2429–2438. https://doi.org/10.1090/S0002-9939-08-09231-9

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)