Communications in Analysis and Mechanics, 17(2): 429-461.

% C cati . DOI: 10.3934/cam.2025018
AIMS HIMETICaRoNs i1 Received: 31 December 2024

< Analysis and Mechanics Revised: 21 April 2025

Accepted: 23 April 2025
https://www.aimspress.com/journal/cam Published: 07 May 2025

Research article

Uniform bound of the highest-order energy for three dimensional inhomogeneous
incompressible elastodynamics

Xiufang Cui' and Xianpeng Hu?*

' School of Mathematics and Statistics, L.anzhou University, Gansu 730000, P.R.China
2 Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, P.R.China

* Correspondence: Email: xianpeng.hu@polyu.edu.hk.

Abstract: We are concerned with the time growth of the highest-order energy of three-dimensional
inhomogeneous incompressible isotropic elastodynamics. Utilizing Klainerman’s generalized energy
method, refined weighted estimates, and the Keel-Smith-Sogge estimate [J. Anal. Math., 87: 265-279,
2002], it is justified that the highest-order generalized energy is uniformly bounded for all time.

Keywords: inhomogeneous incompressible elastodynamics; uniform bound; highest-order energy;
KSS estimate; vector field theory
Mathematics Subject Classification: 35172, 35Q74, 74B20

1. Introduction

The motion dynamics of incompressible isotropic elastodynamics is characterized as a wave system
in Lagrangian coordinates, which inherently satisfies the null condition. Based on this structure, a
series of studies have been conducted to establish the global well-posedness of classical solutions
to this system; see [1,2]. However, these studies reveal a certain time growth for the highest-order
generalized energy. In this paper, we investigate the time growth of the Sobolev norm for classical
solutions to three-dimensional inhomogeneous incompressible isotropic elastodynamics with small
initial perturbation and establish the uniform bound for the highest-order energy.

Before presenting the main result of this paper, we briefly review related known results. For
three-dimensional elastic waves, John [3] proved that the genuine nonlinearity condition leads to
singularity formation even for arbitrarily small spherically symmetric displacement. We also refer
readers to [4] regarding large displacement singularity. The existence of almost global solutions was
established in [5, 6] for three-dimensional quasilinear wave equations with sufficiently small initial
data. Significant contributions toward global existence were independently made by Sideris [7, 8]
and Agemi [9] under the assumption that nonlinearity satisfies the null condition in three dimensions.
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In terms of three-dimensional incompressible elastodynamics, the only waves presented in the
isotropic systems are shear waves, which are linearly degenerate. The global existence of a solution
was demonstrated by Sideris and Thomases in [1, 2] through two different methods. It is more
challenging to obtain the global existence for the two-dimensional incompressible elastodynamics
due to the weaker dispersive decay. In [10], the authors proved almost global existence for a two-
dimensional incompressible system in Eulerian coordinates. By introducing the concept of strong null
condition and observing that the incompressible elastodynamics automatically satisfies such strong
null structure in Lagrangian coordinates, Lei [11] successfully proved the global well-posedness for
two-dimensional incompressible elastodynamics by the method of Klainerman and Alinhac’s ghost
weight method [12]. We also see [13] for a different approach using the spacetime resonance method.
All the aforementioned works considered the homogeneous fluids. In [14], the authors established
the global well-posedness for the three-dimensional inhomogeneous incompressible elastodynamics
in Lagrangian coordinates. It is noteworthy that the upper bound of the highest-order generalized
energy in those studies depends on time. Utilizing the Klainerman’s generalized energy method, an
analysis of the inherent structure of the system and the ghost weight method, [15, 16] established
the uniform bound for the highest-order generalized energy estimates for two-dimensional and three-
dimensional incompressible elastodynamics, respectively. Based on the above foundational works, it
is natural to verify the uniform bound for the highest-order generalized energy for three-dimensional
inhomogeneous incompressible isotropic elastodynamics. To establish the time growth of the Sobolev
norm of classical solution, two novel methods are presented in this paper. First, based on the Sobolev
embedding inequality and the structure of the system, the refined decay rates were derived for the
solution in the domain away from the light cone. Second, we apply the KSS-type estimate to overcome
the difficulties posed by insufficient time decay resulting from density perturbation.

This paper is organized as follows. In Section 2, we introduce the system of three-dimensional
inhomogeneous isotropic elastodynamics and define the notations utilized throughout this paper. Besides,
the main result along with several useful lemmas are presented in this section. The energy estimates are
discussed in Section 3.

2. Preliminaries

We first formulate the inhomogeneous isotropic elastodynamics and denote some notations that are
used frequently in this paper.

2.1. Equations and notations

For any given smooth flow map X(z, x), we call it incompressible if

fdx:de, Q, ={X(t,x) | x € Q}
Q Q

for any smooth bounded connected domain €2, which yields that
det(VX) = 1.
Denote

X, x) = x+v(t, x).
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Simple calculation shows that the incompressible condition is equivalent to
1
V-v+ 5[(uer)2 — tr(Vv)?] + det(Vv) = 0. 2.1

Without loss of generality, we assume that the density of fluid is a small perturbation around the constant
state 1, that is, p(x) = 1 + n(x). For the inhomogeneous isotropic material, the motion of the elastic fluid
in the Lagrangian coordinate is determined by

T
LXT,Q) = f f (%p(x)latXlz—W(VX)+p(t,x)[det(VX)—1]) dxdt. (2.2)
0 Q

Here W(VX) € C* is the strain energy function. p(z, x) is a Lagrangian multiplier that is used to force
the flow maps to be incompressible. To simplify the presentation, we only study the typical Hookean
case for which the strain energy functional is given by

W(VX) = %|VX|2.
By calculating the variation of (2.2), we obtain the equation
pO*v — Av = —(VX) TVp. (2.3)
Now, we introduce the following derivative vector fields
0, =09, V=1(01,0,,0;) and 4 = (0y,0,0,,05).
The scaling operator is denoted by
S =10, + ro,.

Here, the radial derivative is defined by 9, = -V, r = [x|. The angular momentum operators are denoted
by

Q=xAV.

In the application, we usually use the modified rotational operators and scaling operator; that is, for any
vector v and scalar p and p, we set

Sp=Sp, Sp=Sp, Sv=(5-Dy,

Qp=Qip, Qp=Qp, Qv=Qv+Uyv, i=1.273,
where

U1 =erp®e; —e3R e,
U2:€3®€1 —€]®€3,

U3:€1®€2—€2®€1.
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Let
=@, ,lg) = (0,Q,5)
and for any multi-index a = (a1, @, - -+ , ag) € N8, we denote
r“=ry.--TIg.

We apply the derivatives I'* to the equations (2.1) and (2.3), and then the three-dimensional inhomoge-
neous isotropic elastodynamics can be written as

pd’Tov — ATV = — (VX) TVIp — Z CPTnd TPy — Z CEVX) T (VIv)T

"ol o
(@Y — ADPv + ) CTondlT"y) =: N° (2.4)
L1+L2:ﬂ

with the incompressible condition

81FﬁV1 021—"6‘71 03FﬁV1
VIva L CA(0T TV, - 0T+ > CACY L 10iTPv, 6iTPv, 05Ty, = 0.
Biy=a Bry+i=a 81Fﬁv3 82Fﬁv3 (93FBV3

i,j=1,2,3,i<j

(2.5)

Here the binomial coefficient C” is given by

a)
CP =
“ Bla-p)

2.2. Main result

We denote the Klainerman’s generalized energy by

=) f 0,0V + [VTVP) dx.
la|l<k—1
We also define the weighted energy norm
Xn= ) f (t = P10V dx.
|or|<k—=2 R
To describe the space of initial data, we introduce the time-independent analogue of I" as
= (V,r9, - 1,Q)

and the space of initial data is defined by

Hy = [(£.9): > (IAfll + IVA"fllz + [A”glL2) < o).

la|<k—1
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As the first step to investigate our problem, we introduce the following lemma, which helps us to
solve the additional terms resulting from density perturbation. Let

LE(T) = f f FEH Gy |ar“| I ') dxdt
Rn

|0z|</< 1

with u € (0, 2) and u’ > p. Without loss of generality, we choose u = and uo=s in this paper. In the
case of u’ = u, we see LE,(T) 1s the KSS norm, and we denote it by KSSK(T).

Lemma 1. Let fy = [r/(1 + NI*, fi = r/(r + 25 with k > 1, u € (0, 1/2), and v be the solution to the
equation 87V — ¢*AV + hyy0,0,v = N in [0, T]1 X R" with hay = hpa, Y o<qpen lhapl < min(1, ¢*)/2 for any
integer n > 3. Then there exists a positive constant C that depends only on the dimension n such that

sup | 10vP(@) dx + LE(T) + (In(2 + T)) ' KS S ((T)

0<t<T JR"

<Cy | 10v(0) dx + Cy f f |0h| + I )|6v|(|6V|+u)] dxdt
RYI

F1=2u(p)2u
+ CO' o,v-N dxdt' + Co sup
R k=0

f £i(d
0 R®
where |h| = 37 o lha| and |0h] = 37, .o 10chap|-

This lemma can be found in [17]. See also [18, 19] and references therein.
Based on the previous statement, we are ready to show the main result of this paper.

v) N dxdt',

Theorem 1. Let W(VX) = %IVX ? be an isotropic Hookean strain energy function and (vq, 0,vy) € HY
with k > 12. Let Cy > 0 be given constant in Lemma 1. Suppose v, satisfies the structural constraint
condition (2.1) and

&(0) = Z (I8 AVoll7, + IVAVoll},) < &.

la|<k—1
If
KAz <6 for |al <k,

then there exist two sufficiently small constants, &y, 6y and constant C, that depend only on k and C
such that if € < gy and 6 < o, the system (2.3) has a unique global classical solution that satisfies

E) <Cie

uniformly for all t € [0, +c0).

2.3. Calculus inequalities

In this part, we establish several lemmas that are crucial for the energy estimates. Throughout this
paper, we denote (-) = (1 + |- 1*)2. The notation f < g stands for f < Cg for some generic constant
C > 0, which may vary from line to line. In the process of deriving the energy estimates, we usually
separate the whole integration domain R into two parts:

R={xeR :r<)/8}, R ={xeR:r>()/8).

We first recall the Sobolev-type inequalities, which were justified in [8].

Communications in Analysis and Mechanics Volume 17, Issue 2, 429-461.



434

Lemma 2. Foranyv € C8°(R3)3, r = |x| and ¥ = |y|, we have

K vl < ) IVQ VL2,

lal<1
—~ 1 —_~ 1
© < “v||? Yv||?
KVl $ > 10,9 o IV
lal<1
K= rV@lles £ 1K= P Vllgen + ) I = IO V2.
le|<1 la|<2

The following lemma concerns the dispersive decay of solutions in the domain away from the light
cone.

Lemma 3. For any v € H*(R?), there holds
OVl zoir<iryrgy S WVll2g<iyay + IKE= 1V 202972y + K2 = r>V2V||L2(rs<t)/4)-
Proof. The proof can be found in Lemma 4.3 in [16]. O

Lets = % We introduce a radial cutoff function £(s) € C{ that satisfies

1, s<1,

§s) = {0, §>2.

It is easy to observe from Lemmas 2 and 3 that

0Vl < DIVl e, + 131 = (9],

S ||8V||L2(r§(t>/4) + ”(t - r>VaV||L2(r§(t)/4) + ”(t - r>V28V||L2(r§(t>/4)
+ Y el - esnavl],,
tlel<1
<ENN + X2(0). (2.6)

To control the weighted energy norm by the generalized energy norm, the pressure must be estimated
via the system (2.4)-(2.5). A similar proof can be found in [14]. For a self-contained presentation, we
include its proof below.

Lemma 4. For any integer k > 6 and multi-index « satisfying |a| < k — 2, if Eyj2143(t) and |[{r)A7l| 2
are small. Then there holds

1 1 1 1 1
OIVTpll + DIpITY = ATVl[12 < X (1) + DX 1, (0) + Ef oy DXL ).

Proof. It observes from (2.4) that

VI'p = = (V)" (o1 = A') = ) CLVX) oy

Bry=a
1BI#lal
- >, DV @V - APV + ) CTendiT ). 2.7)
Bry=a L+ :ﬁ

1Bl#lel
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We apply VA~V to the above equality and take the L? norm. By the L? boundness of the Riesz operator,
one has

VT p||,2 < [VAT'V - (0a7Tey = AT*W)|| . + (VW) (0&2TV = AT™V)|| . + > [[(VX) T/ TP,

Bry=a
1Bl#lel
+ [V @y — ADPv + " CaTendi T ) - (2.8)
Bry=a 1+u=p
1BI#le

Special attention is paid to the first term on the right-hand side of (2.8). We apply the derivative operator
(8% — A) to the incompressible condition (2.5). Without loss of generality, we assume at least one order
derivative operator of (7 — A) works on the first component of the velocity field in the second line of
(2.5). Then we obtain

(67 = A)(V - T?V)

61Fﬁvl 62Fﬁvl 63Fﬁv1
Z Cﬁ(af - A)(@irﬁviﬁjﬂvj - 6iFBVj6iji) - Z CgCZ_ﬁ(é),z - A) 81F’BV2 62FﬁV2 a:;FBVz
i< Pryn=a 0TPvy  H:1Pvy  951Pvs

0T+'Fﬂv1626?1"7vz + 8?1+IFBV1636?FYV3 - 328?1FBV16?+1ryV2 - 638;”Fﬁv16;‘+'1"VV3
Z CfiV . —61’.”“l"ﬁv16161’.’1"7vz + alerﬁV233B?WV3 + alalf”Fﬁvﬁ?”sz — (33(9;”1—‘/5V2(9;1+1FYV3
mmfn::t;y,l,za —6T+1rﬁV2626;’1—WV3 - 6:?1”I“ﬁv1616?WV3 + azafrﬁV26?+lryV3 + alaTFﬁV13?+1F7V3

628T2WV2636;”3FLV3 - 33(9?"2WV2626:”3F1V3
DL AT 3T v00,0 T — 019 T V2050, T

Bry+i=a

o i=01.23 010" TIV20,0"™ T3 — 020 T7v20,0"™T'v3
Based on the above equality, we handle the first term on the right-hand side of (2.8) as follows
[VAT'V - (pa;Tv = ATV,
< VAT (03} - MYV -TW)]|| o + Y VAT @nafTv)| .

i=1,2,3
2 2
< (L+ VW)YV [[od2 TV = ATVl + - " 18P TPvidl 7,

B+y=a,|Bl#lal

i,j=1,2,3,i%]
+ Z |PTF Vo v 00 v, |, + Z VA~ @ndPTFviar v )|,
B+y+i=a,|Bl#l| Bry=a.|Bl#lal
i, jk=1,2,3,i% j#k i,j=12.3,i%]

VAT @y arv |, + > VAT @ndPrev) .

B+y+i=a.|Bi#lol =123
i, jk=1,2,3,i% j#k
+ Y vt @aireviovy|l,. + D VAT @ndirviaviovo)| .. 2.9)
ij=123 ijk=123
i#] i# j#k

By (2.8), (2.9), the Sobolev embedding inequality, and the smallness of ||Vn||;3, we have

IVT?pli2 < (1 + V¥Vl |[od TV = ATV, + Z [0°TPv,or7v |,

Pry=a.|Bl#lal
i,j=1.2.3,i%]j
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+ Z |6°T V007 v 0T vy |, + Z [T7na;T%v||,,

Bry+i=a,Bl#lal Bry=a
1.j.k=123,i# j#k 1BI#lal
+ >l @y — APy + > carend )|, + > onairevi]| o
Bry=a L+u=p i=1,2,3
1Bl#lal
+ ) llomgireviovill g+ 3, llomdirevioviovd) s
ij=123 ijk=1,23
i#j i#]

By (2.4), the above inequality and the smallness of &,/2+3(¢), one obtains
VT pll2 + [Ip3; TV = ATl 2
< DL PTVADY i+ T 1PVl + ) T Ra TV

Bry=a,|Bl#l| Bry+i=a,|Bl#lal Bry=a
i,j=12,3,i#] i,j,k=123,i#j#k 1BI#ler|
+ > (VW (9;TPv — ATV + CuTnd;Tv)| . + ), I1ond;Tvi|
t gL Mo, 12 no; i, ¢
Bry=a +ip=, .:152’3
LB\lltrI Hr 'B !
21 21

+ Z 1Bna?T VoV, ¢ + Z 169 T ViV ;v .

i,j=123 i,jk=12,3

i#)j i#j#k

We deduce from Lemma 2 that
(OIVLpllzz + (Ollod; TV — ATV]|,2
< e = NPTV Vs + Y KK = NPTV 9TVl

B+y=a B+y=a
lyI<IB<lel 1BI<I¥!

+ Z Kt = )OIV 21K AT V1= [ OV o + Z <)t = TPV |07 V| 2|7V v

i i

+ e = HEPTV TV 0Tz + ) I Rl IE = PETPV] 2
Bry+i=a Bry=a
1BlyI<ld I<Bl<lel

+ >Rl lrE = PRI + [Vl L (1 + [[V9] L = HafTev]],,
By=a
1BI<lyl

+ Z PV V|2 = P07 TP — ATV + Z CyTna;Tv)||,»

e oreh

[yl<(Bl<lal

+ IV = @y = APV + Y CaTondr )| .
Bry=a L+ :ﬁ
1BI<lyl

1 1 1 1 1
<SOoX: () +E(HX [2K /2]+3(t) + 8[2K /2]+3(t)X < (D).
It completes the proof. O

As an application of the above result, we establish the estimate of weighted energy.

Lemma 5. Letv € HF(R3) be the solution to the system (2.3) with the constraint condition (2.1). For
any integer k > 6, if (1) and |(r)A*n||;2 are small, then we have

Xi(1) < E(1).
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Proof. For any multi-index « satisfying || < k — 2, we apply I'* to Lemma 3.3 in [11] to get
Xd() S &) + H|0; T — AI*V[7,.
It follows from the above inequality and Lemma 4 that
X0) € EL) + 8 X (1) + Epeape3s(DX (1) + ED)Xi/2143(2).

By the smallness of 6 and &,(f), we arrive at the lemma. O

In preparation for the energy estimates, more detailed analysis of pressure is needed. In what follows,
we always assume that &,(¢) and |[{r)An||;> are small.

Lemma 6. For any integer k > 8 and multi-index « satisfying |a| < k — 1, we have
IVTplz: < &:(0) (2.10)
and
(OIVT pllae) + DIPI; TV = ATV]| ey < HO) (2.11)

Proof. Following the calculations in Lemma 4, we arrive at (2.9). Special attention is paid to the last
three terms on the right-hand side of (2.9). From (2.4), one has

Ry = p AT = p (VX)) TV p = ) Chp ' TPy

Bry=a
Bl#lal
=Y T (X)W (@D - ATy + Y CTE i),
Bty=a L +u=p

1Bl#lal

We use the above equality and the Sobolev embedding inequality to solve the last three terms on the
right-hand side of (2.9) by

VA~ [o™"an(1 + ov)*AT*V]| . + [VA™ [o™"an(1 + av)*(VX) VI p] ||,
+ 3 VAT o™ an(1 + av V)T (VW (G0 - ATV + ) G )

By=a L+u=p
1BI#lal

+ Y IVAT [ an(1 + av)PTTnairv|,,

Bry=a
1Bl#lal

< [lon+avPvrev|, + > (|67 )d ond (1 + Vv VI|| ¢ + [[n(1 + av (V) TV p|| o

i+j+k=1
£ 3 on1 + avEVX) TV @ - ATy + Y CaTendT )|
B+y=a L+u=6
1Bl#lal

+ " |lon(1 + avPrmairtyy| .

Bry=a
1Bl#lal

Communications in Analysis and Mechanics Volume 17, Issue 2, 429-461.



438

Utilizing (2.4), (2.8), the above estimate, and the Sobolev embedding inequality, we arrive at

[VE7pl,. + floarrev — ATy,
s, llPrvlsorvll. + 3 e vistors], + - 3 [T o], fory

LOQ
B+y=a Bry=a Bry+i=a
[yI<Bl<lal 1BI<hyl Lld<iBl<lal
T florv] o Jor " Tl lor vl . Jor
+Z||(9FVLM(9FVL28FVLOO+ TPV, |[OT7V|| | |01 V|2
Bry+i=a Bry+i=a
1Bl <Iy! BLII<lel
+ 0 el darevlls + 2 Irmlallor i+, 19| L[lvr]
M;~119 12 Mlz2119: L= M2 12
py=a pry=a 1<|<3
yI<Bl<lel 1BI<Iv1

+ > |Ivo| L[ty - AP+ Y caTenaiT |,

IVIIE%:\YGI L+u=p
* Z ”VIWVHLZ”atzrﬁV — Ay + Z CEFLGﬁtzr‘lanm
”@ZTJF t+n=p
<6EXD + ELDEL (). (2.12)

[k/2]+4

The smallness of 6 and &,(¢) leads to (2.10).
To verify (2.11), we use (2.12), Lemma 2, and the smallness of &,(7) to get

IV pll2gey + <l>||P(9,2raV = ATVl 2 (ge)
s Do el + 3 kna | florvll. + D [T Jlor v, [mar

L
1<l "t "<t
o S sl sl ol Y e ear,tersi.-
ﬂV;rlyl;r\ls:h(\Y Iyﬁ\i}iir\
+ 0 lknrall ol + D Il lemarrvl .+ > vl H[lvrevl,,
L ' 1
+ Z [KnVIY|| |62y — APy + Z CaT || .
Iyl\gzlzlj\la\ ure=p
+ DIV @ TPy = APV + Y CaTenai T,
ﬁV;éryT L+=6
S ELDEL oy, 4(1) + 6EL (D).
The smallness of ¢ and &,(¢) implies (2.11). O

In the subsequent part, we present the improved decay properties for the third-order spatial derivatives
of unknown variables in the domain away from the light cone.

Lemma 7. For any integer k > 10 and multi-index « satisfying |a| < [«/2], it holds that
1
IV T V2 S EL a5 @)-
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Proof. We apply the derivative operator V to the equation (2.4) to get

VALV =Vnd’Tv + pd? VI + V(VX) 'VIp + (VX) 'VVIp + Z CAVT o TPy

Bry=a
Bl#lal

+ ) CAaivPv + ) CEV[(VX) T (VW) (GITPY - ATPy + > CuTendlT)).

Bry=a Bry=a L+0u=6
B1#lal 1BI#lal

By multiplying the above equality by #24(s) and taking the L? inner product, one has

f |P&(s)VATY[" dx
R3

2dx

<7 f |P£(s) V0@ TV dx +7 f |PE(s)pd? VI dx + 7 f |P&(s)V(VX) TV
R3 R3 R3

+7 f Pe VXTIV [ dx+ Y T f |CEPE(s) VT na T dx
R3 R3

Bry=a
1BI#lel
07 f (CELEST RV dx+ Y T f |CERE(s)VI(VX) T (VI W)T
+y=a R3 +y=a R3
ﬁlﬂ\#\ﬂl ﬁWI?tIWI
218 B LT, 92T 2
@V = APy + Y CaTondT )| dx. (2.13)

L] +L2=ﬁ

Since for any f € H*(R?), the following Sobolev embedding inequality holds true

1 1
Iflles S VALV AL (2.14)

By Lemma 2, the first term on the right-hand side of (2.13) is estimated by
7 f |P¢(s)VnorTe|” dx
R3

< fR &) vno,oref dx+ fR igs)vna ST dx
< (IECs)r)E = 1D, DL VIl + ()OS T VI IVl
KXt = P, AT VI + IV GESST DIV EE)ST Wl IVl
KXt = P, 0TV + (I ()0 STVll2 + IE(s)t = 0, VST V]| 2)
(71" (AST™ VI + 1€/ ()0, VST Wi,z + €)1t = 1), VSTV IVl
< 8 Epma(?). (2.15)

q
q

By a similar argument, we handle the second term on the right-hand side of (2.13) as follows
7 f |P¢(s)pd? VT dx
R3

<7 f |tr&(s)p0,0,VT¥[" dx + C f (1508, VST | + |1€(5)p8,VTV]") dx
R3 R

3
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<7 f |Pé(s)pd?VIov] dx+C f (108, VST + |i&(5)pd, VT*v|’
R3 R3
+|é5)pra, VST + [e(s)pra, VIov[") dx

2 —_—
<7 f [Pepvirey| dx+ € (I = POVIVIZ g, + 1Kt = HOVST VI 0 )
R

7
< f 3 PE(s)V TV dx + CEpeyayes(0). (2.16)
R.

In view of (2.7), the smallness of 6 and &,(¢), one has

VI pllzg) + IV pll2)
<[+ X" (@Tey - AF"V)”LZ(R) + Z |1 + (t))(VX)Tl"Vn&,ZFﬁV||LZ(R)

B+y=a
+ I+ VW (@ = APV + Y CaTendi T )|

Bry=a t+n=p
1

3
S 8[K/2]+2(t)'

L2(R)

We substitute the above inequality into the third term on the right-hand side of (2.13) to get

7 f |t2§(s)V(VX)‘TVF"p|2 dx
R3

< VY I VT Py + OV VT P
< Epy2(D).

We come back to the fourth term on the right-hand side of (2.13). We apply the divergence operator
to the equality (2.7) and multiply #* on both sides of the resulting equality. By taking the L? inner
product, one has

[P£ATp||,. < [[PEY - [V (p87Tv = ATY)| || + D [PV - (V) T TV .

Bry=a
1Bl#lal

+[PEV - (pa7Tv = AT ||, + Y [[PESV - (7ndTEY))|
Bry=a
1Bl#lal
+ ) |PEV - (VW@ - APy + Y CiTondi T )|, (217)
5 s

For the first two terms on the right-hand side of (2.17), we deduce from Lemma 3 that

|P£V - [(V9) (pdiTv = ATV)] ||, + Z [2E()V - [(V0) T nd?2TPv]||,

B+y=a
1B#lal
< D OV el = IV (03207 = ATV |2
i+j=1
* 2 IO o [Tl T TV,

Bry=a,|BI<iyl
i+ j+k=1
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O OO | V70| 2 = PRI

Bry=alyl<|Bl<lel

i+j+k=1
1 1 1 1
S 8 (N8 1150 + 68, (DEL 1,50

For the third and fourth terms on the right-hand side of (2.17), we have

[P£HV - (pa2Tv = ATY) [, + D [[PEY - 0TV,

Bry=a
1BI#le

< |Pes)Vn - a7T|, + [|PE) (007 — AYY - TV, + Z |PEHVITT (V7 - TPV)|) .. (2.18)

Bry=a.|Bi#lel|
i+j=1

By the definition of S and the Sobolev embedding inequality, we solve the first term on the right-hand
side of (2.18) by

[P&s)Vn - 7TV|,, < || Vo], ][e()aSTV| 5 + ||tré(s)Vna, 8.0,

< 19l (18T g+ = POTSTV ) + 99 - 00

L2(R) L2(‘R)) L2(R)

1
2
< 68 101430

In terms of (2.5) and the definition of S, the last two terms on the right-hand side of (2.18) are estimated
by

[P0} = D - TV + D IPEOVT RV - TP,

Bry=a,|Bl#lal
i+j=1

S Z Kt = 1)@ OVIPVI| 2y NG VI Vil o)

Bry=a
i+j=1

+ Z Kt = P IVIPV| 20 NG VIVl 2 |0 VTV oy

Bry+i=a
i+ j+k=1

+ Z T ll oy 12 = Y IVIPV| 2 (NG VTV v )

Bry+i=a
J+k=1

+ Z T ll ) K2 = PYF VTPV 20 (I VT V| ooy | VTV | o

Bry+i=a

i+j+k=1

+ D IESVI Il OIESIST Ve + > IKAVI Dl gollt = P30,V
Bry=a Bry=a
1Bl#lal Bl

S (14 0)E 5 A (DEL a0 + Epgpsa(D) + 6E 1 5 (0).

Along the same line, the last term on the right-hand side of (2.17) is dealt with by

Z |P£()V - [(VI?'W) (9;TPv — ATPv + Z CyTona; T )|,

ot b
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< Z Kt = VPVl 2@ (OO TPV — ATPv + Z CyT2nd; T V]| )

i st

+ > OVl [ - HVET Y - ATv + " CaTend T )|

Bry=a L] +L2:ﬁ
Bl#lal

L2(R)

< Epa1+4(0).
Combining all the estimates, Lemma 4, and the fact
IPESVTpllz < IPESAT plly + [EE()VT pl 2,
the fourth term on the right-hand side of (2.13) is estimated by
_ a |2 «
7 f Pe@X VT B[ dx < IV O NV VT P,
R

+ OV DIV Pl ) + 112V P

L2(R)
< S5 (D).

We employ the similar method as (2.15) and (2.16) to estimate the fifth and sixth terms on the right-hand
side of (2.13) by

> f (CELEVI TN dx+ Y 7 f |CEPE(s)T nd? VT dx
R3 R3

"ot ‘et
<y f (1) R, ST dx + |té()rVI7nd,a%v] + 16()T 0, VST
Pry=a R?
18Il
+ |0, VI + [16(5)T77r 0,891 ) dx
s . (vl liesa STl + s veml e = navrf,
By=a
18Il
+ | ryn“imm)”(t - r>aV§FﬁVHEZ(7€) + ||Fy’7||i°°(7e)”<t - r)a,VFBV”iz(R)

+ e[, || - navirty|[; )

L2(R)
2
< 0°Ey/a143(0).

For the last term on the right-hand side of (2.13), we have

Z 7f |Cgtzé-‘(s)v[(VX)_T(VFYV)T(G?FBV — A%V + Z CEFLZUG?DIV)”Z dx
R3

ﬁv;\lljll 1 +p=
s D VIV |l = V@Y - APV + 3T CHT T V) e
Bry=a|fllal u+n=p

i+j<1

< Epja1+4(1).
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Collecting the above estimates and the fact

f |[PE(s)V T
R3

we complete the proof. O

Pdx < f |P¢(s)VATV| dix + f () V2Tv[ dx,
R3 R3

By Lemma 7, we obtain the following estimate.

Lemma 8. For any integer k > 12 and multi-index « satisfying |a| < [k/2], there holds

OOVl < EL 50, (2.19)
OO T Vo) < 8[7,(/2]+6(t). (2.20)

Proof. By the definition of S and Lemma 7, we have

OOV TV 2=y S K8 = 10,V TVl| 2%y + It — F>V2§FQV||L2(R) + Kt = VTV 2
+ OV TV 2w,

1

S &L opas(D- 2.21)

The inequalities (2.14), (2.21), and Lemma 7 yield that

DTVl < (OHIVEDIT VLIV EHIT VL,
< (1€ A VIZ, + 1) = VAT (1€ (90T VIE, + 1Ig' ()t — HVarvIL,
+E) V2OV
S 8[%K/2]+5(’)'

To consider (2.20), the definition of §, combined with inequalities (2.14) and (2.21) and Lemmas 3 and
7, implies that

OOV wy + O NOVIVI| o)
< ONFTV] () + AT VIr() + ENOS T V]Ir) + (EF0, 0TV | o)
+ (IVESIVTVI IV ES)IVI VI,
S ElmuaD + D [ = NAQEDB,AT V| + (I () = VIV, + I E)IVT VI,

i<l

1 1 1
(I (SIVIV,, + IKOE (JIVIVIE, + K2 E)IV TV,
1
SN
which implies the desired. O

Before concluding this section, we formulate the following two lemmas, which are utilized in the
process of deriving energy estimates.
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Lemma 9. For any integer k > 12 and multi-index « satisfying |a| < [«/2], we have
2 21 @ i
O ||p(9,F v— Al V||L°° S Epyagas(D-

Proof. We separate two cases to consider this lemma. For the case x € R, we use the Sobolev embedding
inequality (2.14) to get

|é() (a7 v = AT*V)||,.. < [|VIE(s)(ITv - Ar“v)]||f2||V2[§(s)(pa,2r“v - Arav)]||f2.

L> ™~

For the integer i satisfying 1 < i < 2, one has

@[ V[E) (T = AT*V)]|| .
< D |VIESVH ATy = ATV)|[ . + D eIV (a7 Ty — AT))| .. (2.22)

jeki 1<i<2
<Jsit

We estimate the first term on the right-hand side of (2.22) by
> ||V V(Y — ATV . 5 ()

k=i
1<j<i

E(5)V(p0 TV — AI““V)”L2 + ||p6t21"“v - Al""v”L2

1
2
S 8[K/2]+3(t)‘

By (2.4), we solve the second term on the right-hand side of (2.22) as follows

> e VipaT Y - ATV,

1<i<2
< D, We@VIEIX)TVVp|| + @ vX) TV,
1<i<2 1<i<2
Jjrk=i1<j
) EOVIRRVITAY] L+ ) @V T (VY
pry=a,Bl#lal Bry=a,Bl#lal
j+k=i,1<i<2 1<i<2
@V = APy + Y CiTonair ). (2.23)

L1+L2=ﬂ

For the first term on the right-hand side of (2.23), by Lemmas 3 and 4, we have
D EOVIIX) TPl s T OV OV VD e,
1<ie2 1<ie2
jHk=il<] jHk=i1<]
< XEO(Eaes(D) + 687 4 0).
Adopting the same method as was used in (2.17), we estimate the second term on the right-hand side of
(2.23) by

D e TV L 5 > DIV (1 + IVVIw X0 VI Pl e,

1<i<2 1<i<2

+ Z (t)2||ViVF“p||L2(R)

1<i<2
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1
S 58[2K/2]+5(t) + 8[K/2J+5(t)~
For the third term on the right-hand side of (2.23), by the definition of S and (2.6), we obtain
Z 02| VT VT,

Bry=a,|Bl#lel
jrk=il<i<2

< O O(EOVITmEVTY| , + €V 0,09 | ) + - D eV TIRa ST,
Bry=a.|Bl#lel Bry=a,Bl#lel
Jjk=i,1<i<2 1<i<2
+ > ([ESVIT RIS VTR + [[€)VIT 0,V T )
Bry=alBi#lol
k=i, 1<k<i<2
< D, keIl ke = nadv TV L+ D VTl IOSTY] g,
gt o
+ IVl (1K = DOVS VTN L+ (= VT L )
it
< 68,0

The last term on the right-hand side of (2.23) is estimated by
Z VIV (VY (TP — APy + Z carnd )|,

ﬁ+~/]=év_,<vle=*la\ L+0=6
<i<

< Z IV (VX) T l=ONIV (VTV) oI = rYVE@TTPY = ATPy + Z CyT2nd; TVl 2r)

Bry=a,|Bl#lal L +0=p
1<i<2, j+k+I=i

< Spja145(0).
We verify the case x € R°. By Lemmas 2 and 6, we have
0 ||odiTv = ATV e,
S O = E) (AT = ATV)||, .

< D o)eQ (1 - &s) (AT = ATV,
il<1
S D 1891 = EDleero KR pll o ||0EQ4 TPV .
i+ j+k<1

leg [+ [+l <1< j+ep |

£ 0 [0 (1 = ED oo Ik (pB2AIRTPY — AGIQETV)| e

i+j<1
leg [ +leo|<1

1
2
S 8[;</2]+4("‘)-

Collecting all of the estimates together, we justify the lemma. O

Lemma 10. For any integer k > 12 and multi-index « satisfying |a| < [k/2], one has

1
DRV S 68, ., 0.

Bry=a
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Proof. We deduce from the definition of S that

1 _
> gt = Y I—H(rynafrﬁv + "7, STPy — T'rd, o, T%).

Bry=a Bry=a

By Lemma 2 and (2.6), one has

DA s D Il ke = DTV + > Il (IO S TV

Bry=a Bry=a Bry=a
+ Z ATl 1K) = 8,0, T°¥l
/3+7 @
58[2K/2]+4(t)-
This completes the proof. O

3. Energy estimates

This section is devoted to the energy estimates. For any integer k > 12 and multi-index o € N®
satisfying || < k — 1, we apply Lemma 1 to the system (2.4)-(2.5) to get

sup f [0T9V[*(¢) dx + LE(T)

0<t<T
IT"v|

I
<G, f IOV (0) dx + Cp f f 0] + il S)arevi(jarev] + M
R?

r2 r 2

Iv
f f dIv - N® dxdt f f f(0T v+ —)-N° dxdt‘. (3.1)
0 Jr3 0 JRr3 r

For the second term on the right-hand side of (3.1), by Lemma 2, one has

Co f f ol + -)iorevi(jory |+'WV')] dxdt

)| dxd

+Cy + Cy sup

k>0

rzrz
sfawmwmﬂwmmwﬂmﬂﬁwaﬂﬁﬂﬁw f ) e
s 2 f ol toril ey Hlarm + )
i,Jk <1

< SLEAT)

By utilizing (2.4), we formulate the third term on the right-hand side of (3.1) as follows

T
[ [ asa
f f oTv - (VX) TV p dxdt — Zcﬁ f f oI - T"nd’ TPy dxdt

Bry=a
B1#lal
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- Z ch f f ALV - [(VX) " (VI'V) (8; v — Ay + Z CyTendiT V)] dxdr.  (3.2)

Bry=a L+=6
1BI#lal

We handle term by term on the right-hand side of (3.2). For the first term on the right-hand side of
(3.2), since (VX)T is composed of elements of the form ;v iOmVk, 0jvj, 0;v; and the constant 1, where
ok, l,m=1,2,3, it follows that

T
- f f OTv - (VX) I'VIp dxdt

f f 0.0V, 0, vi0,T° p| dxdt + > f f |0.0v:0,v,01° p| dxdt

t/klm)1123 i,j=123
i#j#k i#j

£y f f 0T Vi, 0,1 p| dxdr + | f f arv - VI p dxdi]. (3.3)

i,j=12,3
i#j

N

For the first term on the right-hand side of (3.3), by (2.6) and Lemma 6, we have

= f f 10.0v,0,¥;0, ;8,1 p| duxdt f OOV 2O IVVIE VT pli2 di
R3

Ijklmn 12,3
i#j#k

T
< f (1Y E(DEya42(1) dt.
0
To handle the second and third terms on the right-hand side of (3.3), we apply (2.11) and (2.19) to

show
D f f |0.0°V,0,v,0,0° p| dxdt + > f f |00 v,0,v,0,T p| dxat

i,j=12,3 1,j=1,2,3
i#j i#j

T
_3 o 3 «
S f OOV 2w KD IV VI o) IVI Pl 2y dt
0

T
+ f O TV 200y IKrYA = E() IVl e (DIVT pll ey
0

T
< f WiE ) ar.
0

Along the same line, the last term on the right-hand side of (3.3) is estimated by

T T
' f 8Ty - VIp dxdt‘ - | f 8,(V - T%) - T%p dxdt'
0 R3 0 R3
62r7V263FLV3 - 63FVV262FLV3
G,Fﬁvl (93F7V2(91FLV3 - 81FVV283F‘V3

f f ,3+7+L a (91F7V282rLV3 - 62r7V281FLV3
[ 8,FBV162FYV2 + atF‘BV1831—WV3 — 82FﬁV10,FVV2 - 63F‘BV161FYV3 ]
By=a

—B,Fﬁvlall"VVz + 8,F/3V283F7V3 + 81FﬁV18,1"7V2 — 63FBV28IF7V3
—6tl“"5v2621“7v3 — a,rﬁV101WV3 + Gzl“ﬂvza,ﬁw + 81Fﬁvlatl“7v3

Tp dxdt

Communications in Analysis and Mechanics Volume 17, Issue 2, 429-461.



448

N

T
>, f IO V1O Vil (1 + 10T V=)V pll,2 d
Bry+i=a 0

Lld<(]

T
Z f <t>_3||<9FﬁVIIL2(1+II6F‘V||L°°)(<I>3IIGFVVIIme)IIVF“PIILz(R)
0

Bry+i=a
L<IB

N

+ IKr)(1 = ENAT VL=V pliacge) ) dt

7

T 1
f <r>—78K(r)8§K 130 dt.
0

For the second term on the right-hand side of (3.2), by the definition of S and (2.6), one has

T
- ). f f OV - T'nd*TPv dxdt
0 R3

Bry=a
1Bl

T
< Z f<t>_1||r_4<r>_2IazF“VIIILler)FanILw|I0zSFBVIIL2 dt
0

Bry=a
i<li<lel

T
£y f OOVl (1K = POl + Kt — 13,0, T¥ll;z) dr
0

Bry=a
lyl<1Bl<lel

T
+ Z f <t>_2”81raV”L2||<r>ry77||L2(<t>”8;2FﬁV||L°° + (OIS TPVl + <t>||0z6rFﬁV|le) dt
0

Bry=a
Bl

T
<SOLE(T) + 6 f (t)72E,(1) dt.
0

It is left to estimate the last term on the right-hand side of (3.2). Two cases are considered. By
Lemmas 2, 4, and (2.6), we solve the case |y| < |8] < |a| by

T
-y f f OTV - [(VX)T(VI'WY (Tv = APy + " CuTendiT"v)| dxdt
0 R3

Bry=a L1+i=
[yl<(Bl<le| A

T
< Z f O 20TV 2 IV V| =)o, TPV = ATPV 2 dit
0

Pry=a
[yI<IBl<lel

T
+ Z f O LV ANV VIl T2l 2K ) e = P V| dr
0

Bry=a.+i=p
yI<Bl<lalleg 1<lep |

T
+ Z f O N0V ANV V| [Tl I = 1TV 2 dlt
0

Bry=a+1=p
i<Bi<lalliy|<ley |

T 3
< f (1)72E2(1) dt.
0

Communications in Analysis and Mechanics Volume 17, Issue 2, 429-461.



449

Utilizing Lemmas 9 and 10, we solve the case |5| < |y| by

T
- Z c; f f AL - [(VX) (VW) (3;TPv — ATy + Z C,Tno;Tv)| dxdi
0 R3

Bry=a Ll +L2:ﬂ
1Byl

T
<)) f (&AL VI VTVl (0 08, TPv = APV dit
0

B+y=a
1BI<ly

T
+ Z f O VIV VIl T2 nd7 T V| dr
0

Bry=a.y+iu=p
1BI<ly]

T 3
< f (O2EX () dt.
0

By summing up the above estimates, we deduce that

T T T
' f A% - N a’xdt‘s f O 3E ) di + 6 f (38D dt + SLET).
0 R3 0 0

We continue to handle the last term on the right-hand side of (3.1). The identity (2.4) yields that

f ' f f(8.Tv + &) - N® dxdt
0 R3 r

T I
=- Z c, f f fk(ﬁrf"v + —V) -T'n0’TPv dxdt
0 R3 r

Pry=a
1Bl

07

T
r
- ). fo f A0+ =) (VX T (VI @0V - ATV + )" CATengiTv)] dads
R3

ﬂl/;\lell t+n=p
T ey
- f f 3 fid v + - )- (VX)"VI*p dixdt. (3.4)
0 R

We use Lemmas 9 and 10 to handle the first two terms on the right-hand side of (3.4) by

Z fo T<t>‘1Hr—i<r>—%(|a,F“v| + IF;’VI)

Bry=a
i<iBi<lel

+ Z fOT(t>_1”r‘i(m‘i(la,l““vl + |riV|)

B+y=a
1Bl<ivl

T
3 [

B+y=a
lyI<(Bl<lef

C W e )

L +u=p

T
WG

Bry=a
1BI<ivl

L2||<r>2FV77IILwII<t = V|2 di

IOl 21K ~ NPV = dt

|0,%v| +

I“a
LY onvrvi (e - arvis
ro 2

I

r

v
| VT VILa(@21 p320Y = AT

|0, V| +
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£ OAIrenar Vi) di

t+=p
T T 3
<SSLE(T) + 6 f (O72E() dt + f (H72EX () dt.
0 0

We rewrite the last term on the right-hand side of (3.4) as follows
T
1—‘(1/
- f f fk((')rF"V + —V) ~(VX) ITVIp dxdt
0 R3 r

2L

i#j

T
> [
jlmms=123 Y0 R3

il

rey,
f(dTv; + —
r

)ijjﬁilwp' + ‘ﬁ((arravi + @)Bivﬁjr"p‘) dxdt

fk(arl"avi + *vi )6mvj(9,,vu9sl“ap‘ dxdt + ' fT f fk(arf‘av + &) -VI'p dxdt|.
r 0 R3 r

(3.5)
For the first two terms on the right-hand side of (3.5), the Lemma 6 and (2.19) imply that

T
f<w1
0
T 3
+f<ﬁi
0

T
sfaw&ma
0

v "
L1+ 19V = E) VL DIV plyage di
vl 3 @
|1+ 19V )0 IV VT Pl i

|0,T“v| +

|0, T%v| +

We use (2.7) to formulate the last term on the right-hand side of (3.5) by
T a
‘ f f A(aTov+ H) VIp dxdt‘
0 R3 r
T
<) )
0 JR3

T re
) f f A(BI0y + =) VATV - [(VX) T TP]| dxdr
Bry=a 0 R3 r

1Bl#lel

I_‘(l’
(a7 + TV) VATV - [(V)T (08T — AF"V)]‘ dxdt

(04

’ I'"v
+ 0,V + —) - VATV - [(VI?V)T (32TPv — ATPv + CiT2no’T"v)]| dxdt
;x»fo »fﬂ@fk( Y r) [(VI'W) (3, Ty v Z gt Mo v)|| dx

1Bl#lal
T re
+ 1 f f A8V + —2) - VATV - (p3T"v — AI) dxdt‘.
0 R3 r

By (2.19) and Lemma 6, we estimate the first term on the right-hand side of (3.6) by

I
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(3.6)

1—‘0(
%) VATV (W) (T — AT*v)]| dxds
-

fk (8 J0v +
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! -3 |1"(1V| 3 21 @
< | @ Hjorvi+ —=| LTV lIodiTV = ATVlzge, dr
0
T
ol s |“ . o
- f ®7|[16,Tv] + LI =€)V 0[pdiTv = ATV ey
0
T ;3
$f<t>_58,§(t) dt. (3.7
0

The second and third terms on the right-hand side of (3.6) can be solved using the same method
employed by the first two terms of (3.4).
For the last term on the right-hand side of (3.6), we observe that

T N Iy B - i
|f0 . fk((')rr v+ — ) -VA™'V. (p(’),F v—- Al V) dxdt'
S |fo A0V + &)-VA_I(patZV-FO‘V—AV.FaV) dxdt'
0

+ f f (0,07 + v )-VA-‘(vn-a,Zrav)| dxdt. (3.8)

In view of (2.5), we write the first term on the right-hand side of (3.8) by

DYRAL

i#j

S
=123 Y0 R3

i#j#l

X [

Bry+i=a,|Bl#la|
i,j,1=1,2,3,i# j#l

(8,17 + —) VATV - [(pd7T7v; - AT, )ov ,H dxdt

F‘;V) VATV - [(pd7T7v; — ATV, )av jav,]‘ dxdt

((9,F"V +

fk a v+ F—) VA™'V . (azrﬁv,aryvjar‘v,)‘ dxdt

I_‘[l

+ f f 0.1% + —) VA~ (8n82FﬁV,8F7V]6F‘V,)‘ dxdt

57*1‘2% ,”flfl:’n',

@ K 1 218 Y

+ fkarv+ )VA V- (8°TPv0r"v,) dxdt

Bry= aw#m

0,j=1,23,i#j

f f 3 £l ) : VA‘1(6n82l"ﬁv,-8F7Vj)‘ dxdt. (3.9)
ﬁ’+7 @ Bl#lal R
0,j=123,i#j

The first two terms on the right-hand side of (3.9) are dealt with by the same method as (3.7). By (2.6),

the third and fourth terms on the right-hand side of (3.9) are estimated by

vl .
|+ mi( D 10T T Vil (Iar il

Bry+i=a
yLld<(Bl<lal

v| +
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£ IRV IV Vs + > IV (I V0TV 2 ) de

B+y+i=a Bry+i=a

1BLId<lyl 1BLIyI<l
T 3
< f ()72E2(1) dt.
0

To consider the fifth term on the right-hand side of (3.9), we separate two cases to consider it. For
the case x € R, by (2.20), we have

Z ‘ fOT fR.z f(S)fk(a,rav + F(:V) VAV (azr'BViaFij) dxdt'

B+y=a,|Bl#lal
ij=123,i#j

Z fT “r‘i(r)_%(lﬁrf"v + |raV|)HL2||<f = O TPV, O0V |12 dt
0

r
Bry=a,|Bl#lel
i,j=1,2,3,i#]

A

N

r Y [ @ vl 218
> fo @7y + =) Like = eVl @lIor Vi dt

Bry=a
lyI<1B<le

’ —1|| =1, 1 oy TV 218
+ > fo @7y + =) (e = (1 - €)@

2
Bry=a r L
1BI<hyl

+ (O?116°T° V”L“(’R))”aryvlle dt

1 T 3
< sup EX(H)LE(T) + f (O2EL (1) dt.
0

0<t<T

To consider the case x € R, we use the integration by parts to get

Z |V£T ‘[Ra[l - f(s)]fk(arrav + FLFV) VAV (aZFBViaFVVj) dxdt‘

Bry=a|Bl#lal
ij=1,23,i#j

s > fo T fR Vo[- ésnpary +

By=a,|Bl#lel
ij=12.3,0%]

T
s > f0<r>-1\

Bry=a|Bl#lal
ij=1,23,i#j

T
+ f IV - TV 2 10° TPV, 00 v |2 d. (3.10)
0

Pry=a,|Bi#lal
i,j=1,2,3,i#]

I'%v
r

)| A7V - (PTPviar;) ]

|0, T%v| +

) o),

For the first term on the right-hand side of (3.10), we have

T e IC*v] 1 2

> f @ o revi+ == ||a7v - (@Priviar))|| | ar

4 0 ro e L
pey=alfilol

i,j=123i#j

g _4 @ |1‘*aV| 1 q B L 218 2
s > | o e+ == ot e vl d

Bry=a 0 r L
1BI<yl
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ey 2 1
o.0v1+ Y 1@l ar i o o

T 4
) fo 0%

Bry=a
lyl<IBI<lel

oo,
< f Wiedw ar.
0

We use (2.5) to estimate the second term on the right-hand side of (3.10) by

T
Z fo IV - TVl 2 |10° TP v, 07 v || 2 dt

By=a,|Bi#la|
i,j=123,i#]

T » ~ ~
< Z f OOV 2 ATVl = (1 + ATV o XONG* TV 10TV 2 dlt
0

Pry=ap+y+i=a
BIhyLL<(Bl

T by ~ ~
+ Z f OV NOT V= (1 + 10TV IO TV (AT V|
0

/3+y=a/,/§+)7+l=n
lyI<Bl<lel.[71.[01<|Bl

T
< f (O2EX() dt.
0

For the last term on the right-hand side of (3.9), it follows from the Sobolev embedding inequality,
(2.6), and (2.19), that

> [

Bry=a|Bl#lel
i,j=1,23,i#]

T
< 3 [ e

+y=a
yI<iBl<lal

T 3
+Z fo (12

Bry=a
BIsivl

+ KT = EVl I — ENGTPN) di
T 3
< f W&l dr.
0

fi(d v + irv) - VA (and*TPv,00v J)‘ dxdt

|0, T%v| + |

v
r

LIVl - NPTV AT V| dr

|I“(1V| 5
| 10TVl (17560, 1TVl

|0, 1%v| +

To solve the second term on the right-hand side of (3.8), we rewrite it as follows

)
T
g
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r

f(O0v + =) VAT (V- G2T7)| dxdr

(07

A0V + r_rv) VAT (Vi 2VAT'Y - T)| dxdr

A0V + Firv) VAT (V- 87V4ATI V- rav)‘ dxdt. (3.11)
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In view of (2.5), we formulate the first term on the right-hand side of (3.11) by

[ L

a

A0V + F—rv) VAT (Vi VATV T)| dxdr

T (04
s ﬁZ fo fR Aoy + Frv) VAT (Vi VAT OIV0,,)))| dixde
i,jl,m=1.23
T (04
* HZ fo fR3 A(oTv + r—,,v) VAT (V- 6,2VA—1(a,-rﬂvlajryvzalr‘v3))| dxdt.  (3.12)

ijil=1.2.3

Since the second term has analogous estimates to the first term of (3.12), it suffices to concentrate on
the first term. We observe that

> )L

B+y=a
i,jlbm=123

<> [ [

B+y=a
i,j,l,bm=123

- [ [

Bry=a
i,j,lm=1,23

- [ [

Bry=a
ijlm=12,3

£(0 v + KFV) VA (V- FVAT (O VD, Iy j))‘ dxdt

£(0 v + Firv) VAT (V- VAT (870,10, 17V j))‘ dxdt

fid. TV + rirv) VAT (Vi VAT (0,07°v:0,0,, v j))‘ dxdt

fk(érf"v +

F‘;v) VA (V- VAT @OTPY0,07 )| dadr (3.13)

Here, we restrict our analysis to the first term on the right-hand side of (3.13), as the remaining two
terms have similar estimates.

> L

Bry=a
i,jlm=123

<X [

Bry=a.lyl<iBl
i,j,lm=1,2,3

-3 [

B+y=a.lyl<|B]
i,jl,m=123

X[

Bry=a Bkl
ijlm=123

£V + KFV) VAT (V- VAT (8;0,1Pv,0,T7v ,.))] dxdt

£(0Tv + irv) VAT (V- VAT (87 TPV,010, 17V j))‘ dxdt

v
r

£V + —) - VAT (Vi - VAT (82T, T7v ,-))‘ dxdt

a

fi(a, v + r_rv) VAT (Vi - VAT (870,10, ,-))‘ dxdt. (3.14)

For the first term on the right-hand side of (3.14), we deduce from (2.4) that

> [

Bry=a.lyl<|pl
i,jl.m=1.23

@

fid. v + ?) VAT (Vi - VAT (37T°V,0,0, TV ,.))' dxdt
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(Z

(0,0 + F—) VA~V VA" (o7 ATv:0,0,,07v j))' dxdt

<3 [

Bry=a.lyl<il
i,jlm=12,3

2L

Bry=alyl<|Bl
i,jl.m=123

(6,v + 1) VA~ (Vi - VAT ("' NF o0, ryv,))' dxdt. (3.15)

We formulate the first term on the right-hand side of (3.15) as follows
Iy
(8,17 + —) VAT'Y(qVAT 8,007 TP Vi81, Wv,))‘ dxdt
By= aI7I<Iﬁ\

i,j,l,m,n=12,3

£y f f f(dTov + %) VA~'8,(p™ 0. TPV0,0, Wv,)'dxdz

Bry=a.lyl<iBl
i,jlimn=1273

+ f f £(0: F"v+%) VA™'V(nVA [anrﬁvian(p—la,amr‘yvj)])' dxdt

Bry=a,lyI<Bl
i,jl.mn=1273

* Z f Lg f((9 v+ r%) VA~ ( _lannanrﬁvialamryvj)' dxdt

Bry=a.yl<iBl
i,jlimn=123

f f A0V + F—jv)-VA_I(nﬁnfﬁvian(p_lal(?mfyvj))| dxdt. (3.16)

/3+7 a.lyI<IBl
i,jl.mn=1273

LVl

v
)| Il VP VTVl

The first three terms on the right-hand side of (3.16) can be estimated by
,6‘+7 a

f @[y H(arevi +
[yI<IBl
o3 [,

By=a
<8l

KRNIV 2OV (o~ V2TV)] 1 dt

T
< SLE(T) + f (HY2EX(D) dt.
0

We utilize (2.19) to solve the last two terms on the right-hand side of (3.16) by
|

f (1
o

IVl (Y IV T Wz + I = EIIIKA = E)V (0™ V2TVl
Il O IV (0™ V2TV llscw)) dt

T 3
< f W 2E W d.
0

Communications in Analysis and Mechanics Volume 17, Issue 2, 429-461.

(||<r>(1 — ENVAllIK = E) VT V|



456

Along the same line, the second term on the right-hand side of (3.15) can be handled by

> I

£(d v + Krv) VA (V- VAT (o7 NP6, T7v j))‘ dxdt

Bry=a.lyl<IBl
ijdm=123
! v I 1 —1 A8
Y f f ROy + =) VA (- VAT (o7 NP0, 7)) )| doxdr
pry=ai<ip YO IR r
ijilm=1273
g v U~ B
Y f f A0V + =) - VA (07 N 0,0, )| dixde
3 r
o
! Y| I N o v 5 2y
< | @ ety =2 el IN IV dr
pry=a Y0 r L
[yI<IBl
e o vl B 2
£ 30 [ o orev+ == IvIlaie) - gl - )Vl dr
+y=a 0
%KW
T allia ey VI S
+ 0 | 0T+ = | IVl VT Vil
Pry=a 0
IvI<(Bl

T
< SLE(T) + f 1y 1EXD) dt.
0

The same estimates hold for the last two terms on the right-hand side of (3.14).
Applying (2.4), we formulate the second term on the right-hand side of (3.11) as follows

' O + V) . VA (Vh - B2VEATIVE - To)| dd
j(:jl;fk(r v+ ). vA (V-5 1) dxar

= fo £i(d rav+&)-m-1vi-(v ATV T)| ddr
- 0 JR? a r 1o

4 @ r‘av -1yl 1 o4
sf f £V + —) - VAT'VE - (VyvE T v)] dxdt
0 R3 r

L)
S

B+y=a

NN

Bry=a
1Bl#lal

£i(0 v + Firv) VATV (VAT v [(VX)_TVF"p])‘ dxdt

(07

A8V + r_rv) VATV (VAT (ryna,zrﬁv))' dxdt

A(0Tv + D) VATV (VAT - [CAVX) T (VD
r

(@ - APy + Y Cyre g )] dx.
L1+L2=,3

The first term on the right-hand side of (3.17) is solved by

[ 1

fi(d v + Krv) VATV (Vi r“v)' dxdt

(3.17)
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IKrY2 Vgl |5 ¢ry 2 V||, dt

T
I“(l
< f Hr—i<r>—%(|a,r“v|+| V|)
0 ro /e

< 6LE(T).
The calculations in (2.12) imply that

IVT? pllz2 + 2TV — ATV 2
< OO = PTVIO VIl + (7 I = HIPTAVIIT VIOVl
B+y=a B+y+i=a
+ O = DIV + IVl |5y VT,
pry=a 1<<3

1BI#le

£ O IOV [ = @Y = ATy + ) CaTonaiT )|,

By=a L1+i2=
I<IBi<lel A

+ O IV = iY@y — ATy + " CaTendi T y),...

ﬂV;zET L+i=0

Substituting (3.18) into the second term on the right-hand side of (3.17), we have

)

(8,rv + —) VATV (VAT [(VX)_TVF"‘p])‘ dxdt

T Fa
< f f F(BT™ + =) - VATIVE - (VAT V- (8,v,0,7,0,T° p)) dxd
ijlmn=123Y0 JRI r
1—‘(1/
+ Z f A0V + ) VATV - (VAT V- (0,%:0,0" p)) dxdt
i,j,1=1,2,3 R

N

by e o TV .
f @7 |00V + =) Vil IV 99Tl d
0

T N T*v|
[ o5,

T 3
< SLE(T) + f (t)72E2(1) dt.
0

VY2V pllp2 di

For the third term on the right-hand side of (3.17), we have

Q’

(6,v + r—) VATV (VpATVE (Wn62rﬂv))' dxdt

ﬁ+7 @
wv) VATV (VAT v (nafr“v))‘ dxdt
(6,1v + 1) VATV (VAT v (rynazrﬁv))] dxdt.
Bry=a
|Bl#ler|

(3.18)

(3.19)

(3.20)
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We use (2.4) to formulate the first term on the right-hand side of (3.20) as follows

[
g1
I

(07

A0V + F_rV) VATV (VAT vt (p_lnAF“V))' dxdt

v

¥
ba

)-vATIVE - (VAT V- (p_ln(VX)_TVF“p))' dxdt

fk(arl“av +

fi(d. v + L:V) VATV (VAT v (p—lnrynafrﬁv))‘ dxdt

Bry=a
B1#lal
T e
+ f f f(d. v + V)-VA-IVL-(VnA-lvl-[p-ln(VX)-T(Vryv)T
Bry=a 0 R3 r
1BI#lal
(@ = APy + 3 Care g )])| dudr (3.21)

L1+p=t

For the first term on the right-hand side of (3.21), we have

N

Z f ' f A0V + ?)-VA‘IVL-(VnA‘IVL-é,-(p“naiFav)) dxdt
=130 JR}

a

£ v + r_rv) L VAT'VE - (VAT v (p—lnAr“v))| dxdt

A

(07

T
+ izlz,zﬁj(; L3 fk(arF‘YV + F—rv) VAL . (VUA—le_ . [6i(,0_177)6ilwv]) dxdt

Ty @ vl
fo Hr Hry (BT + - )

sy Ve, de
< 6LE(T).

7

VAl (il + KV e milis)

The second term on the right-hand side of (3.21) can be solved as (3.19). We employ the analogous
method utilized for the first two terms on the right-hand side of (3.4) to solve the last two terms on the
right-hand side of (3.21).

For the second term on the right-hand side of (3.20), we have

Z j(;T Lz fk(@rrav + KFV) CVA“IVL . (VnA‘IVL ) (rvnafrﬁv))l dxdt

Bry=a
Bl
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B+y=a
BIsyl

T
< SLE(T) + 6 f (O2E() dt.
0

LKVl KTl 11K ~ NV di

KOVl KTl 211K ~ NPV s dr
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For the last term on the right-hand side of (3.17), by Lemmas 2 and 6, we have

I

(@TPy - ADPv+ Y F‘Znéfl"“v)])‘ dxdt

I_‘a’
£y + —V) VATV (VAT V- [CAVX) T (VW)
r

L +u=p
r ] =1, 1 @ vl
s ) fo @7t + =) I Vil 19T
B+y=a
i<Bi<lel
@@y - APy + X" Carenairv)||,, d
L+u=p
T i, . T
+ Y fo @7 |t + =) I Vil VT
B+y=a
BI<iyl
@ity - Aty + 3" carenairt)|| . dr
L+u=p

T 3
S OLE(T) + f (Y282 (1) dt.
0
Combining all the estimates, we conclude that

sup f |0Tv*(t) dx + LE(T)

0<t<T

R
1 T ; T
<Gy f 0TV[*(0) dx + CCo(6 + sup E2(H)LE(T) + C f 0 3E () di + Cs f (1Y 3E(t) dt,
R3 0 0

0<t<T

where C > 0 is some positive constant. By the smallness of 6, &,(¢), and the standard continuity method,
we arrive at the main result.
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