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1. Introduction

The motion dynamics of incompressible isotropic elastodynamics is characterized as a wave system
in Lagrangian coordinates, which inherently satisfies the null condition. Based on this structure, a
series of studies have been conducted to establish the global well-posedness of classical solutions
to this system; see [1, 2]. However, these studies reveal a certain time growth for the highest-order
generalized energy. In this paper, we investigate the time growth of the Sobolev norm for classical
solutions to three-dimensional inhomogeneous incompressible isotropic elastodynamics with small
initial perturbation and establish the uniform bound for the highest-order energy.

Before presenting the main result of this paper, we briefly review related known results. For
three-dimensional elastic waves, John [3] proved that the genuine nonlinearity condition leads to
singularity formation even for arbitrarily small spherically symmetric displacement. We also refer
readers to [4] regarding large displacement singularity. The existence of almost global solutions was
established in [5, 6] for three-dimensional quasilinear wave equations with sufficiently small initial
data. Significant contributions toward global existence were independently made by Sideris [7, 8]
and Agemi [9] under the assumption that nonlinearity satisfies the null condition in three dimensions.
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In terms of three-dimensional incompressible elastodynamics, the only waves presented in the
isotropic systems are shear waves, which are linearly degenerate. The global existence of a solution
was demonstrated by Sideris and Thomases in [1, 2] through two different methods. It is more
challenging to obtain the global existence for the two-dimensional incompressible elastodynamics
due to the weaker dispersive decay. In [10], the authors proved almost global existence for a two-
dimensional incompressible system in Eulerian coordinates. By introducing the concept of strong null
condition and observing that the incompressible elastodynamics automatically satisfies such strong
null structure in Lagrangian coordinates, Lei [11] successfully proved the global well-posedness for
two-dimensional incompressible elastodynamics by the method of Klainerman and Alinhac’s ghost
weight method [12]. We also see [13] for a different approach using the spacetime resonance method.
All the aforementioned works considered the homogeneous fluids. In [14], the authors established
the global well-posedness for the three-dimensional inhomogeneous incompressible elastodynamics
in Lagrangian coordinates. It is noteworthy that the upper bound of the highest-order generalized
energy in those studies depends on time. Utilizing the Klainerman’s generalized energy method, an
analysis of the inherent structure of the system and the ghost weight method, [15, 16] established
the uniform bound for the highest-order generalized energy estimates for two-dimensional and three-
dimensional incompressible elastodynamics, respectively. Based on the above foundational works, it
is natural to verify the uniform bound for the highest-order generalized energy for three-dimensional
inhomogeneous incompressible isotropic elastodynamics. To establish the time growth of the Sobolev
norm of classical solution, two novel methods are presented in this paper. First, based on the Sobolev
embedding inequality and the structure of the system, the refined decay rates were derived for the
solution in the domain away from the light cone. Second, we apply the KSS-type estimate to overcome
the difficulties posed by insufficient time decay resulting from density perturbation.

This paper is organized as follows. In Section 2, we introduce the system of three-dimensional
inhomogeneous isotropic elastodynamics and define the notations utilized throughout this paper. Besides,
the main result along with several useful lemmas are presented in this section. The energy estimates are
discussed in Section 3.

2. Preliminaries

We first formulate the inhomogeneous isotropic elastodynamics and denote some notations that are
used frequently in this paper.

2.1. Equations and notations

For any given smooth flow map X(t, x), we call it incompressible if∫
Ω

dx =

∫
Ωt

dX, Ωt = {X(t, x) | x ∈ Ω}

for any smooth bounded connected domain Ω, which yields that

det(∇X) = 1.

Denote

X(t, x) = x + v(t, x).
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Simple calculation shows that the incompressible condition is equivalent to

∇ · v +
1
2
[
(tr∇v)2 − tr(∇v)2] + det(∇v) = 0. (2.1)

Without loss of generality, we assume that the density of fluid is a small perturbation around the constant
state 1, that is, ρ(x) = 1 + η(x). For the inhomogeneous isotropic material, the motion of the elastic fluid
in the Lagrangian coordinate is determined by

L(X; T,Ω) =

∫ T

0

∫
Ω

(1
2
ρ(x)|∂tX|2 −W(∇X) + p(t, x)

[
det(∇X) − 1

])
dxdt. (2.2)

Here W(∇X) ∈ C∞ is the strain energy function. p(t, x) is a Lagrangian multiplier that is used to force
the flow maps to be incompressible. To simplify the presentation, we only study the typical Hookean
case for which the strain energy functional is given by

W(∇X) =
1
2
|∇X|2.

By calculating the variation of (2.2), we obtain the equation

ρ∂2
t v − ∆v = −(∇X)−T∇p. (2.3)

Now, we introduce the following derivative vector fields

∂t = ∂0, ∇ = (∂1, ∂2, ∂3) and ∂ = (∂0, ∂1, ∂2, ∂3).

The scaling operator is denoted by

S = t∂t + r∂r.

Here, the radial derivative is defined by ∂r = x
r · ∇, r = |x|. The angular momentum operators are denoted

by

Ω = x ∧ ∇.

In the application, we usually use the modified rotational operators and scaling operator; that is, for any
vector v and scalar p and ρ, we set

S̃ p = S p, S̃ ρ = S ρ, S̃ v = (S − 1)v,

Ω̃i p = Ωi p, Ω̃iρ = Ωiρ, Ω̃iv = Ωiv + Uiv, i = 1, 2, 3,

where

U1 = e2 ⊗ e3 − e3 ⊗ e2,

U2 = e3 ⊗ e1 − e1 ⊗ e3,

U3 = e1 ⊗ e2 − e2 ⊗ e1.
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Let

Γ = (Γ1, · · · ,Γ8) = (∂, Ω̃, S̃ )

and for any multi-index α = (α1, α2, · · · , α8) ∈ N8, we denote

Γα = Γ
α1
1 · · · Γ

α8
8 .

We apply the derivatives Γα to the equations (2.1) and (2.3), and then the three-dimensional inhomoge-
neous isotropic elastodynamics can be written as

ρ∂2
t Γ

αv − ∆Γαv = − (∇X)−T∇Γαp −
∑
β+γ=α
|β|,|α|

Cβ
αΓ

γη∂2
t Γ

βv −
∑
β+γ=α
|β|,|α|

Cβ
α(∇X)−T (∇Γγv)T

·
(
∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)
=: Nα (2.4)

with the incompressible condition

∇ · Γαv +
∑
β+γ=α

i, j=1,2,3,i< j

Cβ
α

(
∂iΓ

βvi∂ jΓ
γv j − ∂iΓ

βv j∂ jΓ
γvi

)
+

∑
β+γ+ι=α

Cβ
αC

γ
α−β

∣∣∣∣∣∣∣∣∣
∂1Γ

βv1 ∂2Γ
βv1 ∂3Γ

βv1

∂1Γ
βv2 ∂2Γ

βv2 ∂3Γ
βv2

∂1Γ
βv3 ∂2Γ

βv3 ∂3Γ
βv3

∣∣∣∣∣∣∣∣∣ = 0.

(2.5)

Here the binomial coefficient Cβ
α is given by

Cβ
α =

α!
β!(α − β)!

.

2.2. Main result

We denote the Klainerman’s generalized energy by

Eκ(t) =
∑
|α|≤κ−1

∫
R3

(
|∂tΓ

αv|2 + |∇Γαv|2
)

dx.

We also define the weighted energy norm

Xκ(t) =
∑
|α|≤κ−2

∫
R3
〈t − r〉2|∂2Γαv|2 dx.

To describe the space of initial data, we introduce the time-independent analogue of Γ as

Λ = (∇, r∂r − 1, Ω̃)

and the space of initial data is defined by

Hκ
Λ =

{
( f , g) :

∑
|α|≤κ−1

(
‖Λα f ‖L2 + ‖∇Λα f ‖L2 + ‖Λαg‖L2

)
< ∞

}
.
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As the first step to investigate our problem, we introduce the following lemma, which helps us to
solve the additional terms resulting from density perturbation. Let

LEκ(T ) =
∑
|α|≤κ−1

∫ T

0

∫
Rn

r−1+2µ〈r〉−2µ′
(
|∂Γαv| +

|Γαv|
r

)2
dxdt

with µ ∈ (0, 1
2) and µ′ > µ. Without loss of generality, we choose µ = 1

4 and µ′ = 1
2 in this paper. In the

case of µ′ = µ, we see LEκ(T ) is the KSS norm, and we denote it by KS S κ(T ).

Lemma 1. Let f0 = [r/(1 + r)]2µ, fk = r/(r + 2k) with k ≥ 1, µ ∈ (0, 1/2), and v be the solution to the
equation ∂2

t v − c2∆v + hab∂a∂bv = N in [0,T ] × Rn with hab = hba,
∑

0≤a,b≤n |hab| ≤ min(1, c2)/2 for any
integer n ≥ 3. Then there exists a positive constant C0 that depends only on the dimension n such that

sup
0≤t≤T

∫
Rn
|∂v|2(t) dx + LE1(T ) +

(
ln(2 + T )

)−1KS S 1(T )

≤ C0

∫
Rn
|∂v|2(0) dx + C0

∫ T

0

∫
Rn

[(
|∂h| +

|h|
r1−2µ〈r〉2µ

)
|∂v|

(
|∂v| +

|v|
r

)]
dxdt

+ C0

∣∣∣∣ ∫ T

0

∫
Rn
∂tv · N dxdt

∣∣∣∣ + C0 sup
k≥0

∣∣∣∣ ∫ T

0

∫
Rn

fk

(
∂rv +

n − 1
2r

v
)
· N dxdt

∣∣∣∣,
where |h| =

∑n
a,b=0 |hab| and |∂h| =

∑n
a,b,c=0 |∂chab|.

This lemma can be found in [17]. See also [18, 19] and references therein.
Based on the previous statement, we are ready to show the main result of this paper.

Theorem 1. Let W(∇X) = 1
2 |∇X|2 be an isotropic Hookean strain energy function and (v0, ∂tv0) ∈ Hκ

Λ

with κ ≥ 12. Let C0 > 0 be given constant in Lemma 1. Suppose v0 satisfies the structural constraint
condition (2.1) and

Eκ(0) =
∑
|α|≤κ−1

(
‖∂tΛ

αv0‖
2
L2 + ‖∇Λαv0‖

2
L2

)
≤ ε.

If

‖〈r〉Λαη‖L2 ≤ δ for |α| ≤ κ,

then there exist two sufficiently small constants, ε0, δ0 and constant C1, that depend only on κ and C0

such that if ε ≤ ε0 and δ ≤ δ0, the system (2.3) has a unique global classical solution that satisfies

Eκ(t) ≤ C1ε

uniformly for all t ∈ [0,+∞).

2.3. Calculus inequalities

In this part, we establish several lemmas that are crucial for the energy estimates. Throughout this
paper, we denote 〈·〉 = (1 + | · |2)

1
2 . The notation f . g stands for f ≤ Cg for some generic constant

C > 0, which may vary from line to line. In the process of deriving the energy estimates, we usually
separate the whole integration domain R3 into two parts:

R =
{
x ∈ R3 : r ≤ 〈t〉/8

}
, Rc =

{
x ∈ R3 : r > 〈t〉/8

}
.

We first recall the Sobolev-type inequalities, which were justified in [8].

Communications in Analysis and Mechanics Volume 17, Issue 2, 429–461.



434

Lemma 2. For any v ∈ C∞0 (R3)3, r = |x| and r̃ = |y|, we have

‖〈r〉
1
2 v(x)‖L∞ .

∑
|α|≤1

‖∇Ω̃αv‖L2 ,

‖〈r〉v(x)‖L∞ .
∑
|α|≤1

‖∂rΩ̃
αv‖

1
2
L2(|y|≥r)‖Ω̃

αv‖
1
2
L2(|y|≥r),

‖〈r〉〈t − r〉v(x)‖L∞ .
∑
|α|≤1

‖〈t − r̃〉∂r̃Ω̃
αv‖L2(|y|≥r) +

∑
|α|≤2

‖〈t − r̃〉Ω̃αv‖L2(|y|≥r).

The following lemma concerns the dispersive decay of solutions in the domain away from the light
cone.

Lemma 3. For any v ∈ H2(R3), there holds

〈t〉‖v‖L∞(r≤〈t〉/8) . ‖v‖L2(r≤〈t〉/4) + ‖〈t − r〉∇v‖L2(r≤〈t〉/4) + ‖〈t − r〉∇2v‖L2(r≤〈t〉/4).

Proof. The proof can be found in Lemma 4.3 in [16]. �

Let s = 8r
〈t〉 . We introduce a radial cutoff function ξ(s) ∈ C∞0 that satisfies

ξ(s) =

1, s ≤ 1,
0, s ≥ 2.

It is easy to observe from Lemmas 2 and 3 that

〈t〉
∥∥∥∂v

∥∥∥
L∞
. 〈t〉

∥∥∥∂v
∥∥∥

L∞(R)
+

∥∥∥〈r〉(1 − ξ(s))∂v
∥∥∥

L∞

.
∥∥∥∂v

∥∥∥
L2(r≤〈t〉/4)

+
∥∥∥〈t − r〉∇∂v

∥∥∥
L2(r≤〈t〉/4)

+
∥∥∥〈t − r〉∇2∂v

∥∥∥
L2(r≤〈t〉/4)

+
∑

ι1,|ι2 |≤1

∥∥∥∂ι1r Ω̃ι2
[
(1 − ξ(s))∂v

]∥∥∥
L2

. E
1
2
3 (t) + X

1
2
3 (t). (2.6)

To control the weighted energy norm by the generalized energy norm, the pressure must be estimated
via the system (2.4)-(2.5). A similar proof can be found in [14]. For a self-contained presentation, we
include its proof below.

Lemma 4. For any integer κ ≥ 6 and multi-index α satisfying |α| ≤ κ − 2, if E[κ/2]+3(t) and ‖〈r〉Λαη‖L2

are small. Then there holds

〈t〉‖∇Γαp‖L2 + 〈t〉‖ρ∂2
t Γ

αv − ∆Γαv‖L2 . δX
1
2
κ (t) + E

1
2
κ (t)X

1
2
[κ/2]+3(t) + E

1
2
[κ/2]+3(t)X

1
2
κ (t).

Proof. It observes from (2.4) that

∇Γαp = − (∇X)T
(
ρ∂2

t Γ
αv − ∆Γαv

)
−

∑
β+γ=α
|β|,|α|

Cβ
α(∇X)T Γγη∂2

t Γ
βv

−
∑
β+γ=α
|β|,|α|

Cβ
α (∇Γγv)T (

∂2
t Γ

βv − ∆Γβv +
∑

ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)
. (2.7)
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We apply ∇∆−1∇· to the above equality and take the L2 norm. By the L2 boundness of the Riesz operator,
one has∥∥∥∇Γαp

∥∥∥
L2 .

∥∥∥∇∆−1∇ ·
(
ρ∂2

t Γ
αv − ∆Γαv

)∥∥∥
L2 +

∥∥∥(∇v)T (ρ∂2
t Γ

αv − ∆Γαv
)∥∥∥

L2 +
∑
β+γ=α
|β|,|α|

∥∥∥(∇X)T Γγη∂2
t Γ

βv
∥∥∥

L2

+
∑
β+γ=α
|β|,|α|

∥∥∥(∇Γγv)T (∂2
t Γ

βv − ∆Γβv +
∑

ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)∥∥∥
L2 . (2.8)

Special attention is paid to the first term on the right-hand side of (2.8). We apply the derivative operator
(∂2

t − ∆) to the incompressible condition (2.5). Without loss of generality, we assume at least one order
derivative operator of (∂2

t − ∆) works on the first component of the velocity field in the second line of
(2.5). Then we obtain(

∂2
t − ∆

)(
∇ · Γαv

)
= −

∑
β+γ=α

i, j=1,2,3,i< j

Cβ
α

(
∂2

t − ∆
)(
∂iΓ

βvi∂ jΓ
γv j − ∂iΓ

βv j∂ jΓ
γvi

)
−

∑
β+γ+ι=α

Cβ
αCγ

α−β

(
∂2

t − ∆
) ∣∣∣∣∣∣∣∣∣∣

∂1Γβv1 ∂2Γβv1 ∂3Γβv1

∂1Γβv2 ∂2Γβv2 ∂3Γβv2

∂1Γβv3 ∂2Γβv3 ∂3Γβv3

∣∣∣∣∣∣∣∣∣∣
=

∑
β+γ=α

m+n=1,i=0,1,2,3

Cβ
α∇ ·


∂m+1

i Γβv1∂2∂
n
i Γγv2 + ∂m+1

i Γβv1∂3∂
n
i Γγv3 − ∂2∂

m
i Γβv1∂

n+1
i Γγv2 − ∂3∂

m
i Γβv1∂

n+1
i Γγv3

−∂m+1
i Γβv1∂1∂

n
i Γγv2 + ∂m+1

i Γβv2∂3∂
n
i Γγv3 + ∂1∂

m
i Γβv1∂

n+1
i Γγv2 − ∂3∂

m
i Γβv2∂

n+1
i Γγv3

−∂m+1
i Γβv2∂2∂

n
i Γγv3 − ∂

m+1
i Γβv1∂1∂

n
i Γγv3 + ∂2∂

m
i Γβv2∂

n+1
i Γγv3 + ∂1∂

m
i Γβv1∂

n+1
i Γγv3


+

∑
β+γ+ι=α

m2+m2+m3=1,i=0,1,2,3

Cβ
αCγ

α−β∇ ·

∂m1+1
i Γβv1


∂2∂

m2
i Γγv2∂3∂

m3
i Γιv3 − ∂3∂

m2
i Γγv2∂2∂

m3
i Γιv3

∂3∂
m2
i Γγv2∂1∂

m3
i Γιv3 − ∂1∂

m2
i Γγv2∂3∂

m3
i Γιv3

∂1∂
m2
i Γγv2∂2∂

m3
i Γιv3 − ∂2∂

m2
i Γγv2∂1∂

m3
i Γιv3


 .

Based on the above equality, we handle the first term on the right-hand side of (2.8) as follows∥∥∥∇∆−1∇ ·
(
ρ∂2

t Γ
αv − ∆Γαv

)∥∥∥
L2

.
∥∥∥∇∆−1[(ρ∂2

t − ∆
)(
∇ · Γαv

)]∥∥∥
L2 +

∑
i=1,2,3

∥∥∥∇∆−1(∂η∂2
t Γ

αvi
)∥∥∥

L2

.
(
1 + ‖∇v‖L∞

)
‖∇v‖L∞

∥∥∥ρ∂2
t Γ

αv − ∆Γαv‖L2 +
∑

β+γ=α,|β|,|α|
i, j=1,2,3,i, j

‖∂2Γβvi∂Γγv j

∥∥∥
L2

+
∑

β+γ+ι=α,|β|,|α|
i, j,k=1,2,3,i, j,k

∥∥∥∂2Γβvi∂Γγv j∂Γιvk

∥∥∥
L2 +

∑
β+γ=α,|β|,|α|
i, j=1,2,3,i, j

∥∥∥∇∆−1(∂η∂2Γβvi∂Γγv j)
∥∥∥

L2

+
∑

β+γ+ι=α,|β|,|α|
i, j,k=1,2,3,i, j,k

∥∥∥∇∆−1(∂η∂2Γβvi∂Γγv j∂Γιvk)
∥∥∥

L2 +
∑

i=1,2,3

∥∥∥∇∆−1(∂η∂2
t Γ

αvi
)∥∥∥

L2

+
∑

i, j=1,2,3
i, j

∥∥∥∇∆−1(∂η∂2
t Γ

αvi∂v j
)∥∥∥

L2 +
∑

i, j,k=1,2,3
i, j,k

∥∥∥∇∆−1(∂η∂2
t Γ

αvi∂v j∂vk
)∥∥∥

L2 . (2.9)

By (2.8), (2.9), the Sobolev embedding inequality, and the smallness of ‖∇η‖L3 , we have

‖∇Γαp‖L2 .
(
1 + ‖∇v‖L∞

)
‖∇v‖L∞

∥∥∥ρ∂2
t Γ

αv − ∆Γαv
∥∥∥

L2 +
∑

β+γ=α,|β|,|α|
i, j=1,2,3,i, j

∥∥∥∂2Γβvi∂Γγv j

∥∥∥
L2
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+
∑

β+γ+ι=α,|β|,|α|
1, j,k=1,2,3,i, j,k

∥∥∥∂2Γβvi∂Γγv j∂Γιvk

∥∥∥
L2 +

∑
β+γ=α
|β|,|α|

∥∥∥Γγη∂2
t Γ

βv
∥∥∥

L2

+
∑
β+γ=α
|β|,|α|

∥∥∥(∇Γγv)T (∂2
t Γ

βv − ∆Γβv +
∑

ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)∥∥∥
L2 +

∑
i=1,2,3

∥∥∥∂η∂2
t Γ

αvi

∥∥∥
L

6
5

+
∑

i, j=1,2,3
i, j

∥∥∥∂η∂2
t Γ

αvi∂v j

∥∥∥
L

6
5

+
∑

i, j,k=1,2,3
i, j

∥∥∥∂η∂2
t Γ

αvi∂v j∂vk

∥∥∥
L

6
5
.

By (2.4), the above inequality and the smallness of E[κ/2]+3(t), one obtains

‖∇Γαp‖L2 + ‖ρ∂2
t Γ

αv − ∆Γαv‖L2

.
∑

β+γ=α,|β|,|α|
i, j=1,2,3,i, j

‖∂2Γβvi∂Γγv j‖L2 +
∑

β+γ+ι=α,|β|,|α|
i, j,k=1,2,3,i, j,k

‖∂2Γβvi∂Γγv j∂Γιvk‖L2 +
∑
β+γ=α
|β|,|α|

‖Γγη∂2
t Γ

βv‖L2

+
∑
β+γ=α
|β|,|α|

∥∥∥(∇Γγv)T (∂2
t Γ

βv − ∆Γβv +
∑

ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)∥∥∥
L2 +

∑
i=1,2,3

‖∂η∂2
t Γ

αvi‖L
6
5

+
∑

i, j=1,2,3
i, j

‖∂η∂2
t Γ

αvi∂v j‖L
6
5

+
∑

i, j,k=1,2,3
i, j,k

‖∂η∂2
t Γ

αvi∂v j∂vk‖L
6
5
.

We deduce from Lemma 2 that

〈t〉‖∇Γαp‖L2 + 〈t〉‖ρ∂2
t Γ

αv − ∆Γαv‖L2

.
∑
β+γ=α
|γ|<|β|<|α|

‖〈t − r〉∂2Γβv‖L2‖〈r〉∂Γγv‖L∞ +
∑
β+γ=α
|β|≤|γ|

‖〈r〉〈t − r〉∂2Γβv‖L∞‖∂Γγv‖L2

+
∑
β+γ+ι=α
|γ|,|ι|<|β|<|α|

‖〈t − r〉∂2Γβv‖L2‖〈r〉∂Γγv‖L∞‖∂Γιv‖L∞ +
∑
β+γ+ι=α
|β|,|ι|≤|γ|

‖〈r〉〈t − r〉∂2Γβv‖L∞‖∂Γγv‖L2‖∂Γιv‖L∞

+
∑
β+γ+ι=α
|β|,|γ|≤|ι|

‖〈r〉〈t − r〉∂2Γβv‖L∞‖∂Γγv‖L∞‖∂Γιv‖L2 +
∑
β+γ=α
|γ|<|β|<|α|

‖〈r〉Γγη‖L∞‖〈t − r〉∂2
t Γ

βv‖L2

+
∑
β+γ=α
|β|≤|γ|

‖Γγη‖L2‖〈r〉〈t − r〉∂2
t Γ

βv‖L∞ +
∥∥∥〈r〉∇η∥∥∥

L3

(
1 +

∥∥∥∇v
∥∥∥

L∞
)2∥∥∥〈t − r〉∂2

t Γ
αv

∥∥∥
L2

+
∑
β+γ=α
|γ|<|β|<|α|

‖〈r〉∇Γγv‖L∞
∥∥∥〈t − r〉

(
∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)∥∥∥
L2

+
∑
β+γ=α
|β|≤|γ|

‖∇Γγv‖L2

∥∥∥〈r〉〈t − r〉
(
∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)∥∥∥
L∞

. δX
1
2
κ (t) + E

1
2
κ (t)X

1
2
[κ/2]+3(t) + E

1
2
[κ/2]+3(t)X

1
2
κ (t).

It completes the proof. �

As an application of the above result, we establish the estimate of weighted energy.

Lemma 5. Let v ∈ Hκ
Γ
(R3) be the solution to the system (2.3) with the constraint condition (2.1). For

any integer κ ≥ 6, if Eκ(t) and ‖〈r〉Λαη‖L2 are small, then we have

Xκ(t) . Eκ(t).
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Proof. For any multi-index α satisfying |α| ≤ κ − 2, we apply Γα to Lemma 3.3 in [11] to get

Xκ(t) . Eκ(t) + t‖∂2
t Γ

αv − ∆Γαv‖2L2 .

It follows from the above inequality and Lemma 4 that

Xκ(t) . Eκ(t) + δ2Xκ(t) + E[κ/2]+3(t)Xκ(t) + Eκ(t)X[κ/2]+3(t).

By the smallness of δ and Eκ(t), we arrive at the lemma. �

In preparation for the energy estimates, more detailed analysis of pressure is needed. In what follows,
we always assume that Eκ(t) and ‖〈r〉Λαη‖L2 are small.

Lemma 6. For any integer κ ≥ 8 and multi-index α satisfying |α| ≤ κ − 1, we have

‖∇Γαp‖L2 . E
1
2
κ (t) (2.10)

and

〈t〉‖∇Γαp‖L2(Rc) + 〈t〉‖ρ∂2
t Γ

αv − ∆Γαv‖L2(Rc) . E
1
2
κ (t). (2.11)

Proof. Following the calculations in Lemma 4, we arrive at (2.9). Special attention is paid to the last
three terms on the right-hand side of (2.9). From (2.4), one has

∂2
t Γ

αv = ρ−1∆Γαv − ρ−1(∇X)−T∇Γαp −
∑
β+γ=α
|β|,|α|

Cβ
αρ
−1Γγη∂2

t Γ
βv

−
∑
β+γ=α
|β|,|α|

Cβ
αρ
−1(∇X)−T (∇Γγv)T (∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)
.

We use the above equality and the Sobolev embedding inequality to solve the last three terms on the
right-hand side of (2.9) by∥∥∥∇∆−1[ρ−1∂η(1 + ∂v)2∆Γαv

]∥∥∥
L2 +

∥∥∥∇∆−1[ρ−1∂η(1 + ∂v)2(∇X)−T∇Γαp
]∥∥∥

L2

+
∑
β+γ=α
|β|,|α|

∥∥∥∇∆−1[ρ−1∂η(1 + ∂v)2(∇X)−T (∇Γγv)T (∂2
t Γ

βv − ∆Γβv +
∑

ι1+ι2=β

Cι1
β Γι2∂2

t Γ
ι1v

)]∥∥∥
L2

+
∑
β+γ=α
|β|,|α|

∥∥∥∇∆−1[ρ−1∂η(1 + ∂v)2Γγη∂2
t Γ

βv
]∥∥∥

L2

.
∥∥∥∂η(1 + ∂v)2∇Γαv

∥∥∥
L2 +

∑
i+ j+k=1

∥∥∥∂i(ρ−1)∂ j∂η∂k(1 + ∇v)2∇Γαv
∥∥∥

L
6
5

+
∥∥∥∂η(1 + ∂v)2(∇X)−T∇Γαp

∥∥∥
L

6
5

+
∑
β+γ=α
|β|,|α|

∥∥∥∂η(1 + ∂v)2(∇X)−T (∇Γγv)T (∂2
t Γ

βv − ∆Γβv +
∑

ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)∥∥∥
L

6
5

+
∑
β+γ=α
|β|,|α|

∥∥∥∂η(1 + ∂v)2Γγη∂2
t Γ

βv
∥∥∥

L
6
5
.
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Utilizing (2.4), (2.8), the above estimate, and the Sobolev embedding inequality, we arrive at∥∥∥∇Γαp
∥∥∥

L2 +
∥∥∥ρ∂2

t Γ
αv − ∆Γαv

∥∥∥
L2

.
∑
β+γ=α
|γ|<|β|<|α|

∥∥∥∂2Γβv
∥∥∥

L2

∥∥∥∂Γγv
∥∥∥

L∞
+

∑
β+γ=α
|β|≤|γ|

∥∥∥∂2Γβv‖L∞‖∂Γγv
∥∥∥

L2 +
∑
β+γ+ι=α
|γ|,|ι|<|β|<|α|

∥∥∥∂2Γβv
∥∥∥

L2

∥∥∥∂Γγv
∥∥∥

L∞

∥∥∥∂Γιv
∥∥∥

L∞

+
∑
β+γ+ι=α
|β|,|ι|≤|γ|

∥∥∥∂2Γβv
∥∥∥

L∞

∥∥∥∂Γγv
∥∥∥

L2

∥∥∥∂Γιv
∥∥∥

L∞
+

∑
β+γ+ι=α
|β|,|γ|≤|ι|

∥∥∥∂2Γβv
∥∥∥

L∞

∥∥∥∂Γγv
∥∥∥

L∞

∥∥∥∂Γιv
∥∥∥

L2

+
∑
β+γ=α
|γ|<|β|<|α|

∥∥∥Γγη∥∥∥
L∞

∥∥∥∂2
t Γ

βv
∥∥∥

L2 +
∑
β+γ=α
|β|≤|γ|

∥∥∥Γγη∥∥∥
L2

∥∥∥∂2
t Γ

βv‖L∞ +
∑

1≤|ι|≤3

‖∇ιη
∥∥∥

L2

∥∥∥∇Γαv
∥∥∥

L2

+
∑
β+γ=α
|γ|<|β|<|α|

∥∥∥∇Γγv
∥∥∥

L∞

∥∥∥∂2
t Γ

βv − ∆Γβv +
∑

ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

∥∥∥
L2

+
∑
β+γ=α
|β|≤|γ|

∥∥∥∇Γγv
∥∥∥

L2

∥∥∥∂2
t Γ

βv − ∆Γβv +
∑

ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

∥∥∥
L∞

. δE
1
2
κ (t) + E

1
2
κ (t)E

1
2
[κ/2]+4(t). (2.12)

The smallness of δ and Eκ(t) leads to (2.10).
To verify (2.11), we use (2.12), Lemma 2, and the smallness of Eκ(t) to get

〈t〉‖∇Γαp‖L2(Rc) + 〈t〉‖ρ∂2
t Γ

αv − ∆Γαv‖L2(Rc)

.
∑
β+γ=α
|γ|<|β|<|α|

∥∥∥∂2Γβv
∥∥∥

L2

∥∥∥〈r〉∂Γγv
∥∥∥

L∞
+

∑
β+γ=α
|β|≤|γ|

∥∥∥〈r〉∂2Γβv
∥∥∥

L∞

∥∥∥∂Γγv
∥∥∥

L2 +
∑
β+γ+ι=α
|β|,|ι|≤|γ|

∥∥∥∂2Γβv
∥∥∥

L∞

∥∥∥∂Γγv
∥∥∥

L2

∥∥∥〈r〉∂Γιv
∥∥∥

L∞

+
∑
β+γ+ι=α
|β|,|γ|≤|ι|

∥∥∥∂2Γβv
∥∥∥

L∞

∥∥∥〈r〉∂Γγv
∥∥∥

L∞

∥∥∥∂Γιv
∥∥∥

L2 +
∑
β+γ+ι=α
|γ|,|ι|<|β|<|α|

∥∥∥∂2Γβv
∥∥∥

L2

∥∥∥〈r〉∂Γγv
∥∥∥

L∞
‖∂Γιv‖L∞

+
∑
β+γ=α
|γ|<|β|<|α|

∥∥∥〈r〉Γγη∥∥∥
L∞

∥∥∥∂2
t Γ

βv
∥∥∥

L2 +
∑
β+γ=α
|β|≤|γ|

∥∥∥Γγη∥∥∥
L2

∥∥∥〈r〉∂2
t Γ

βv
∥∥∥

L∞
+

∑
1≤|ι|≤3

∥∥∥〈r〉∇ιη∥∥∥
L2

∥∥∥∇Γαv
∥∥∥

L2

+
∑
β+γ=α
|γ|<|β|<|α|

∥∥∥〈r〉∇Γγv
∥∥∥

L∞

∥∥∥∂2
t Γ

βv − ∆Γβv +
∑

ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

∥∥∥
L2

+
∑
β+γ=α
|β|≤|γ|

∥∥∥∇Γγv
∥∥∥

L2

∥∥∥〈r〉(∂2
t Γ

βv − ∆Γβv +
∑

ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)∥∥∥
L∞

. E
1
2
κ (t)E

1
2
[κ/2]+4(t) + δE

1
2
κ (t).

The smallness of δ and Eκ(t) implies (2.11). �

In the subsequent part, we present the improved decay properties for the third-order spatial derivatives
of unknown variables in the domain away from the light cone.

Lemma 7. For any integer κ ≥ 10 and multi-index α satisfying |α| ≤ [κ/2], it holds that

〈t〉2‖∇3Γαv‖L2(R) . E
1
2
[κ/2]+5(t).
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Proof. We apply the derivative operator ∇ to the equation (2.4) to get

∇∆Γαv =∇η∂2
t Γ

αv + ρ∂2
t∇Γαv + ∇(∇X)−T∇Γαp + (∇X)−T∇∇Γαp +

∑
β+γ=α
|β|,|α|

Cβ
α∇Γγη∂2

t Γ
βv

+
∑
β+γ=α
|β|,|α|

Cβ
αΓ

γη∂2
t∇Γβv +

∑
β+γ=α
|β|,|α|

Cβ
α∇

[
(∇X)−T (∇Γγv)T (∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)]
.

By multiplying the above equality by t2ξ(s) and taking the L2 inner product, one has∫
R3

∣∣∣t2ξ(s)∇∆Γαv
∣∣∣2 dx

≤ 7
∫
R3

∣∣∣t2ξ(s)∇η∂2
t Γ

αv
∣∣∣2 dx + 7

∫
R3

∣∣∣t2ξ(s)ρ∂2
t∇Γαv

∣∣∣2 dx + 7
∫
R3

∣∣∣t2ξ(s)∇(∇X)−T∇Γαp
∣∣∣2 dx

+ 7
∫
R3

∣∣∣t2ξ(s)(∇X)−T∇2Γαp
∣∣∣2 dx +

∑
β+γ=α
|β|,|α|

7
∫
R3

∣∣∣Cβ
αt2ξ(s)∇Γγη∂2

t Γ
βv

∣∣∣2 dx

+
∑
β+γ=α
|β|,|α|

7
∫
R3

∣∣∣Cβ
αt2ξ(s)Γγη∂2

t∇Γβv
∣∣∣2 dx +

∑
β+γ=α
|β|,|α|

7
∫
R3

∣∣∣Cβ
αt2ξ(s)∇

[
(∇X)−T (∇Γγv)T

·
(
∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)]∣∣∣2 dx. (2.13)

Since for any f ∈ H2(R3), the following Sobolev embedding inequality holds true

‖ f ‖L∞ . ‖∇ f ‖
1
2
L2‖∇

2 f ‖
1
2
L2 . (2.14)

By Lemma 2, the first term on the right-hand side of (2.13) is estimated by

7
∫
R3

∣∣∣t2ξ(s)∇η∂2
t Γ

αv
∣∣∣2 dx

.

∫
R3

∣∣∣trξ(s)∇η∂r∂tΓ
αv

∣∣∣2 dx +

∫
R3

∣∣∣tξ(s)∇η∂tS̃ Γαv
∣∣∣2 dx

.
(
‖ξ(s)〈r〉〈t − r〉∂r∂tΓ

αv‖2L∞ + ‖tξ(s)∂tS̃ Γαv‖2L∞
)
‖∇η‖2L2

.
(
‖〈r〉〈t − r〉∂r∂tΓ

αv‖2L∞ + ‖∇(tξ(s)∂tS̃ Γαv)‖L2‖∇2(tξ(s)∂tS̃ Γαv)‖L2

)
‖∇η‖2L2

.
[
‖〈r〉〈t − r〉∂r∂tΓ

αv‖2L∞ +
(
‖ξ′(s)∂tS̃ Γαv‖L2 + ‖ξ(s)〈t − r〉∂t∇S̃ Γαv‖L2

)
·
(
〈t〉−1‖ξ′′(s)∂tS̃ Γαv‖L2 + ‖ξ′(s)∂t∇S̃ Γαv‖L2 + ‖ξ(s)〈t − r〉∂t∇

2S̃ Γαv‖L2

)]
‖∇η‖2L2

. δ2E[κ/2]+4(t). (2.15)

By a similar argument, we handle the second term on the right-hand side of (2.13) as follows

7
∫
R3

∣∣∣t2ξ(s)ρ∂2
t∇Γαv

∣∣∣2 dx

≤ 7
∫
R3

∣∣∣trξ(s)ρ∂r∂t∇Γαv
∣∣∣2 dx + C

∫
R3

(∣∣∣tξ(s)ρ∂t∇S̃ Γαv
∣∣∣2 +

∣∣∣tξ(s)ρ∂t∇Γαv
∣∣∣2) dx
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≤ 7
∫
R3

∣∣∣r2ξ(s)ρ∂2
r∇Γαv

∣∣∣2 dx + C
∫
R3

(∣∣∣tξ(s)ρ∂t∇S̃ Γαv
∣∣∣2 +

∣∣∣tξ(s)ρ∂t∇Γαv
∣∣∣2

+
∣∣∣ξ(s)ρr∂r∇S̃ Γαv

∣∣∣2 +
∣∣∣ξ(s)ρr∂r∇Γαv

∣∣∣2) dx

≤ 7
∫
R3

∣∣∣r2ξ(s)ρ∇3Γαv
∣∣∣2 dx + C

(
‖〈t − r〉∂∇Γαv‖2L2(R) + ‖〈t − r〉∂∇S̃ Γαv‖2L2(R)

)
≤

7
16

∫
R3

∣∣∣t2ξ(s)∇3Γαv
∣∣∣2 dx + CE[κ/2]+3(t). (2.16)

In view of (2.7), the smallness of δ and Eκ(t), one has

‖∇Γαp‖L2(R) + 〈t〉‖∇Γαp‖L2(R)

.
∥∥∥(1 + 〈t〉)(∇X)T (∂2

t Γ
αv − ∆Γαv

)∥∥∥
L2(R)

+
∑
β+γ=α

∥∥∥(1 + 〈t〉)(∇X)T Γγη∂2
t Γ

βv
∥∥∥

L2(R)

+
∑
β+γ=α

∥∥∥(1 + 〈t〉)(∇Γγv)T (∂2
t Γ

βv − ∆Γβv +
∑

ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)∥∥∥
L2(R)

. E
1
2
[κ/2]+2(t).

We substitute the above inequality into the third term on the right-hand side of (2.13) to get

7
∫
R3

∣∣∣t2ξ(s)∇(∇X)−T∇Γαp
∣∣∣2 dx

. 〈t〉2
∥∥∥∇2v

∥∥∥2

L∞(R)
〈t〉2

∥∥∥∇v
∥∥∥2

L∞(R)

∥∥∥∇Γαp
∥∥∥2

L2(R)
+ 〈t〉2

∥∥∥∇2v
∥∥∥2

L∞(R)
〈t〉2

∥∥∥∇Γαp
∥∥∥2

L2(R)

. E[κ/2]+2(t).

We come back to the fourth term on the right-hand side of (2.13). We apply the divergence operator
to the equality (2.7) and multiply t2 on both sides of the resulting equality. By taking the L2 inner
product, one has∥∥∥t2ξ(s)∆Γαp

∥∥∥
L2 .

∥∥∥t2ξ(s)∇ ·
[
(∇v)T

(
ρ∂2

t Γ
αv − ∆Γαv

)] ∥∥∥
L2 +

∑
β+γ=α
|β|,|α|

∥∥∥t2ξ(s)∇ ·
[(
∇v

)T
Γγη∂2

t Γ
βv

]∥∥∥
L2

+
∥∥∥t2ξ(s)∇ ·

(
ρ∂2

t Γ
αv − ∆Γαv

) ∥∥∥
L2 +

∑
β+γ=α
|β|,|α|

∥∥∥t2ξ(s)∇ ·
(
Γγη∂2

t Γ
βv

)∥∥∥
L2

+
∑
β+γ=α
|β|,|α|

∥∥∥t2ξ(s)∇ ·
[
(∇Γγv)T (∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)]∥∥∥
L2 . (2.17)

For the first two terms on the right-hand side of (2.17), we deduce from Lemma 3 that∥∥∥t2ξ(s)∇ ·
[
(∇v)T

(
ρ∂2

t Γ
αv − ∆Γαv

)] ∥∥∥
L2 +

∑
β+γ=α
|β|,|α|

∥∥∥t2ξ(s)∇ ·
[
(∇v)T Γγη∂2

t Γ
βv

]∥∥∥
L2

.
∑
i+ j=1

〈t〉
∥∥∥∇i(∇v)T

∥∥∥
L∞(R)

∥∥∥〈t − r〉∇ j
(
ρ∂2

t Γ
αv − ∆Γαv

) ∥∥∥
L2(R)

+
∑

β+γ=α,|β|≤|γ|
i+ j+k=1

〈t〉
∥∥∥∇i(∇v)T

∥∥∥
L∞(R)

∥∥∥∇ jΓγη
∥∥∥

L2(R)
〈t〉

∥∥∥∂2
t∇

kΓβv
∥∥∥

L∞(R)
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+
∑

β+γ=α,|γ|<|β|<|α|
i+ j+k=1

〈t〉
∥∥∥∇i(∇v)T

∥∥∥
L∞(R)

∥∥∥∇ jΓγη
∥∥∥

L∞(R)

∥∥∥〈t − r〉∂2
t∇

kΓβv
∥∥∥

L2(R)

. E
1
2
4 (t)E

1
2
[κ/2]+3(t) + δE

1
2
4 (t)E

1
2
[κ/2]+5(t).

For the third and fourth terms on the right-hand side of (2.17), we have∥∥∥t2ξ(s)∇ ·
(
ρ∂2

t Γ
αv − ∆Γαv

) ∥∥∥
L2 +

∑
β+γ=α
|β|,|α|

∥∥∥t2ξ(s)∇ ·
(
Γγη∂2

t Γ
βv

)∥∥∥
L2

.
∥∥∥t2ξ(s)∇η · ∂2

t Γ
αv

∥∥∥
L2 +

∥∥∥t2ξ(s)
[(
ρ∂2

t − ∆
)(
∇ · Γαv

)]∥∥∥
L2 +

∑
β+γ=α,|β|,|α|

i+ j=1

∥∥∥t2ξ(s)∇iΓγη∂2
t
(
∇ j · Γβv

)∥∥∥
L2 . (2.18)

By the definition of S̃ and the Sobolev embedding inequality, we solve the first term on the right-hand
side of (2.18) by∥∥∥t2ξ(s)∇η · ∂2

t Γ
αv

∥∥∥
L2 .

∥∥∥∇η∥∥∥
L3

∥∥∥tξ(s)∂tS̃ Γαv
∥∥∥

L6 +
∥∥∥trξ(s)∇η∂r∂tΓ

αv
∥∥∥

L2

.
∥∥∥∇η∥∥∥

L3

(∥∥∥∂tS̃ Γαv
∥∥∥

L2(R)
+

∥∥∥〈t − r〉∂t∇S̃ Γαv
∥∥∥

L2(R)

)
+

∥∥∥〈r〉∇η∥∥∥
L∞

∥∥∥〈t − r〉∂r∂tΓ
αv

∥∥∥
L2(R)

. δE
1
2
[κ/2]+3(t).

In terms of (2.5) and the definition of S̃ , the last two terms on the right-hand side of (2.18) are estimated
by ∥∥∥t2ξ(s)

[(
ρ∂2

t − ∆
)(
∇ · Γαv

)]∥∥∥
L2 +

∑
β+γ=α,|β|,|α|

i+ j=1

‖t2ξ(s)∇iΓγη∂2
t (∇ j · Γβv)

∥∥∥
L2

.
∑
β+γ=α
i+ j=1

‖〈t − r〉∂i∂∇Γβv‖L2(R)〈t〉‖∂ j∇Γγv‖L∞(R)

+
∑
β+γ+ι=α
i+ j+k=1

‖〈t − r〉∂i∂∇Γβv‖L2(R)〈t〉‖∂ j∇Γγv‖L∞(R)‖∂
k∇Γιv‖L∞(R)

+
∑
β+γ+ι=α

j+k=1

‖Γγη‖L∞(R)‖〈t − r〉∂ j∂∇Γβv‖L2(R)〈t〉‖∂k∇Γιv‖L∞(R)

+
∑
β+γ+ι=α
i+ j+k=1

‖Γγη‖L∞(R)‖〈t − r〉∂i∂∇Γβv‖L2(R)〈t〉‖∂ j∇Γγv‖L∞(R)‖∂
k∇Γιv‖L∞(R)

+
∑
β+γ=α
|β|,|α|

‖ξ(s)∇Γγη‖L3〈t〉‖ξ(s)∂tS̃ Γβv‖L6 +
∑
β+γ=α
|β|,|α|

‖〈r〉∇Γγη‖L∞(R)‖〈t − r〉∂t∂rΓ
βv‖L2(R)

. (1 + δ)E
1
2
[κ/2]+3(t)

(
E

1
2
[κ/2]+4(t) + E[κ/2]+4(t)

)
+ δE

1
2
[κ/2]+3(t).

Along the same line, the last term on the right-hand side of (2.17) is dealt with by∑
β+γ=α
|β|,|α|

∥∥∥t2ξ(s)∇ ·
[
(∇Γγv)T (∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)]∥∥∥
L2
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.
∑
β+γ=α
|β|,|α|

‖〈t − r〉∇2Γγv‖L2(R)〈t〉‖∂2
t Γ

βv − ∆Γβv +
∑

ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v‖L∞(R)

+
∑
β+γ=α
|β|,|α|

〈t〉
∥∥∥∇Γγv‖L∞(R)

∥∥∥〈t − r〉∇
(
∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)∥∥∥
L2(R)

. E[κ/2]+4(t).

Combining all the estimates, Lemma 4, and the fact

‖t2ξ(s)∇2Γαp‖L2 . ‖t2ξ(s)∆Γαp‖L2 + ‖tξ(s)∇Γαp‖L2 ,

the fourth term on the right-hand side of (2.13) is estimated by

7
∫
R3

∣∣∣t2ξ(s)(∇X)−T∇2Γαp
∣∣∣2 dx . 〈t〉2‖∇v‖2L∞(R)〈t〉

2‖∇v‖2L∞(R)‖∇
2Γαp‖2L2(R)

+ 〈t〉2‖∇v‖2L∞(R)〈t〉
2‖∇2Γαp‖2L2(R) + ‖t2∇2Γαp‖2L2(R)

. E[κ/2]+5(t).

We employ the similar method as (2.15) and (2.16) to estimate the fifth and sixth terms on the right-hand
side of (2.13) by∑

β+γ=α
|β|,|α|

7
∫
R3

∣∣∣Cβ
αt2ξ(s)∇Γγη∂2

t Γ
βv

∣∣∣2 dx +
∑
β+γ=α
|β|,|α|

7
∫
R3

∣∣∣Cβ
αt2ξ(s)Γγη∂2

t∇Γβv
∣∣∣2 dx

.
∑
β+γ=α
|β|,|α|

∫
R3

(∣∣∣tξ(s)∇Γγη∂tS̃ Γβv
∣∣∣2 dx +

∣∣∣tξ(s)r∇Γγη∂r∂tΓ
βv

∣∣∣2 +
∣∣∣tξ(s)Γγη∂t∇S̃ Γβv

∣∣∣2
+

∣∣∣tξ(s)Γγη∂t∇Γβv
∣∣∣2 +

∣∣∣tξ(s)Γγηr∂r∂t∇Γβv
∣∣∣2) dx

.
∑
β+γ=α
|β|,|α|

(∥∥∥∇Γγη
∥∥∥2

L3

∥∥∥tξ(s)∂tS̃ Γβv
∥∥∥2

L6 +
∥∥∥〈r〉ξ(s)∇Γγη

∥∥∥2

L∞

∥∥∥〈t − r〉∂∇Γβv
∥∥∥2

L2(R)

+
∥∥∥Γγη∥∥∥2

L∞(R)

∥∥∥〈t − r〉∂∇S̃ Γβv
∥∥∥2

L2(R)
+

∥∥∥Γγη∥∥∥2

L∞(R)

∥∥∥〈t − r〉∂t∇Γβv
∥∥∥2

L2(R)

+
∥∥∥〈r〉ξ(s)Γγη

∥∥∥2

L∞

∥∥∥〈t − r〉∂∇2Γβv
∥∥∥2

L2(R)

)
. δ2E[κ/2]+3(t).

For the last term on the right-hand side of (2.13), we have∑
β+γ=α
|β|,|α|

7
∫
R3

∣∣∣Cβ
αt2ξ(s)∇

[
(∇X)−T (∇Γγv)T (∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)]∣∣∣2 dx

.
∑

β+γ=α,|β|,|α|
i+ j≤1

〈t〉2
∥∥∥∇i(∇Γγv)T

∥∥∥2

L∞(R)

∥∥∥〈t − r〉∇ j(∂2
t Γ

βv − ∆Γβv +
∑

ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)∥∥∥2

L2(R)

. E[κ/2]+4(t).
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Collecting the above estimates and the fact∫
R3

∣∣∣t2ξ(s)∇3Γαv
∣∣∣2 dx .

∫
R3

∣∣∣t2ξ(s)∇∆Γαv
∣∣∣2 dx +

∫
R3

∣∣∣tξ(s)∇2Γαv
∣∣∣2 dx,

we complete the proof. �

By Lemma 7, we obtain the following estimate.

Lemma 8. For any integer κ ≥ 12 and multi-index α satisfying |α| ≤ [κ/2], there holds

〈t〉
3
2 ‖∂Γαv‖L∞(R) . E

1
2
[κ/2]+5(t), (2.19)

〈t〉2‖∂2Γαv‖L∞(R) . E
1
2
[κ/2]+6(t). (2.20)

Proof. By the definition of S̃ and Lemma 7, we have

〈t〉2‖∂t∇
2Γαv‖L2(R) . ‖〈t − r〉∂t∇

2Γαv‖L2(R) + ‖〈t − r〉∇2S̃ Γαv‖L2(R) + ‖〈t − r〉∇2Γαv‖L2(R)

+ 〈t〉2‖∇3Γαv‖L2(R)

. E
1
2
[κ/2]+5(t). (2.21)

The inequalities (2.14), (2.21), and Lemma 7 yield that

〈t〉
3
2 ‖∂Γαv‖L∞(R) . 〈t〉

3
2 ‖∇(ξ(s)∂Γαv)‖

1
2
L2‖∇

2(ξ(s)∂Γαv)‖
1
2
L2

.
(
‖ξ′(s)∂Γαv‖

1
2
L2 + ‖ξ(s)〈t − r〉∇∂Γαv‖

1
2
L2

) (
‖ξ′′(s)∂Γαv‖

1
2
L2 + ‖ξ′(s)〈t − r〉∇∂Γαv‖

1
2
L2

+ 〈t〉‖ξ(s)∇2∂Γαv‖
1
2
L2

)
. E

1
2
[κ/2]+5(t).

To consider (2.20), the definition of S̃ , combined with inequalities (2.14) and (2.21) and Lemmas 3 and
7, implies that

〈t〉2‖∂2
t Γ

αv‖L∞(R) + 〈t〉2‖∂∇Γαv‖L∞(R)

. 〈t〉‖∂2
t Γ

αv‖L∞(R) + 〈t〉‖∂tΓ
αv‖L∞(R) + 〈t〉‖∂tS̃ Γαv‖L∞(R) + 〈t〉‖r∂r∂tΓ

αv‖L∞(R)

+ 〈t〉2‖∇(ξ(s)∂∇Γαv)‖
1
2
L2‖∇

2(ξ(s)∂∇Γαv)‖
1
2
L2

. E
1
2
[κ/2]+4(t) +

∑
i,|ι|≤1

∥∥∥〈t − r〉∂i
rΩ̃

ι(ξ(s)∂r∂tΓ
αv

)∥∥∥
L2 +

(
‖ξ′(s)〈t − r〉∂∇Γαv‖

1
2
L2 + ‖〈t〉2ξ(s)∂∇2Γαv‖

1
2
L2

)
·
(
‖ξ′′(s)∂∇Γαv‖

1
2
L2 + ‖〈t〉ξ′(s)∂∇2Γαv‖

1
2
L2 + ‖〈t〉2ξ(s)∂∇3Γαv‖

1
2
L2

)
. E

1
2
[κ/2]+6(t),

which implies the desired. �

Before concluding this section, we formulate the following two lemmas, which are utilized in the
process of deriving energy estimates.
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Lemma 9. For any integer κ ≥ 12 and multi-index α satisfying |α| ≤ [κ/2], we have

〈t〉2
∥∥∥ρ∂2

t Γ
αv − ∆Γαv

∥∥∥
L∞
. E

1
2
[κ/2]+5(t).

Proof. We separate two cases to consider this lemma. For the case x ∈ R, we use the Sobolev embedding
inequality (2.14) to get∥∥∥ξ(s)

(
ρ∂2

t Γ
αv − ∆Γαv

)∥∥∥
L∞
.

∥∥∥∇[ξ(s)
(
ρ∂2

t Γ
αv − ∆Γαv

)]∥∥∥ 1
2

L2

∥∥∥∇2[ξ(s)
(
ρ∂2

t Γ
αv − ∆Γαv

)]∥∥∥ 1
2

L2 .

For the integer i satisfying 1 ≤ i ≤ 2, one has

〈t〉2
∥∥∥∇i[ξ(s)

(
ρ∂2

t Γ
αv − ∆Γαv

)]∥∥∥
L2

.
∑
j+k=i
1≤ j≤i

〈t〉2
∥∥∥∇ jξ(s)∇k(ρ∂2

t Γ
αv − ∆Γαv

)∥∥∥
L2 +

∑
1≤i≤2

〈t〉2
∥∥∥ξ(s)∇i(ρ∂2

t Γ
αv − ∆Γαv

)∥∥∥
L2 . (2.22)

We estimate the first term on the right-hand side of (2.22) by∑
j+k=i
1≤ j≤i

〈t〉2
∥∥∥∇ jξ(s)∇k(ρ∂2

t Γ
αv − ∆Γαv

)∥∥∥
L2 . 〈t〉

∥∥∥ξ′(s)∇
(
ρ∂2

t Γ
αv − ∆Γαv

)∥∥∥
L2 +

∥∥∥ρ∂2
t Γ

αv − ∆Γαv
∥∥∥

L2

. E
1
2
[κ/2]+3(t).

By (2.4), we solve the second term on the right-hand side of (2.22) as follows∑
1≤i≤2

〈t〉2
∥∥∥ξ(s)∇i(ρ∂2

t Γ
αv − ∆Γαv

)∥∥∥
L2

.
∑
1≤i≤2

j+k=i,1≤ j

〈t〉2
∥∥∥ξ(s)∇ j(∇X)−T∇k∇Γαp

∥∥∥
L2 +

∑
1≤i≤2

〈t〉2
∥∥∥ξ(s)(∇X)−T∇i∇Γαp

∥∥∥
L2

+
∑

β+γ=α,|β|,|α|
j+k=i,1≤i≤2

〈t〉2
∥∥∥ξ(s)∇ jΓγη∂2

t∇
kΓβv

∥∥∥
L2 +

∑
β+γ=α,|β|,|α|

1≤i≤2

〈t〉2
∥∥∥ξ(s)∇i[(∇X)−T (∇Γγv)T

·
(
∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)]∥∥∥
L2 . (2.23)

For the first term on the right-hand side of (2.23), by Lemmas 3 and 4, we have∑
1≤i≤2

j+k=i,1≤ j

〈t〉2‖ξ(s)∇ j(∇X)−T∇k∇Γαp‖L2 .
∑
1≤i≤2

j+k=i,1≤ j

〈t〉
∥∥∥∇ j(∇X)−T

∥∥∥
L∞(R)
〈t〉

∥∥∥∇k∇Γαp
∥∥∥

L2(R)

. X
1
2
5 (t)

(
E[κ/2]+5(t) + δE

1
2
[κ/2]+4(t)

)
.

Adopting the same method as was used in (2.17), we estimate the second term on the right-hand side of
(2.23) by ∑

1≤i≤2

〈t〉2
∥∥∥ξ(s)(∇X)−T∇i∇Γαp

∥∥∥
L2 .

∑
1≤i≤2

〈t〉‖∇v‖L∞(R)
(
1 + ‖∇v‖L∞(R)

)
〈t〉

∥∥∥∇i∇Γαp
∥∥∥

L2(R)

+
∑

1≤i≤2

〈t〉2
∥∥∥∇i∇Γαp

∥∥∥
L2(R)
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. δE
1
2
[κ/2]+5(t) + E[κ/2]+5(t).

For the third term on the right-hand side of (2.23), by the definition of S̃ and (2.6), we obtain∑
β+γ=α,|β|,|α|

j+k=i,1≤i≤2

〈t〉2
∥∥∥ξ(s)∇ jΓγη∂2

t∇
kΓβv

∥∥∥
L2

.
∑

β+γ=α,|β|,|α|
j+k=i,1≤i≤2

〈t〉
(∥∥∥ξ(s)∇ jΓγη∂2

t∇
kΓβv

∥∥∥
L2 +

∥∥∥ξ(s)∇ jΓγηr∂r∂t∇
kΓβv

∥∥∥
L2

)
+

∑
β+γ=α,|β|,|α|

1≤i≤2

〈t〉
∥∥∥ξ(s)∇iΓγη∂tS̃ Γβv

∥∥∥
L2

+
∑

β+γ=α,|β|,|α|
j+k=i,1≤k≤i≤2

〈t〉
(∥∥∥ξ(s)∇ jΓγη∂t∇S̃∇k−1Γβv

∥∥∥
L2 +

∥∥∥ξ(s)∇ jΓγη∂t∇
kΓβv

∥∥∥
L2

)
.

∑
β+γ=α,|β|,|α|

j+k=i,1≤i≤2

∥∥∥〈r〉ξ(s)∇ jΓγη
∥∥∥

L∞
‖〈t − r〉∂t∂∇

kΓβv
∥∥∥

L2(R)
+

∑
β+γ=α,|β|,|α|

1≤i≤2

∥∥∥∇iΓγη‖L2(R)〈t〉‖∂tS̃ Γβv
∥∥∥

L∞(R)

+
∑

β+γ=α,|β|,|α|
j+k=i,1≤k≤i≤2

∥∥∥∇ jΓγη‖L∞(R)

(
‖〈t − r〉∂t∇S̃∇k−1Γβv

∥∥∥
L2(R)

+
∥∥∥〈t − r〉∂t∇

kΓβv
∥∥∥

L2(R)

)
. δE

1
2
[κ/2]+4(t).

The last term on the right-hand side of (2.23) is estimated by∑
β+γ=α,|β|,|α|

1≤i≤2

〈t〉2
∥∥∥ξ(s)∇i[(∇X)−T (∇Γγv)T (∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)]∥∥∥
L2

.
∑

β+γ=α,|β|,|α|
1≤i≤2, j+k+l=i

‖∇l(∇X)−T ‖L∞(R)〈t〉‖∇ j(∇Γγv)T ‖L∞(R)‖〈t − r〉∇k(∂2
t Γ

βv − ∆Γβv +
∑

ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v)‖L2(R)

. E[κ/2]+5(t).

We verify the case x ∈ Rc. By Lemmas 2 and 6, we have

〈t〉2
∥∥∥ρ∂2

t Γ
αv − ∆Γαv

∥∥∥
L∞(Rc)

. 〈t〉
∥∥∥〈r〉(1 − ξ(s)

)(
ρ∂2

t Γ
αv − ∆Γαv

)∥∥∥
L∞

.
∑
i,|ι|≤1

〈t〉
∥∥∥∂i

rΩ̃
ι[(1 − ξ(s)

)(
ρ∂2

t Γ
αv − ∆Γαv

)]∥∥∥
L2

.
∑

i+ j+k≤1
|ι1 |+|ι2 |+|ι3 |≤1≤ j+|ι2 |

‖∂i
rΩ̃

ι1
(
1 − ξ(s)

)
‖L∞(Rc)‖〈r〉∂ j

rΩ̃
ι2ρ‖L∞(Rc)

∥∥∥∂k
rΩ̃

ι3∂2
t Γ

βv
∥∥∥

L2(Rc)

+
∑
i+ j≤1
|ι1 |+|ι2 |≤1

∥∥∥∂i
rΩ̃

ι1
(
1 − ξ(s)

)
‖L∞(Rc)‖〈t〉

(
ρ∂2

t ∂
j
rΩ̃

ι2Γβv − ∆∂ j
rΩ̃

ι2Γβv
)∥∥∥

L2(Rc)

. E
1
2
[κ/2]+4(t).

Collecting all of the estimates together, we justify the lemma. �

Lemma 10. For any integer κ ≥ 12 and multi-index α satisfying |α| ≤ [κ/2], one has∑
β+γ=α

〈t〉2‖Γγη∂2
t Γ

βv‖L∞ . δE
1
2
[κ/2]+4(t).
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Proof. We deduce from the definition of S̃ that∑
β+γ=α

Γγη∂2
t Γ

βv =
∑
β+γ=α

1
1 + t

(
Γγη∂2

t Γ
βv + Γγη∂tS̃ Γβv − Γγηr∂r∂tΓ

βv
)
.

By Lemma 2 and (2.6), one has∑
β+γ=α

〈t〉2‖Γγη∂2
t Γ

βv‖L∞ .
∑
β+γ=α

‖Γγη‖L∞‖〈r〉〈t − r〉∂2
t Γ

βv‖L∞ +
∑
β+γ=α

‖Γγη‖L∞〈t〉‖∂tS̃ Γβv‖L∞

+
∑
β+γ=α

‖〈r〉Γγη‖L∞‖〈r〉〈t − r〉∂r∂tΓ
βv‖L∞

. δE
1
2
[κ/2]+4(t).

This completes the proof. �

3. Energy estimates

This section is devoted to the energy estimates. For any integer κ ≥ 12 and multi-index α ∈ N8

satisfying |α| ≤ κ − 1, we apply Lemma 1 to the system (2.4)-(2.5) to get

sup
0≤t≤T

∫
R3
|∂Γαv|2(t) dx + LEκ(T )

≤ C0

∫
R3
|∂Γαv|2(0) dx + C0

∫ T

0

∫
R3

[(
|∂η| +

|η|

r
1
2 〈r〉

1
2

)
|∂Γαv|

(
|∂Γαv| +

|Γαv|
r

)]
dxdt

+ C0

∣∣∣∣∣∣
∫ T

0

∫
R3
∂tΓ

αv · Nα dxdt

∣∣∣∣∣∣ + C0 sup
k≥0

∣∣∣∣ ∫ T

0

∫
R3

fk

(
∂rΓ

αv +
Γαv

r

)
· Nα dxdt

∣∣∣∣. (3.1)

For the second term on the right-hand side of (3.1), by Lemma 2, one has

C0

∫ T

0

∫
R3

[(
|∂η| +

|η|

r
1
2 〈r〉

1
2

)
|∂Γαv|

(
|∂Γαv| +

|Γαv|
r

)]
dxdt

.

∫ T

0

(
‖〈r〉r∂η‖L∞ + ‖〈r〉η‖L∞

)∥∥∥r−
1
4 〈r〉−

1
2 |∂Γαv|

∥∥∥
L2

∥∥∥∥r−
1
4 〈r〉−

1
2
(
|∂Γαv| +

|Γαv|
r

)∥∥∥∥
L2

dt

.
∑

i, j,k,|ι|≤1

∫ T

0
‖ri∂ j

rΩ̃
ι∂kη‖L2

∥∥∥r−
1
4 〈r〉−

1
2 |∂Γαv|

∥∥∥
L2

∥∥∥∥r−
1
4 〈r〉−

1
2
(
|∂Γαv| +

|Γαv|
r

)∥∥∥∥
L2

dt

. δLEκ(T ).

By utilizing (2.4), we formulate the third term on the right-hand side of (3.1) as follows∫ T

0

∫
R3
∂tΓ

αv · Nα dxdt

= −

∫ T

0

∫
R3
∂tΓ

αv · (∇X)−T∇Γαp dxdt −
∑
β+γ=α
|β|,|α|

Cβ
α

∫ T

0

∫
R3
∂tΓ

αv · Γγη∂2
t Γ

βv dxdt
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−
∑
β+γ=α
|β|,|α|

Cβ
α

∫ T

0

∫
R3
∂tΓ

αv ·
[
(∇X)−T (∇Γγv)T (∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)]
dxdt. (3.2)

We handle term by term on the right-hand side of (3.2). For the first term on the right-hand side of
(3.2), since (∇X)−T is composed of elements of the form ∂lv j∂mvk, ∂ jv j, ∂iv j and the constant 1, where
j, k, l,m = 1, 2, 3, it follows that

−

∫ T

0

∫
R3
∂tΓ

αv · (∇X)−T∇Γαp dxdt

.
∑

i, j,k,l,m,n=1,2,3
i, j,k

∫ T

0

∫
R3

∣∣∣∂tΓ
αvi∂lv j∂mvk∂nΓ

αp
∣∣∣ dxdt +

∑
i, j=1,2,3

i, j

∫ T

0

∫
R3

∣∣∣∂tΓ
αvi∂ jv j∂iΓ

αp
∣∣∣ dxdt

+
∑

i, j=1,2,3
i, j

∫ T

0

∫
R3

∣∣∣∂tΓ
αvi∂iv j∂ jΓ

αp
∣∣∣ dxdt +

∣∣∣∣ ∫ T

0

∫
R3
∂tΓ

αv · ∇Γαp dxdt
∣∣∣∣. (3.3)

For the first term on the right-hand side of (3.3), by (2.6) and Lemma 6, we have

−
∑

i, j,k,l,m,n=1,2,3
i, j,k

∫ T

0

∫
R3

∣∣∣∂tΓ
αvi∂lv j∂mvk∂nΓ

αp
∣∣∣ dxdt .

∫ T

0
〈t〉−2‖∂tΓ

αv‖L2〈t〉2‖∇v‖2L∞‖∇Γαp‖L2 dt

.

∫ T

0
〈t〉−2Eκ(t)E[κ/2]+2(t) dt.

To handle the second and third terms on the right-hand side of (3.3), we apply (2.11) and (2.19) to
show ∑

i, j=1,2,3
i, j

∫ T

0

∫
R3

∣∣∣∂tΓ
αvi∂ jv j∂iΓ

αp
∣∣∣ dxdt +

∑
1, j=1,2,3

i, j

∫ T

0

∫
R3

∣∣∣∂tΓ
αvi∂iv j∂ jΓ

αp
∣∣∣ dxdt

.

∫ T

0
〈t〉−

3
2 ‖∂tΓ

αv‖L2(R)〈t〉
3
2 ‖∇v‖L∞(R)‖∇Γαp‖L2(R) dt

+

∫ T

0
〈t〉−2‖∂tΓ

αv‖L2(Rc)‖〈r〉(1 − ξ(s))∇v‖L∞(Rc)〈t〉‖∇Γαp‖L2(Rc) dt

.

∫ T

0
〈t〉−

3
2E

3
2
κ (t) dt.

Along the same line, the last term on the right-hand side of (3.3) is estimated by∣∣∣∣ ∫ T

0

∫
R3
∂tΓ

αv · ∇Γαp dxdt
∣∣∣∣ =

∣∣∣∣ ∫ T

0

∫
R3
∂t(∇ · Γαv) · Γαp dxdt

∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
∫ T

0

∫
R3
∇ ·

 ∑
β+γ+ι=α

∂tΓ
βv1


∂2Γ

γv2∂3Γ
ιv3 − ∂3Γ

γv2∂2Γ
ιv3

∂3Γ
γv2∂1Γ

ιv3 − ∂1Γ
γv2∂3Γ

ιv3

∂1Γ
γv2∂2Γ

ιv3 − ∂2Γ
γv2∂1Γ

ιv3


−

∑
β+γ=α


∂tΓ

βv1∂2Γ
γv2 + ∂tΓ

βv1∂3Γ
γv3 − ∂2Γ

βv1∂tΓ
γv2 − ∂3Γ

βv1∂tΓ
γv3

−∂tΓ
βv1∂1Γ

γv2 + ∂tΓ
βv2∂3Γ

γv3 + ∂1Γ
βv1∂tΓ

γv2 − ∂3Γ
βv2∂tΓ

γv3

−∂tΓ
βv2∂2Γ

γv3 − ∂tΓ
βv1∂1Γ

γv3 + ∂2Γ
βv2∂tΓ

γv3 + ∂1Γ
βv1∂tΓ

γv3


 Γαp dxdt

∣∣∣∣∣∣∣∣∣
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.
∑
β+γ+ι=α
|γ|,|ι|≤|β|

∫ T

0
‖∂Γβv‖L2‖∂Γγv‖L∞(1 + ‖∂Γιv‖L∞)‖∇Γαp‖L2 dt

.
∑
β+γ+ι=α
|γ|,|ι|≤|β|

∫ T

0
〈t〉−

3
2 ‖∂Γβv‖L2

(
1 + ‖∂Γιv‖L∞

)(
〈t〉

3
2 ‖∂Γγv‖L∞(R)‖∇Γαp‖L2(R)

+ ‖〈r〉(1 − ξ(s))∂Γγv‖L∞〈t〉‖∇Γαp‖L2(Rc)

)
dt

.

∫ T

0
〈t〉−

3
2Eκ(t)E

1
2
[κ/2]+3(t) dt.

For the second term on the right-hand side of (3.2), by the definition of S̃ and (2.6), one has

−
∑
β+γ=α
|β|,|α|

Cβ
α

∫ T

0

∫
R3
∂tΓ

αv · Γγη∂2
t Γ

βv dxdt

.
∑
β+γ=α
|γ|<|β|<|α|

∫ T

0
〈t〉−1‖r−

1
4 〈r〉−

1
2 |∂tΓ

αv|‖L2‖〈r〉Γγη‖L∞‖∂tS̃ Γβv‖L2 dt

+
∑
β+γ=α
|γ|<|β|<|α|

∫ T

0
〈t〉−2‖∂tΓ

αv‖L2‖〈r〉2Γγη‖L∞
(
‖〈t − r〉∂2

t Γ
βv‖L2 + ‖〈t − r〉∂t∂rΓ

βv‖L2

)
dt

+
∑
β+γ=α
|β|≤|γ|

∫ T

0
〈t〉−2‖∂tΓ

αv‖L2‖〈r〉Γγη‖L2

(
〈t〉‖∂2

t Γ
βv‖L∞ + 〈t〉‖∂tS̃ Γβv‖L∞ + 〈t〉‖∂t∂rΓ

βv‖L∞
)

dt

. δLEκ(T ) + δ

∫ T

0
〈t〉−2Eκ(t) dt.

It is left to estimate the last term on the right-hand side of (3.2). Two cases are considered. By
Lemmas 2, 4, and (2.6), we solve the case |γ| < |β| < |α| by

−
∑
β+γ=α
|γ|<|β|<|α|

Cβ
α

∫ T

0

∫
R3
∂tΓ

αv ·
[
(∇X)−T (∇Γγv)T (∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)]
dxdt

.
∑
β+γ=α
|γ|<|β|<|α|

∫ T

0
〈t〉−2‖∂tΓ

αv‖L2〈t〉‖∇Γγv‖L∞〈t〉‖ρ∂2
t Γ

βv − ∆Γβv‖L2 dt

+
∑

β+γ=α,ι1+ι2=β

|γ|<|β|<|α|,|ι1 |≤|ι2 |

∫ T

0
〈t〉−2‖∂tΓ

αv‖L2〈t〉‖∇Γγv‖L∞‖Γι2η‖L2‖〈r〉〈t − r〉∂2
t Γ

ι1v‖L∞ dt

+
∑

β+γ=α,ι1+ι2=β

|γ|<|β|<|α|,|ι2 |<|ι1 |

∫ T

0
〈t〉−2‖∂tΓ

αv‖L2〈t〉‖∇Γγv‖L∞‖〈r〉Γι2η‖L∞‖〈t − r〉∂2
t Γ

ι1v‖L2 dt

.

∫ T

0
〈t〉−2E

3
2
κ (t) dt.
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Utilizing Lemmas 9 and 10, we solve the case |β| ≤ |γ| by

−
∑
β+γ=α
|β|≤|γ|

Cβ
α

∫ T

0

∫
R3
∂tΓ

αv ·
[
(∇X)−T (∇Γγv)T (∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v)

]
dxdt

.
∑
β+γ=α
|β|≤|γ|

∫ T

0
〈t〉−2‖∂tΓ

αv‖L2‖∇Γγv‖L2〈t〉2‖ρ∂2
t Γ

βv − ∆Γβv‖L∞ dt

+
∑

β+γ=α,ι1+ι2=β

|β|≤|γ|

∫ T

0
〈t〉−2‖∂tΓ

αv‖L2‖∇Γγv‖L2〈t〉2‖Γι2η∂2
t Γ

ι1v‖L∞ dt

.

∫ T

0
〈t〉−2E

3
2
κ (t) dt.

By summing up the above estimates, we deduce that∣∣∣∣ ∫ T

0

∫
R3
∂tΓ

αv · Nα dxdt
∣∣∣∣ . ∫ T

0
〈t〉−

3
2E

3
2
κ (t) dt + δ

∫ T

0
〈t〉−

3
2Eκ(t) dt + δLEκ(T ).

We continue to handle the last term on the right-hand side of (3.1). The identity (2.4) yields that∫ T

0

∫
R3

fk

(
∂rΓ

αv +
Γαv

r

)
· Nα dxdt

= −
∑
β+γ=α
|β|,|α|

Cβ
α

∫ T

0

∫
R3

fk

(
∂rΓ

αv +
Γαv

r

)
· Γγη∂2

t Γ
βv dxdt

−
∑
β+γ=α
|β|,|α|

Cβ
α

∫ T

0

∫
R3

fk

(
∂rΓ

αv +
Γαv

r

)
·
[
(∇X)−T (∇Γγv)T (∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)]
dxdt

−

∫ T

0

∫
R3

fk

(
∂rΓ

αv +
Γαv

r

)
· (∇X)−T∇Γαp dxdt. (3.4)

We use Lemmas 9 and 10 to handle the first two terms on the right-hand side of (3.4) by∑
β+γ=α
|γ|<|β|<|α|

∫ T

0
〈t〉−1

∥∥∥∥r−
1
4 〈r〉−

1
2
(
|∂rΓ

αv| +
|Γαv|

r

)∥∥∥∥
L2
‖〈r〉2Γγη‖L∞‖〈t − r〉∂2

t Γ
βv‖L2 dt

+
∑
β+γ=α
|β|≤|γ|

∫ T

0
〈t〉−1

∥∥∥∥r−
1
4 〈r〉−

1
2
(
|∂rΓ

αv| +
|Γαv|

r

)∥∥∥∥
L2
‖〈r〉Γγη‖L2‖〈r〉〈t − r〉∂2

t Γ
βv‖L∞ dt

+
∑
β+γ=α
|γ|<|β|<|α|

∫ T

0
〈t〉−2

∥∥∥∥|∂rΓ
αv| +

|Γαv|
r

∥∥∥∥
L2
〈t〉‖∇Γγv‖L∞

(
〈t〉‖∂2

t Γ
βv − ∆Γβv‖L2

+
∑

ι1+ι2=β

‖〈r〉〈t − r〉Γι2η∂2
t Γ

ι1v
∥∥∥

L2

)
dt

+
∑
β+γ=α
|β|≤|γ|

∫ T

0
〈t〉−2

∥∥∥∥|∂rΓ
αv| +

|Γαv|
r

∥∥∥∥
L2
‖∇Γγv‖L2

(
〈t〉2‖ ρ∂2

t Γ
βv − ∆Γβv‖L∞
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+
∑

ι1+ι2=β

〈t〉2‖Γι2η∂2
t Γ

ι1v‖L∞
)

dt

. δLEκ(T ) + δ

∫ T

0
〈t〉−2Eκ(t) dt +

∫ T

0
〈t〉−2E

3
2
κ (t) dt.

We rewrite the last term on the right-hand side of (3.4) as follows

−

∫ T

0

∫
R3

fk

(
∂rΓ

αv +
Γαv

r

)
· (∇X)−T∇Γαp dxdt

.
∑

i, j=1,2,3
i, j

∫ T

0

∫
R3

(∣∣∣∣ fk

(
∂rΓ

αvi +
Γαvi

r

)
∂ jv j∂iΓ

αp
∣∣∣∣ +

∣∣∣∣ fk

(
∂rΓ

αvi +
Γαvi

r

)
∂iv j∂ jΓ

αp
∣∣∣∣) dxdt

+
∑

j,l,m,n,s=1,2,3
i, j,l

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αvi +
Γαvi

r

)
∂mv j∂nvl∂sΓ

αp
∣∣∣∣ dxdt +

∣∣∣∣ ∫ T

0

∫
R3

fk

(
∂rΓ

αv +
Γαv

r

)
· ∇Γαp dxdt

∣∣∣∣.
(3.5)

For the first two terms on the right-hand side of (3.5), the Lemma 6 and (2.19) imply that∫ T

0
〈t〉−2

∥∥∥∥|∂rΓ
αv| +

|Γαv|
r

∥∥∥∥
L2

(
1 + ‖∇v‖L∞

)
‖〈r〉(1 − ξ(s))∇v‖L∞〈t〉‖∇Γαp‖L2(Rc) dt

+

∫ T

0
〈t〉−

3
2

∥∥∥∥|∂rΓ
αv| +

|Γαv|
r

∥∥∥∥
L2

(
1 + ‖∇v‖L∞

)
〈t〉

3
2 ‖∇v‖L∞(R)‖∇Γαp‖L2(R) dt

.

∫ T

0
〈t〉−

3
2E

3
2
κ (t) dt.

We use (2.7) to formulate the last term on the right-hand side of (3.5) by∣∣∣∣ ∫ T

0

∫
R3

fk

(
∂rΓ

αv +
Γαv

r

)
· ∇Γαp dxdt

∣∣∣∣
.

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇ ·

[
(∇v)T (ρ∂2

t Γ
αv − ∆Γαv

)]∣∣∣∣ dxdt

+
∑
β+γ=α
|β|,|α|

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇ ·

[
(∇X)T Γγη∂2

t Γ
βv

]∣∣∣∣ dxdt

+
∑
β+γ=α
|β|,|α|

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇ ·

[
(∇Γγv)T (∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)]∣∣∣∣ dxdt

+
∣∣∣∣ ∫ T

0

∫
R3

fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇ ·

(
ρ∂2

t Γ
αv − ∆Γαv

)
dxdt

∣∣∣∣. (3.6)

By (2.19) and Lemma 6, we estimate the first term on the right-hand side of (3.6) by∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇ ·

[
(∇v)T (ρ∂2

t Γ
αv − ∆Γαv

)]∣∣∣∣ dxdt
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.

∫ T

0
〈t〉−

3
2

∥∥∥∥|∂rΓ
αv| +

|Γαv|
r

∥∥∥∥
L2
〈t〉

3
2 ‖∇v‖L∞(R)‖ρ∂

2
t Γ

αv − ∆Γαv‖L2(R) dt

+

∫ T

0
〈t〉−2

∥∥∥∥|∂rΓ
αv| +

|Γαv|
r

∥∥∥∥
L2
‖〈r〉(1 − ξ(s))∇v‖L∞ 〈t〉

∥∥∥ρ∂2
t Γ

αv − ∆Γαv
∥∥∥

L2(Rc)
dt

.

∫ T

0
〈t〉−

3
2E

3
2
κ (t) dt. (3.7)

The second and third terms on the right-hand side of (3.6) can be solved using the same method
employed by the first two terms of (3.4).

For the last term on the right-hand side of (3.6), we observe that∣∣∣∣ ∫ T

0

∫
R3

fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇ ·

(
ρ∂2

t Γ
αv − ∆Γαv

)
dxdt

∣∣∣∣
.

∣∣∣∣ ∫ T

0

∫
R3

fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
ρ∂2

t∇ · Γ
αv − ∆∇ · Γαv

)
dxdt

∣∣∣∣
+

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∂2

t Γ
αv

)∣∣∣∣ dxdt. (3.8)

In view of (2.5), we write the first term on the right-hand side of (3.8) by

∑
i, j=1,2,3

i, j

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇ ·

[(
ρ∂2

t Γ
αvi − ∆Γαvi

)
∂v j

]∣∣∣∣ dxdt

+
∑

i, j,l=1,2,3
i, j,l

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇ ·

[(
ρ∂2

t Γ
αvi − ∆Γαvi

)
∂v j∂vl

]∣∣∣∣ dxdt

+
∑

β+γ+ι=α,|β|,|α|
i, j,l=1,2,3,i, j,l

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇ ·

(
∂2Γβvi∂Γγv j∂Γιvl

)∣∣∣∣ dxdt

+
∑

β+γ+ι=α,|β|,|α|
i, j,l=1,2,3,i, j,m

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∂η∂2Γβvi∂Γγv j∂Γιvl

)∣∣∣∣ dxdt

+
∑

β+γ=α,|β|,|α|
i, j=1,2,3,i, j

∣∣∣∣ ∫ T

0

∫
R3

fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇ ·

(
∂2Γβvi∂Γγv j

)
dxdt

∣∣∣∣
+

∑
β+γ=α,|β|,|α|
i, j=1,2,3,i, j

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∂η∂2Γβvi∂Γγv j

)∣∣∣∣ dxdt. (3.9)

The first two terms on the right-hand side of (3.9) are dealt with by the same method as (3.7). By (2.6),
the third and fourth terms on the right-hand side of (3.9) are estimated by∫ T

0
〈t〉−2

∥∥∥∥|∂rΓ
αv| +

|Γαv|
r

∥∥∥∥
L2

(1 + ‖∇η‖L3)
( ∑

β+γ+ι=α
|γ|,|ι|<|β|<|α|

‖∂2Γβv‖L2〈t〉‖∂Γγv‖L∞〈t〉‖∂Γιv‖L∞
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+
∑
β+γ+ι=α
|β|,|ι|≤|γ|

〈t〉‖∂2Γβv‖L∞‖∂Γγv‖L2〈t〉‖∂Γιv‖L∞ +
∑
β+γ+ι=α
|β|,|γ|≤|ι|

〈t〉‖∂2Γβv‖L∞〈t〉‖∂Γγv‖L∞‖∂Γιv‖L2

)
dt

.

∫ T

0
〈t〉−2E

3
2
κ (t) dt.

To consider the fifth term on the right-hand side of (3.9), we separate two cases to consider it. For
the case x ∈ R, by (2.20), we have∑

β+γ=α,|β|,|α|
i, j=1,2,3,i, j

∣∣∣∣ ∫ T

0

∫
R3
ξ(s) fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇ ·

(
∂2Γβvi∂Γγv j

)
dxdt

∣∣∣∣
.

∑
β+γ=α,|β|,|α|
i, j=1,2,3,i, j

∫ T

0

∥∥∥∥r−
1
4 〈r〉−

1
2
(
|∂rΓ

αv +
|Γαv|

r

)∥∥∥∥
L2
‖〈t − r〉∂2Γβvi∂Γγv j‖L2 dt

.
∑
β+γ=α
|γ|<|β|<|α|

∫ T

0
〈t〉−1

∥∥∥∥r−
1
4 〈r〉−

1
2
(
|∂rΓ

αv +
|Γαv|

r

)∥∥∥∥
L2
‖〈t − r〉∂2Γβv‖L2〈t〉‖∂Γγv‖L∞ dt

+
∑
β+γ=α
|β|≤|γ|

∫ T

0
〈t〉−1

∥∥∥∥r−
1
4 〈r〉−

1
2
(
|∂rΓ

αv +
|Γαv|

r

)∥∥∥∥
L2

(
‖〈r〉〈t − r〉(1 − ξ(s))∂2Γβv‖L∞

+ 〈t〉2‖∂2Γβv‖L∞(R)

)
‖∂Γγv‖L2 dt

. sup
0≤t≤T

E
1
2
κ (t)LEκ(T ) +

∫ T

0
〈t〉−2E

3
2
κ (t) dt.

To consider the case x ∈ Rc, we use the integration by parts to get∑
β+γ=α,|β|,|α|
i, j=1,2,3,i, j

∣∣∣∣ ∫ T

0

∫
R3

[1 − ξ(s)] fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇ ·

(
∂2Γβvi∂Γγv j

)
dxdt

∣∣∣∣
.

∑
β+γ=α,|β|,|α|
i, j=1,2,3,i, j

∣∣∣∣ ∫ T

0

∫
R3
∇ ·

[
[1 − ξ(s)] fk

(
∂rΓ

αv +
Γαv

r

)]
· ∆−1∇ ·

(
∂2Γβvi∂Γγv j

)
dxdt

∣∣∣∣
.

∑
β+γ=α,|β|,|α|
i, j=1,2,3,i, j

∫ T

0
〈t〉−1

∥∥∥∥|∂rΓ
αv| +

|Γαv|
r

∥∥∥∥
L2

∥∥∥∥∆−1∇ ·
(
∂2Γβvi∂Γγv j

)∥∥∥∥
L2

dt

+
∑

β+γ=α,|β|,|α|
i, j=1,2,3,i, j

∫ T

0
‖∇ · Γαv‖L2‖∂2Γβvi∂Γγv j‖L2 dt. (3.10)

For the first term on the right-hand side of (3.10), we have∑
β+γ=α,|β|,|α|
i, j=1,2,3,i, j

∫ T

0
〈t〉−1

∥∥∥∥|∂rΓ
αv| +

|Γαv|
r

∥∥∥∥
L2

∥∥∥∥∆−1∇ ·
(
∂2Γβvi∂Γγv j

)∥∥∥∥
L2

dt

.
∑
β+γ=α
|β|≤|γ|

∫ T

0
〈t〉−

4
3

∥∥∥∥|∂rΓ
αv| +

|Γαv|
r

∥∥∥∥
L2
〈t〉

1
3 ‖∂2Γβv‖

1
3
L∞‖∂

2Γβv‖
2
3

L2‖∂Γγv‖L2 dt
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+
∑
β+γ=α
|γ|<|β|<|α|

∫ T

0
〈t〉−

4
3

∥∥∥∥|∂rΓ
αv| +

|Γαv|
r

∥∥∥∥
L2
‖∂2Γβv‖L2‖∂Γγv‖

2
3

L2〈t〉
1
3 ‖∂Γγv‖

1
3
L∞ dt

.

∫ T

0
〈t〉−

4
3E

3
2
κ (t) dt.

We use (2.5) to estimate the second term on the right-hand side of (3.10) by

∑
β+γ=α,|β|,|α|
i, j=1,2,3,i, j

∫ T

0
‖∇ · Γαv‖L2‖∂2Γβvi∂Γγv j‖L2 dt

.
∑

β+γ=α,β̃+γ̃+ι̃=α

|β|≤|γ|,|γ̃|,|ι̃||≤|β̃|

∫ T

0
〈t〉−2‖∂Γβ̃v‖L2〈t〉‖∂Γγ̃v‖L∞(1 + ‖∂Γι̃v‖L∞)〈t〉‖∂2Γβv‖L∞‖∂Γγv‖L2 dt

+
∑

β+γ=α,β̃+γ̃+ι̃=α

|γ|<|β|<|α|,|γ̃|,|ι̃|≤|β̃|

∫ T

0
〈t〉−2‖∂Γβ̃v‖L2〈t〉‖∂Γγ̃v‖L∞(1 + ‖∂Γι̃v‖L∞)‖∂2Γβv‖L2〈t〉‖∂Γγv‖L∞ dt

.

∫ T

0
〈t〉−2E2

κ(t) dt.

For the last term on the right-hand side of (3.9), it follows from the Sobolev embedding inequality,
(2.6), and (2.19), that

∑
β+γ=α,|β|,|α|
i, j=1,2,3,i, j

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∂η∂2Γβvi∂Γγv j

)∣∣∣∣ dxdt

.
∑
β+γ=α
|γ|<|β|<|α|

∫ T

0
〈t〉−2

∥∥∥∥|∂rΓ
αv| +

|Γαv|
r

∥∥∥∥
L2
‖〈r〉∇η‖L3‖〈t − r〉∂2Γβv‖L2〈t〉‖∂Γγv‖L∞ dt

+
∑
β+γ=α
|β|≤|γ|

∫ T

0
〈t〉−

3
2

∥∥∥∥|∂rΓ
αv| +

|Γαv|
r

∥∥∥∥
L2
‖∂Γγv‖L2

(
‖∇η‖L3(R)〈t〉

3
2 ‖∂2Γβv‖L∞(R)

+ ‖〈r〉(1 − ξ(s))∇η‖L3‖〈r〉(1 − ξ(s))∂2Γβv‖L∞
)

dt

.

∫ T

0
〈t〉−

3
2E

3
2
κ (t) dt.

To solve the second term on the right-hand side of (3.8), we rewrite it as follows∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∂2

t Γ
αv

)∣∣∣∣ dxdt

.

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∂2

t∇∆−1∇ · Γαv
)∣∣∣∣ dxdt

+

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∂2

t∇
⊥∆−1∇⊥ · Γαv

)∣∣∣∣ dxdt. (3.11)
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In view of (2.5), we formulate the first term on the right-hand side of (3.11) by∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∂2

t∇∆−1∇ · Γαv
)∣∣∣∣ dxdt

.
∑
β+γ=α

i, j,l,m=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∂2

t∇∆−1(∂lΓ
βvi∂mΓγv j

))∣∣∣∣ dxdt

+
∑
β+γ+ι=α
i, j,l=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∂2

t∇∆−1(∂iΓ
βv1∂ jΓ

γv2∂lΓ
ιv3

))∣∣∣∣ dxdt. (3.12)

Since the second term has analogous estimates to the first term of (3.12), it suffices to concentrate on
the first term. We observe that∑

β+γ=α
i, j,l,m=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∂2

t∇∆−1(∂lΓ
βvi∂mΓγv j

))∣∣∣∣ dxdt

.
∑
β+γ=α

i, j,l,m=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∇∆−1(∂2

t ∂lΓ
βvi∂mΓγv j

))∣∣∣∣ dxdt

+
∑
β+γ=α

i, j,l,m=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∇∆−1(∂t∂lΓ

βvi∂t∂mΓγv j)
)∣∣∣∣ dxdt

+
∑
β+γ=α

i, j,l,m=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∇∆−1(∂lΓ

βvi∂
2
t ∂mΓγv j)

)∣∣∣∣ dxdt. (3.13)

Here, we restrict our analysis to the first term on the right-hand side of (3.13), as the remaining two
terms have similar estimates.∑

β+γ=α
i, j,l,m=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∇∆−1(∂2

t ∂lΓ
βvi∂mΓγv j

))∣∣∣∣ dxdt

.
∑

β+γ=α,|γ|<|β|
i, j,l,m=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∇∆−1(∂2

t Γ
βvi∂l∂mΓγv j

))∣∣∣∣ dxdt

+
∑

β+γ=α,|γ|<|β|
i, j,l,m=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∇∆−1∂l

(
∂2

t Γ
βvi∂mΓγv j

))∣∣∣∣ dxdt

+
∑

β+γ=α,|β|≤|γ|
i, j,l,m=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∇∆−1(∂2

t ∂lΓ
βvi∂mΓγv j

))∣∣∣∣ dxdt. (3.14)

For the first term on the right-hand side of (3.14), we deduce from (2.4) that∑
β+γ=α,|γ|<|β|
i, jl,m=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∇∆−1(∂2

t Γ
βvi∂l∂mΓγv j

))∣∣∣∣ dxdt
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.
∑

β+γ=α,|γ|<|β|
i, j,l,m=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∇∆−1(ρ−1∆Γβvi∂l∂mΓγv j

))∣∣∣∣ dxdt

+
∑

β+γ=α,|γ|<|β|
i, j,l,m=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∇∆−1(ρ−1Nβ

i ∂l∂mΓγv j
))∣∣∣∣ dxdt. (3.15)

We formulate the first term on the right-hand side of (3.15) as follows

∑
β+γ=α,|γ|<|β|
i, j,l,m,n=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇

(
η∇∆−1∂n

(
ρ−1∂nΓ

βvi∂l∂mΓγv j
))∣∣∣∣ dxdt

+
∑

β+γ=α,|γ|<|β|
i, j,l,m,n=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∂n

(
ρ−1η∂nΓ

βvi∂l∂mΓγv j

)∣∣∣∣ dxdt

+
∑

β+γ=α,|γ|<|β|
i, j,l,m,n=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇

(
η∇∆−1[∂nΓ

βvi∂n
(
ρ−1∂l∂mΓγv j

)])∣∣∣∣ dxdt

+
∑

β+γ=α,|γ|<|β|
i, j,l,m,n=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
ρ−1∂nη∂nΓ

βvi∂l∂mΓγv j

)∣∣∣∣ dxdt

+
∑

β+γ=α,|γ|<|β|
i, j,l,m,n=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
η∂nΓ

βvi∂n
(
ρ−1∂l∂mΓγv j

))∣∣∣∣ dxdt. (3.16)

The first three terms on the right-hand side of (3.16) can be estimated by

∑
β+γ=α
|γ|<|β|

∫ T

0
〈t〉−1

∥∥∥∥r−
1
4 〈r〉−

1
2
(
|∂rΓ

αv| +
|Γαv|

r

)∥∥∥∥
L2
‖〈r〉η‖L∞‖∇Γβv‖L2〈t〉‖∇2Γγv‖L∞ dt

+
∑
β+γ=α
|γ|<|β|

∫ T

0
〈t〉−1

∥∥∥∥r−
1
4 〈r〉−

1
2
(
|∂rΓ

αv| +
|Γαv|

r

)∥∥∥∥
L2
‖〈r〉η‖L3‖∇Γβv‖L2〈t〉‖∇

(
ρ−1∇2Γγv

)
‖L∞ dt

. δLEκ(T ) +

∫ T

0
〈t〉−2E2

κ(t) dt.

We utilize (2.19) to solve the last two terms on the right-hand side of (3.16) by

∑
β+γ=α
|γ|<|β|

∫ T

0
〈t〉−

3
2

∥∥∥∥|∂rΓ
βv| +

|Γαv|
r

∥∥∥∥
L2
‖∇Γβv‖L2

(
‖〈r〉(1 − ξ(s))∇η‖L3‖〈r〉(1 − ξ(s))∇2Γγv‖L∞

+ ‖∇η‖L3(R)〈t〉
3
2 ‖∇2Γγv‖L∞(R) + ‖〈r〉(1 − ξ(s))η‖L3‖〈r〉(1 − ξ(s))∇

(
ρ−1∇2Γγv

)
‖L∞

+ ‖η‖L3(R)〈t〉
3
2 ‖∇

(
ρ−1∇2Γγv j

)
‖L∞(R)

)
dt

.

∫ T

0
〈t〉−

3
2E

3
2
κ (t) dt.
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Along the same line, the second term on the right-hand side of (3.15) can be handled by∑
β+γ=α,|γ|<|β|
i, j,l,m=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∇∆−1(ρ−1Nβ

i ∂l∂mΓγv j
))∣∣∣∣ dxdt

.
∑

β+γ=α,|γ|<|β|
i, j,l,m=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇

(
η · ∇∆−1(ρ−1Nβ

i ∂l∂mΓγv j
))∣∣∣∣ dxdt

+
∑

β+γ=α,|γ|<|β|
i, j,l,m=1,2,3

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
ρ−1ηNβ

i ∂l∂mΓγv j

)∣∣∣∣ dxdt

.
∑
β+γ=α
|γ|<|β|

∫ T

0
〈t〉−1

∥∥∥∥r−
1
4 〈r〉−

1
2
(
|∂rΓ

αv| +
|Γαv|

r

)∥∥∥∥
L2
‖〈r〉η‖L3‖Nβ‖L2〈t〉‖∇2Γγv‖L∞ dt

+
∑
β+γ=α
|γ|<|β|

∫ T

0
〈t〉−2

∥∥∥∥|∂rΓ
αv| +

|Γαv|
r

∥∥∥∥
L2
‖Nβ‖L2‖〈r〉(1 − ξ(s))η‖L3‖〈r〉(1 − ξ(s))∇2Γγv‖L∞ dt

+
∑
β+γ=α
|γ|<|β|

∫ T

0
〈t〉−

3
2

∥∥∥∥|∂rΓ
αv| +

|Γαv|
r

∥∥∥∥
L2
‖Nβ‖L2‖η‖L3(R)〈t〉

3
2 ‖∇2Γγv‖L∞(R) dt

. δLEκ(T ) +

∫ T

0
〈t〉−

3
2E2

κ(t) dt.

The same estimates hold for the last two terms on the right-hand side of (3.14).
Applying (2.4), we formulate the second term on the right-hand side of (3.11) as follows∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1

(
∇η · ∂2

t∇
⊥∆−1∇⊥ · Γαv

)∣∣∣∣ dxdt

=

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η · ∂2

t ∆
−1∇⊥ · Γαv

)∣∣∣∣ dxdt

.

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η∇⊥ · Γαv

)∣∣∣∣ dxdt

+

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η∆−1∇⊥ ·

[
(∇X)−T∇Γαp

])∣∣∣∣ dxdt

+
∑
β+γ=α

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η∆−1∇⊥ ·

(
Γγη∂2

t Γ
βv

))∣∣∣∣ dxdt

+
∑
β+γ=α
|β|,|α|

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η∆−1∇⊥ ·

[
Cβ
α(∇X)−T (∇Γγv)T

·
(
∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)])∣∣∣∣ dxdt. (3.17)

The first term on the right-hand side of (3.17) is solved by∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η∇⊥ · Γαv

)∣∣∣∣ dxdt
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.

∫ T

0

∥∥∥∥r−
1
4 〈r〉−

1
2
(
|∂rΓ

αv| +
|Γαv|

r

)∥∥∥∥
L2
‖〈r〉2∇η‖L∞

∥∥∥r−
1
4 〈r〉−

1
2 |∇Γαv|

∥∥∥
L2 dt

. δLEκ(T ).

The calculations in (2.12) imply that

‖∇Γαp‖L2 + ‖ρ∂2
t Γ

αv − ∆Γαv‖L2

.
∑
β+γ=α

〈t〉−1‖〈r〉〈t − r〉|∂2Γβv||∂Γγv|‖L2 +
∑

β+γ+ι=α

〈t〉−1‖〈r〉〈t − r〉|∂2Γβv||∂Γγv||∂Γιv|‖L2

+
∑
β+γ=α
|β|,|α|

〈t〉−1‖〈r〉〈t − r〉|Γγη||∂2
t Γ

βv|‖L2 +
∑

1≤ι≤3

‖〈r〉∇ιη‖L∞
∥∥∥r−

1
4 〈r〉−

1
2 |∇Γαv|

∥∥∥
L2

+
∑
β+γ=α
|γ|<|β|<|α|

〈t〉−1‖〈r〉∇Γγv‖L∞
∥∥∥〈t − r〉(∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v)

∥∥∥
L2

+
∑
β+γ=α
|β|≤|γ|

〈t〉−1‖∇Γγv‖L2

∥∥∥〈r〉〈t − r〉(∂2
t Γ

βv − ∆Γβv +
∑

ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v)

∥∥∥
L∞
. (3.18)

Substituting (3.18) into the second term on the right-hand side of (3.17), we have∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η∆−1∇⊥ · [(∇X)−T∇Γαp]

)∣∣∣∣ dxdt

.
∑

i, j,l,m,n=1,2,3

∫ T

0

∫
R3

fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η∆−1∇⊥ ·

(
∂lvi∂mv j∂nΓ

αp
))

dxdt

+
∑

i, j,l=1,2,3

∫ T

0

∫
R3

fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η∆−1∇⊥ ·

(
∂ jvi∂lΓ

αp
))

dxdt

.

∫ T

0
〈t〉−1

∥∥∥∥r−
1
4 〈r〉−

1
2
(
|∂rΓ

αv| +
|Γαv|

r

)∥∥∥∥
L2
‖〈r〉∇η‖L∞〈t〉‖∇v‖L∞‖∇v‖L3‖∇Γαp‖L2 dt

+

∫ T

0

∥∥∥∥r−
1
4 〈r〉−

1
2
(
|∂rΓ

αv| +
|Γαv|

r

)∥∥∥∥
L2
‖〈r〉∇η‖L∞‖∇v‖L3‖∇Γαp‖L2 dt

. δLEκ(T ) +

∫ T

0
〈t〉−2E

3
2
κ (t) dt. (3.19)

For the third term on the right-hand side of (3.17), we have

∑
β+γ=α

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η∆−1∇⊥ ·

(
Γγη∂2

t Γ
βv

))∣∣∣∣ dxdt

.

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η∆−1∇⊥ ·

(
η∂2

t Γ
αv

))∣∣∣∣ dxdt

+
∑
β+γ=α
|β|,|α|

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η∆−1∇⊥ ·

(
Γγη∂2

t Γ
βv

))∣∣∣∣ dxdt. (3.20)
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We use (2.4) to formulate the first term on the right-hand side of (3.20) as follows∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η∆−1∇⊥ ·

(
ρ−1η∆Γαv

))∣∣∣∣ dxdt

+

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η∆−1∇⊥ ·

(
ρ−1η(∇X)−T∇Γαp

))∣∣∣∣ dxdt

+
∑
β+γ=α
|β|,|α|

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η∆−1∇⊥ ·

(
ρ−1ηΓγη∂2

t Γ
βv

))∣∣∣∣ dxdt

+
∑
β+γ=α
|β|,|α|

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η∆−1∇⊥ ·

[
ρ−1η

(
∇X)−T (∇Γγv

)T

·
(
∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=ι

Cι1
β Γι2η∂2

t Γ
ι1v

)])∣∣∣∣ dxdt (3.21)

For the first term on the right-hand side of (3.21), we have∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η∆−1∇⊥ ·

(
ρ−1η∆Γαv

))∣∣∣∣ dxdt

.
∑

i=1,2,3

∫ T

0

∫
R3

fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η∆−1∇⊥ · ∂i

(
ρ−1η∂iΓ

αv
))

dxdt

+
∑

i=1,2,3

∫ T

0

∫
R3

fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η∆−1∇⊥ ·

[
∂i(ρ−1η)∂iΓ

αv
])

dxdt

.

∫ T

0

∥∥∥∥r−
1
4 〈r〉−

1
2
(
|∂rΓ

αv| +
|Γαv|

r

)∥∥∥∥
L2
‖〈r〉∇η‖L∞

(
‖〈r〉η‖L∞ + ‖〈r〉∇(ρ−1η)‖L3

)
·
∥∥∥r−

1
4 〈r〉−

1
2 |∇Γαv|

∥∥∥
L2 dt

. δLEκ(T ).

The second term on the right-hand side of (3.21) can be solved as (3.19). We employ the analogous
method utilized for the first two terms on the right-hand side of (3.4) to solve the last two terms on the
right-hand side of (3.21).

For the second term on the right-hand side of (3.20), we have∑
β+γ=α
|β|,|α|

∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥ ·

(
∇η∆−1∇⊥ ·

(
Γγη∂2

t Γ
βv

))∣∣∣∣ dxdt

.
∑
β+γ=α
|γ|<|β|<|α|

∫ T

0
〈t〉−1

∥∥∥∥r−
1
4 〈r〉−

1
2
(
|∂rΓ

αv| +
|Γαv|

r

)∥∥∥∥
L2
‖〈r〉∇η‖L∞‖〈r〉Γγη‖L3‖〈t − r〉∂2

t Γ
βv‖L2 dt

+
∑
β+γ=α
|β|≤|γ|

∫ T

0
〈t〉−1

∥∥∥∥r−
1
4 〈r〉−

1
2
(
|∂rΓ

αv| +
|Γαv|

r

)∥∥∥∥
L2
‖〈r〉∇η‖L∞‖〈r〉Γγη‖L2‖〈t − r〉∂2

t Γ
βv‖L3 dt

. δLEκ(T ) + δ

∫ T

0
〈t〉−2Eκ(t) dt.
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For the last term on the right-hand side of (3.17), by Lemmas 2 and 6, we have∫ T

0

∫
R3

∣∣∣∣ fk

(
∂rΓ

αv +
Γαv

r

)
· ∇∆−1∇⊥i

(
∇iη∆

−1∇⊥ ·
[
Cβ
α(∇X)−T (∇Γγv)T

·
(
∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)])∣∣∣∣ dxdt

.
∑
β+γ=α
|γ|<|β|<|α|

∫ T

0
〈t〉−1

∥∥∥∥r−
1
4 〈r〉−

1
2
(
|∂rΓ

αv| +
|Γαv|

r

)∥∥∥∥
L2
‖〈r〉∇η‖L∞‖∇Γγv‖L3

·
∥∥∥〈t〉(∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)∥∥∥
L2 dt

+
∑
β+γ=α
|β|≤|γ|

∫ T

0
〈t〉−1

∥∥∥∥r−
1
4 〈r〉−

1
2
(
|∂rΓ

αv| +
|Γαv|

r

)∥∥∥∥
L2
‖〈r〉∇η‖L∞‖∇Γγv‖L2

·
∥∥∥〈t〉(∂2

t Γ
βv − ∆Γβv +

∑
ι1+ι2=β

Cι1
β Γι2η∂2

t Γ
ι1v

)∥∥∥
L3 dt

. δLEκ(T ) +

∫ T

0
〈t〉−2E

3
2
κ (t) dt.

Combining all the estimates, we conclude that

sup
0≤t≤T

∫
R3
|∂Γαv|2(t) dx + LEκ(T )

≤ C0

∫
R3
|∂Γαv|2(0) dx + CC0

(
δ + sup

0≤t≤T
E

1
2
κ (t)

)
LEκ(T ) + C

∫ T

0
〈t〉−

4
3E

3
2
κ (t) dt + Cδ

∫ T

0
〈t〉−

4
3Eκ(t) dt,

where C > 0 is some positive constant. By the smallness of δ, Eκ(t), and the standard continuity method,
we arrive at the main result.
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