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Abstract: Models for a continuous risk outcome has a wide application in portfolio risk management 
and capital allocation. We introduce a family of interval distributions based on variable transformations. 
Densities for these distributions are provided. Models with a random effect, targeting a continuous risk 
outcome, can then be fitted by maximum likelihood approaches assuming an interval distribution. 
Given fixed effects, regression function can be estimated and derived accordingly when required. This 
provides an alternative regression tool to the fraction response model and Beta regression model. 
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1. Introduction 

For a continuous risk outcome 0 ൏ 𝑦 ൏ 1, a model with a random effect has potentially a wide 
application in portfolio risk management, especially, for stress testing [1,2,7,16,19], capital allocation, 
conditional expected shortfall estimation [3,11,17]. 

Given fixed effects 𝑥 ൌ ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥ሻ , two widely used regression models to estimate the 
expected value 𝐸ሺ𝑦|𝑥ሻ are: the fraction response model [10] and Beta regression model [4,6,8]. There 
are cases, however, where tail behaviours or severity levels of the risk outcome are relevant. In those 
cases, a regression model may no longer fit in for the requirements. In addition, a fraction response 
model of the form 𝐸ሺ𝑦|𝑥ሻ ൌ Φሺ𝑎  𝑎ଵ𝑥ଵ  ⋯  𝑎𝑥ሻ may not be adequate when data exhibits 
significant heteroscedasticity, where Φ is a map from  𝑅ଵ to the open interval ሺ0, 1ሻ. 

In this paper, we assume that the risk outcome 𝑦 is driven by a model: 

𝑦 ൌ Φሺ𝑎  𝑎ଵ𝑥ଵ  ⋯  𝑎𝑥  𝑏𝑠ሻ,                    (1.1) 

where 𝑠 is a random continuous variable following a known distribution, independent of fixed effects 
ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥ሻ . Parameters 𝑎, 𝑎ଵ, … , 𝑎  are constant, while parameter 𝑏  can be chosen to be 
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dependent on ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥ሻ when required, for example, for addressing data heteroscedasticity. 
Given random effect model (1.1), the expected value 𝐸ሺ𝑦|𝑥ሻ can be deduced accordingly. It is 

given by the integral  Φሺ𝑎  𝑎ଵ𝑥ଵ  ⋯  𝑎𝑥  𝑏𝑠ሻ𝑓ሺ𝑠ሻ𝑑𝑠ఆ  over the domain 𝛺 of 𝑠, where 𝑓 

is the probability density of 𝑠. Given the routine QUAD implemented in SAS and Python, this integral 
can be evaluated as quickly as other function calls. Relative error tolerance for QUAD is 1.49e-8 in 
Python and is 1e-7 in SAS. But one can rescale the default tolerance to a desired level when necessary. 
This leads to an alternative regression tool to the fraction response model and Beta regression model. 

We introduce a family of interval distributions based on variable transformations. Probability 
densities for these distributions are provided (Proposition 2.1). Parameters of model (1.1) can then be 
estimated by maximum likelihood approaches assuming an interval distribution. In some cases, these 
parameters get an analytical solution without the needs for a model fitting (Proposition 4.1). We call a 
model with a random effect, where parameters are estimated by maximum likelihood assuming an 
interval distribution, an interval distribution model. 

In its simplest form, the interval distribution model 𝑦 ൌ Φሺ𝑎  𝑏𝑠ሻ , where 𝑎  and 𝑏,  are 
constant, can be used to model the loss rate as a random distribution for a homogeneous portfolio. Let 
𝑦ఈ  and 𝑠ఈ  denote the 𝛼 -quantiles for 𝑦  and 𝑠  at level 𝛼 , 0 ൏ 𝛼 ൏ 1.  Then 𝑦ఈ ൌ Φሺ𝑎  𝑏𝑠ఈሻ. 
The conditional expected shortfall for loss rate 𝑦, at level 𝛼, can then be estimated as the integral 

ଵ

ଵିఈ
 Φሺ𝑎  𝑏𝑠ሻ𝑓ሺ𝑠ሻ𝑑𝑠ሾ௦ഀ,ାஶሻ , where 𝑓 is the density of 𝑠. Meanwhile, a stress testing loss estimate, 

derived from a model on a specific scenario, can be compared in loss rate to severity 𝑦ఈሺൌ
Φሺ𝑎  𝑏𝑠ఈሻሻ, to position its level of severity. A loss estimate may not have reached the desired, for 
example, 99% level yet, if it is far below 𝑦.ଽଽ, and far below the maximum historical loss rate. In 
which case, further recalibrations for the model may be required. 

The paper is organized as follows: in section 2, we introduce a family of interval distributions. A 
measure for tail fatness is defined. In section 3, we show examples of interval distributions and 
investigate their tail behaviours. We propose in section 4 an algorithm for estimating the parameters in 
model (1.1). 

2. Interval distributions generated by transformations 

Interval distributions introduced in this section are defined for a risk outcome over a finite open 
interval ሺ𝑐, 𝑐ଵሻ, where 𝑐 ൏ 𝑐ଵ are finite numbers. These interval distributions can potentially be 
used for modeling a risk outcome over an arbitrary finite interval, including interval (0,1), by maximum 
likelihood approaches.  

Let 𝐷 ൌ ሺ𝑑, 𝑑ଵሻ, 𝑑 ൏  𝑑ଵ, be an open interval, where 𝑑 can be finite or െ∞ and 𝑑ଵ can 
be finite or ∞. 

Let 

Φ:  𝐷 → ሺ𝑐, 𝑐ଵሻ                                (2.1) 

be a transformation with continuous and positive derivatives Φᇱሺxሻ ൌ ϕሺ𝑥ሻ . A special example is 
ሺ𝑐, 𝑐ଵሻ ൌ ሺ0, 1ሻ , and Φ: 𝐷 → ሺ0, 1ሻ  is the cumulative distribution function (CDF) of a random 
variable with a continuous and positive density. 

Given a continuous random variable 𝑠, let 𝑓 and 𝐹 be respectively its density and CDF. For 
constants 𝑎 and 𝑏  0, let 

𝑦 ൌ Φሺ𝑎  𝑏𝑠ሻ,                               (2.2) 
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where we assume that the range of variable ሺ𝑎  𝑏𝑠ሻ is in the domain 𝐷 of  Φ. Let 𝑔ሺ𝑦, 𝑎, 𝑏ሻ and 
𝐺ሺ𝑦, 𝑎, 𝑏ሻ denote respectively the density and CDF of 𝑦 in (2.2). 

Proposition 2.1. Given Φିଵሺ𝑦ሻ, functions 𝑔ሺ𝑦, 𝑎, 𝑏ሻ and 𝐺ሺ𝑦, 𝑎, 𝑏ሻ are given as: 
 

𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ 𝑈ଵ/ሺ𝑏𝑈ଶሻ                            (2.3) 

𝐺ሺ𝑦, 𝑎, 𝑏ሻ ൌ 𝐹 ቂషభሺ௬ሻି


ቃ.                          (2.4) 

where 
𝑈ଵ ൌ 𝑓ሼሾΦିଵሺ𝑦ሻ െ 𝑎ሿ/𝑏ሽ, 𝑈ଶ ൌ ϕሾΦିଵሺ𝑦ሻሿ.                  (2.5) 

Proof. A proof for the case when ሺ𝑐, 𝑐ଵሻ ൌ ሺ0, 1ሻ can be found in [18]. The proof here is similar. 
Since 𝐺ሺ𝑦, 𝑎, 𝑏ሻ is the CDF of 𝑦, it follows: 

𝐺ሺ𝑦, 𝑎, 𝑏ሻ ൌ 𝑃ሾΦሺ𝑎  𝑏𝑠ሻ  𝑦ሿ 

             ൌ 𝑃ሼ𝑠  ሾΦିଵሺ𝑦ሻ െ 𝑎ሿ/𝑏ሽ 

          ൌ 𝐹ሼሾΦିଵሺ𝑦ሻ െ 𝑎ሿ/𝑏ሽ. 

By chain rule and the relationship ΦሾΦିଵሺ𝑦ሻሿ ൌ 𝑦, the derivative of Φିଵሺ𝑦ሻ with respect to 
𝑦 is 
 

డషభሺ௬ሻ

డ௬
ൌ ଵ

மሾషభሺ௬ሻሿ
.                               (2.6) 

 

Taking the derivative of 𝐺ሺ𝑦, 𝑎, 𝑏ሻ with respect to 𝑦, we have 

డீሺ௬,,ሻ

డ௬
ൌ  ሼሾషభሺ௬ሻିሿ/ሽ

மሾషభሺ௬ሻሿ
ൌ భ

మ
. 

One can explore into these interval distributions for their shapes, including skewness and modality. 
For stress testing purposes, we are more interested in tail risk behaviours for these distributions. 

Recall that, for a variable X over (−∞, ∞ሻ, we say that the distribution of X has a fat right tail 
if there is a positive exponent 𝛼  0, called tailed index, such that 𝑃ሺ𝑋  𝑥ሻ~𝑥ିఈ. The relation ~ 
refers to the asymptotic equivalence of functions, meaning that their ratio tends to a positive constant. 
Note that, when the density is a continuous function, it tends to 0 when 𝑥 → ∞.  Hence, by 
L’Hospital’s rule, the existence of tailed index is equivalent to saying that the density decays like a 
power law, whenever the density is a continuous function. 

For a risk outcome over a finite interval ሺ𝑐, 𝑐ଵሻ , 𝑐, ൏ 𝑐ଵ,  however, its density can be ∞ 
when approaching boundaries 𝑐  and 𝑐ଵ.  Let 𝑦  be the largest lower bound for all values of 𝑦 
under (2.2), and 𝑦ଵ the smallest upper bound. We assume 𝑦 ൌ 𝑐 and 𝑦ଵ ൌ 𝑐ଵ. 

We say that an interval distribution has a fat right tail if the limit 𝑙𝑖𝑚௬⤍௬భ
ష 𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ ∞, 

and a fat left tail if 𝑙𝑖𝑚௬⤍௬బ
శ 𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ ∞, where 𝑦 ⤍ 𝑦

ା and 𝑦 ⤍ 𝑦ଵ
ି  denote respectively 𝑦 

approaching 𝑦 from the right-hand-side, and 𝑦ଵ from the left-hand-side. For simplicity, we write 
𝑦 ⤍ 𝑦 for 𝑦 ⤍ 𝑦

ା, and 𝑦 ⤍ 𝑦ଵ for 𝑦 ⤍ 𝑦ଵ
ି. 

Given 𝛼  0,  we say that an interval distribution has a fat right tail with tailed index 𝛼  if 
𝑙𝑖𝑚௬⤍௬భ 𝑔ሺ𝑦, 𝑎, 𝑏ሻሺ𝑦ଵ െ 𝑦ሻఉ ൌ ∞  whenever 0 ൏ 𝛽 ൏ 𝛼,  and 𝑙𝑖𝑚௬⤍௬భ 𝑔ሺ𝑦, 𝑎, 𝑏ሻሺ𝑦ଵ െ 𝑦ሻఉ ൌ 0  
for 𝛽  𝛼.  Similarly, an interval distribution has a fat left tail with tailed index 𝛼  if 
𝑙𝑖𝑚௬⤍௬బ 𝑔ሺ𝑦, 𝑎, 𝑏ሻሺ𝑦 െ 𝑦ሻఉ ൌ ∞  whenever 0 ൏ 𝛽 ൏ 𝛼,  and 𝑙𝑖𝑚௬⤍௬బ 𝑔ሺ𝑦, 𝑎, 𝑏ሻሺ𝑦 െ 𝑦ሻఉ ൌ 0 

for 𝛽  𝛼. Here the status at 𝛽 ൌ 𝛼 is left open. There are examples (Remark 3.4), where an interval 
distribution has a fat right tail with tailed index 𝛼, but the limit 𝑙𝑖𝑚௬⤍௬భ 𝑔ሺ𝑦, 𝑎, 𝑏ሻሺ𝑦ଵ െ 𝑦ሻఈ can 
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either be ∞ or 0. Under this definition, a tailed index of an interval distribution with a continuous 
density is always larger than 0 and less or equal to 1, if it exists. 

Recall that, for a Beta distribution with parameters 𝛼  0 and 𝛽  0, its density is given by 

𝑓ሺ𝑥ሻ ൌ  ௫ഀషభሺଵି௫ሻഁషభ

ሺఈ,ఉሻ
,  where 𝐵ሺ𝛼, 𝛽ሻ  is the Beta function .  Under the above definition, Beta 

distribution has a fat right tail with tailed index ሺ1 െ 𝛽ሻ when 0 ൏ 𝛽 ൏ 1, and a fat left tail with 
tailed index ሺ1 െ 𝛼ሻ when 0 ൏ 𝛼 ൏ 1. 

Next, because the derivative of Φ  is assumed to be continuous and positive, it is strictly 
monotonic. Hence Φିଵሺ𝑦ሻ is defined. Let 

𝑧 ൌ Φିଵሺ𝑦ሻ                                 (2.7) 

Then 𝑙𝑖𝑚௬⤍௬బ 𝑧  exists (can be െ∞ሻ , and the same for 𝑙𝑖𝑚௬⤍௬భ 𝑧  (can be ∞ሻ . Let 
𝑙𝑖𝑚௬⤍௬బ  𝑧 ൌ 𝑧 , and  𝑙𝑖𝑚௬⤍௬భ 𝑧 ൌ 𝑧ଵ . Rewrite 𝑔ሺ𝑦, 𝑎, 𝑏ሻ  as 𝑔ሺΦሺ𝑧ሻ, 𝑎, 𝑏ሻ  by (2.7). Let 

𝜕ሾ𝑔ሺΦሺzሻ, 𝑎, 𝑏ሻሿିభ
ഁ/𝜕𝑧 denote the derivative of ሾ𝑔ሺΦሺzሻ, 𝑎, 𝑏ሻሿିଵ/ఉ with respect to 𝑧. 

Lemma 2.2. Given 𝛽  0, the following statements hold: 
(i) 𝑙𝑖𝑚௬⤍௬బ 𝑔ሺ𝑦, 𝑎, 𝑏ሻሺ𝑦 െ 𝑦ሻఉ ൌ 𝑙𝑖𝑚௭⤍௭బ 𝑔ሺΦሺzሻ, 𝑎, 𝑏ሻሺΦሺzሻ െ yሻఉ  and 

𝑙𝑖𝑚௬⤍௬భ 𝑔ሺ𝑦, 𝑎, 𝑏ሻሺ𝑦ଵ െ 𝑦ሻఉ ൌ 𝑙𝑖𝑚௭⤍௭భ 𝑔ሺΦሺ𝑧ሻ, 𝑎, 𝑏ሻሺ𝑦ଵ െ Φሺ𝑧ሻሻఉ. 

(ii) If 𝑙𝑖𝑚௬⤍௬బ 𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ ∞  and  𝑙𝑖𝑚௭⤍௭బ ሼ𝜕ሾ𝑔ሺΦሺzሻ, 𝑎, 𝑏ሻሿିభ
ഁ/𝜕𝑧ሽ/ϕሺzሻ  is 0 (resp. 

∞ሻ, then 𝑙𝑖𝑚௬⤍௬బ 𝑔ሺ𝑦, 𝑎, 𝑏ሻሺ𝑦 െ 𝑦ሻఉ ൌ ∞ (resp. 0). 

(iii)If 𝑙𝑖𝑚௬⤍௬భ 𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ ∞ and  𝑙𝑖𝑚௭⤍௭భ െ ሼ𝜕ሾ𝑔ሺΦሺzሻ, 𝑎, 𝑏ሻሿିభ
ഁ/𝜕𝑧ሽ/ϕሺzሻሻ is 0 (resp. 

∞ሻ, then 𝑙𝑖𝑚௬⤍௬భ  𝑔ሺ𝑦, 𝑎, 𝑏ሻሺ𝑦ଵ െ 𝑦ሻఉ ൌ ∞ (resp. 0). 
Proof. The first statement follows from the relationship 𝑦 ൌ Φሺz). For statements (ii) and (iii), 

we show only (iii). The proof for (ii) is similar. Notice that 

ൣ𝑔ሺ𝑦, 𝑎, 𝑏ሻሺ𝑦ଵ െ 𝑦ሻఉ൧
ିଵ/ఉ

ൌ
ሾሺ௬,,ሻሿషభ/ഁ

௬భି௬
ൌ  

ሾሺሺሻ,,ሻሿషభ/ഁ

௬భିሺሻ
.           (2.8) 

By L’Hospital’s rule and taking the derivatives of the numerator and the denominator of (2.8) 

with respect to 𝑧 , we have 𝑙𝑖𝑚௬⤍௬భ ൣ𝑔ሺ𝑦, 𝑎, 𝑏ሻሺ𝑦ଵ െ 𝑦ሻఉ൧
ିଵ/ఉ

ൌ 0  (resp. ∞  ) if 
𝑙𝑖𝑚௭⤍௭బ െሼ𝜕ሾ𝑔ሺΦሺ𝑧ሻ, 𝑎, 𝑏ሻሿିଵ/ఉ/𝜕𝑧ሽ/ϕሺ𝑧ሻ  is 0 (resp. ∞ሻ . Hence 𝑙𝑖𝑚௬⤍௬భ    𝑔ሺ𝑦, 𝑎, 𝑏ሻሺ𝑦ଵ െ
𝑦ሻఉ ൌ ∞ (resp. 0). 

For tail convexity, we say that the right tail of an interval distribution is convex if 𝑔ሺ𝑦, 𝑎, 𝑏ሻ is 
convex for 𝑦ଵ െ є ൏ 𝑦 ൏ 𝑦ଵ  for sufficiently small є  0.  Similarly, the left tail is convex if 
𝑔ሺ𝑦, 𝑎, 𝑏ሻ is convex for 𝑦 ൏ 𝑦 ൏ 𝑦  є for sufficiently small є  0. One sufficient condition for 
convexity for the right (resp. left) tail is 𝑔௬௬

ᇱᇱ ሺ𝑦, 𝑎, 𝑏ሻ  0 when 𝑦 is sufficiently close to 𝑦ଵ (resp. 
𝑦ሻ. 

Again, write 𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ 𝑔ሺΦሺ𝑧ሻ, 𝑎, 𝑏ሻ. Let 

ℎሺ𝑧, 𝑎, 𝑏ሻ ൌ logሾ𝑔ሺΦሺ𝑧ሻ, 𝑎, 𝑏ሻሿ,                       (2.9) 

where log ሺ𝑥ሻ denotes the natural logarithmic function. Then  

𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ expሾℎሺ𝑧, 𝑎, 𝑏ሻሿ.                        (2.10) 

By (2.9), (2.10), using (2.6) and the relationship 𝑧 ൌ Φିଵሺ𝑦ሻ, we have 

𝑔௬
ᇱ ൌ ሾℎ௭

ᇱ ሺ𝑧ሻ/ϕሺzሻሿexp ሾℎሺΦିଵሺ𝑦ሻ, 𝑎, 𝑏ሻ], 
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𝑔௬௬
ᇱᇱ ൌ ቂ

ᇲᇲ ሺ௭ሻ

மమሺሻ
െ 

ᇲ ሺ௭ሻம
ᇲ ሺ௭ሻ

மయሺሻ
 

ᇲ ሺሻ
ᇲ ሺሻ

மమሺሻ
ቃ exp ሾℎሺΦିଵሺ𝑦ሻ, 𝑎, 𝑏ሻ].               (2.11) 

The following lemma is useful for checking tail convexity, it follows from (2.11). 
Lemma 2.3. Suppose ϕሺzሻ  0, and derivatives ℎ

ᇱ ሺzሻ, ℎ
ᇱᇱሺzሻ, and ϕ

ᇱ ሺzሻ, with respect to 𝑧, 
all exist. If ℎ௭௭

ᇱᇱ ሺ𝑧ሻ  0 and ℎ௭
ᇱ ሺ𝑧ሻϕ

ᇱ ሺ𝑧ሻ  0, then 𝑔௬௬
ᇱᇱ ሺ𝑦, 𝑎, 𝑏ሻ  0. 

3. Examples of interval distributions and their tail behaviours 

In this section, we focus on the case where ሺ𝑐, 𝑐ଵሻ ൌ ሺ0, 1ሻ, and Φ: 𝐷 → ሺ0, 1ሻ in (2.2) is the 
CDF of a continuous distribution.  This includes, for example, the CDFs for standard normal and 
standard logistic distributions. 

One can explore into a wide list of densities with different choices for Φ and 𝑠 under (2.2). We 
consider here only the following four interval distributions: 

A. 𝑠~𝑁ሺ0,1ሻ and Φ is the CDF for the standard normal distribution. 
B. 𝑠  follows the standard logistic distribution and Φ  is the CDF for the standard normal 

distribution. 
C. 𝑠 follows the standard logistic distribution and Φ is its CDF. 
D. D. 𝑠~𝑁ሺ0,1ሻ and Φ is the CDF for standard logistic distribution. 
Densities for cases A, B, C, and D are given respectively in (3.3) (section 3.1), (A.1), (A.3), and 

(A5) (Appendix A). Tail behaviour study is summarized in Propositions 3.3, 3.5, and Remark 3.6. 
Sketches of density plots are provided in Appendix B for distributions A, B, and C. 

3.1. Case A: the vasicek distribution and its tail behaviours 

Using the notations of section 2, we have ϕ ൌ 𝑓 and Φ ൌ 𝐹. We claim that 𝑦 ൌ Φሺ𝑎  𝑏𝑠ሻ 
under (2.2) follows the Vasicek distribution [13,14]. 

By (2.5), we have 

log ቀభ

మ
ቁ ൌ ି௭మାଶ௭ିమାమ௭మ

ଶమ                              (3.1) 

                                ൌ
ି൫ଵିమ൯ቀ௭ି ೌ

భష್మቁ
మ

ା ್మ

భష್మమ

ଶమ .                       (3.2) 

Therefore, we have 

𝑔ሺy, 𝑎, 𝑏ሻ ൌ ଵ


exp ሼ 

ି൫ଵିమ൯ቀ௭ି ೌ
భష್మቁ

మ
ା ್మ

భష್మమ

ଶమ ሽ.                 (3.3) 

Again, using the notations of section 2, we have 𝑦 ൌ 0 and 𝑦ଵ ൌ 1. With 𝑧 ൌ Φିଵሺ𝑦ሻ, we 
have 𝑙𝑖𝑚௬⤍ 𝑧 ൌ െ∞ and 𝑙𝑖𝑚௬⤍ଵ 𝑧 ൌ ∞. Recall that a variable  0 ൏ 𝑦 ൏ 1 follows a Vasicek 
distribution [13,14] if its density has the form: 
 

𝑔ሺ𝑦, 𝑝, 𝜌ሻ ൌ ට
ଵିఘ

ఘ
 exp ሼെ ଵ

ଶఘ
ൣඥ1 െ 𝜌Φିଵሺ𝑦ሻ െ Φିଵሺ𝑝ሻ൧

ଶ
 ଵ

ଶ
 ሾΦିଵሺ𝑦ሻሿଶሽ,      (3.4) 

where 𝑝 is the mean of y, and 𝜌 is a parameter called asset correlation. 
Proposition 3.1. Density (3.3) is equivalent to (3.4) under the relationships: 

 

𝑎 ൌ ఃషభሺሻ

ඥଵିఘ
  and   𝑏 ൌ ට

ఘ

ଵିఘ
 .                       (3.5) 
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Proof. A similar proof can be found in [19]. By (3.4), we have 
 

𝑔ሺ𝑦, 𝑝, 𝜌ሻ ൌ ඨ
1 െ 𝜌

𝜌
 exp ሼെ

1 െ 𝜌
2𝜌

ൣΦିଵሺ𝑦ሻ െ Φିଵሺ𝑝ሻ/ඥ1 െ 𝜌൧
ଶ


1
2

 ሾΦିଵሺ𝑦ሻሿଶሽ 

ൌ
1
𝑏

exp ൝െ
1
2

ቈ
𝛷ିଵሺ𝑦ሻ െ 𝑎

𝑏
 

ଶ

ൡ exp ሼ
1
2

 ሾΦିଵሺ𝑦ሻሿଶሽ 

                       ൌ 𝑈ଵ/ሺ𝑏𝑈ଶሻ ൌ 𝑔ሺ𝑦, 𝑎, 𝑏ሻ. 

The following relationships are implied by (3.5): 
 

𝜌 ൌ మ

ଵାమ ,                                  (3.6) 
 

𝑎 ൌ 𝛷ିଵሺ𝑝ሻ√1  𝑏ଶ.                                   (3.7) 

Remark 3.2. The mode of 𝑔ሺ𝑦, 𝑝, 𝜌ሻ in (3.4) is given in [14] as Φ ൬ඥଵିఘ

ଵିଶఘ
Φିଵሺ𝑝ሻ൰. We claim 

this is the same as Φ ቀ 

ଵିమቁ. By (3.6), 1 െ 2𝜌 ൌ ଵିమ

ଵାమ and ඥ1 െ 𝜌 ൌ ଵ

√ଵାమ. Therefore, we have 
 
 

ඥ1 െ 𝜌
1 െ 2𝜌

Φିଵሺ𝑝ሻ ൌ
√1  𝑏ଶ

1 െ 𝑏ଶ Φିଵሺ𝑝ሻ ൌ
𝑎

1 െ 𝑏ଶ. 

This means Φ ቆඥଵିఘ

ଵିଶఘ
Φିଵሺ𝑝ሻቇ ൌ Φ ቀ 

ଵିమቁ. 

Proposition 3.3. The following statements hold for 𝑔ሺ𝑦, 𝑎, 𝑏ሻ given in (3.3): 
 

(i) 𝑔ሺ𝑦, 𝑎, 𝑏ሻ is unimodal if  0 ൏ 𝑏 ൏ 1 with mode given by Φ ቀ 

ଵିమቁ, and is in U-shape if 

𝑏  1. 
(ii) If 𝑏  1, then 𝑔ሺ𝑦, 𝑎, 𝑏ሻ has a fat left tail and a fat right tail with tailed index ሺ1 െ 1/𝑏ଶሻ. 
(iii)  If 𝑏  1, both tails of 𝑔ሺ𝑦, 𝑎, 𝑏ሻ are convex, and is globally convex if in addition 𝑎 ൌ 0. 
Proof. For statement (i), we have െሺ1 െ 𝑏ଶሻ ൏ 0  when  0 ൏ 𝑏 ൏ 1 . Therefore by (3.2) 

function  log ቀభ

మ
ቁ  reaches its unique maximum at 𝑧 ൌ 

ଵିమ , resulting in a value for the mode at 

Φ ቀ 

ଵିమቁ.  If 𝑏  1 , then  െሺ1 െ 𝑏ଶሻ  0,  thus by (3.2), 𝑔ሺ𝑦, 𝑎, 𝑏ሻ  is first decreasing and then 

increasing when 𝑦 varying from 0 to 1. This means ሺ𝑦, 𝑎, 𝑏 ) is in U-shape. 
Consider statement (ii). First by (3.3), if 𝑏  1,  then 𝑙𝑖𝑚௬⤍ଵ  𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ ∞  and 

𝑙𝑖𝑚௬⤍ 𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ ∞. Thus 𝑔ሺy, 𝑎, 𝑏ሻ has a fat right and a fat left tail. Next for tailed index, we 
use Lemma 2.2 (ii) and (iii). By (3.1), 
 

ሾ𝑔ሺΦሺzሻ, 𝑎, 𝑏ሻሿିଵ/ఉ ൌ 𝑏ଵ/ఉexp ሺെ
൫మିଵ൯௭మାଶ௭ିమ

ଶఉమ ሻ                  (3.8) 
 

By taking the derivative of (3.8) with respect to 𝑧 and noting that ϕሺzሻ ൌ  ଵ

√ଶగ
exp ቀെ ௭మ

ଶ
ቁ, we 

have 

െ ൜𝜕ሾ𝑔ሺΦሺzሻ, 𝑎, 𝑏ሻሿି భ
ഁ/𝜕𝑧ൠ /ϕሺzሻ ൌ √2𝜋𝑏

భ
ഁ  

൫మିଵ൯ ௭ା

ఉమ  exp ሺെ
൫మିଵ൯௭మାଶ௭ିమ

ଶఉమ  ௭మ

ଶ
ሻ.  (3.9) 

 

Thus 𝑙𝑖𝑚௭⤍ାஶ  െ ൜𝜕ሾ𝑔ሺΦሺzሻ, 𝑎, 𝑏ሻሿି భ
ഁ/𝜕𝑧ൠ /ϕሺzሻ  is 0 if  

మିଵ

ఉమ  1 , and is ∞  if 
మିଵ

ఉమ ൏

1. Hence by Lemma 2.2 (iii), 𝑔ሺ𝑦, 𝑎, 𝑏ሻ has a fat right tail with tailed index ሺ1 െ 1/𝑏ଶሻ. Similarly, 
for the left tail, we have by (3.9) 
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൜𝜕ሾ𝑔ሺΦሺzሻ, 𝑎, 𝑏ሻሿି భ
ഁ/𝜕𝑧ൠ /ϕሺzሻ ൌ െ√2𝜋𝑏

భ
ഁ   

൫మିଵ൯ ௭ା

ఉమ  exp ሺെ
൫మିଵ൯௭మାଶ௭ିమ

ଶఉమ  ௭మ

ଶ
ሻ.  (3.10) 

 

Thus 𝑙𝑖𝑚௭⤍ିஶ ൜𝜕ሾ𝑔ሺΦሺzሻ, 𝑎, 𝑏ሻሿି భ
ഁ/𝜕𝑧ൠ /ϕሺzሻ  is 0 if 

మିଵ

ఉమ  1 , and is ∞  if 
మିଵ

ఉమ ൏ 1. 

Hence 𝑔ሺ𝑦, 𝑎, 𝑏ሻ has a fat left tail with tailed index ሺ1 െ 1/𝑏ଶሻ by Lemma 2.2 (ii). 
For statement (iii), we use Lemma 2.3. By (2.9) and using (3.2), we have 

ℎሺ𝑧, 𝑎, 𝑏ሻ ൌ log ቀ భ

మ
ቁ ൌ

ି൫ଵିమ൯ቀ௭ି ೌ
భష್మቁ

మ
ା ್మ

భష್మమ

ଶమ െ log ሺ𝑏ሻ. 

When 𝑏  1, it is not difficult to check out that ℎ௭௭
ᇱᇱ ሺ𝑧ሻ  0 and ℎ௭

ᇱ ሺ𝑧ሻϕ
ᇱ ሺ𝑧ሻ  0 when 𝑧 ⤍

േ∞ or when 𝑎 ൌ 0. 
Remark 3.4. Assume 𝛽 ൌ ሺ1 െ 1/𝑏ଶሻ and 𝑏  1. By (3.9), we see 

 

𝑙𝑖𝑚௭⤍ାஶ  െ ቊ𝜕ሾ𝑔ሺΦሺzሻ, 𝑎, 𝑏ሻሿ
ି ଵ

ఉ/𝜕𝑧ቋ /ϕሺzሻ 

is ∞ for 𝑎 ൌ 0, and is 0 for 𝑎  0.  Hence for this 𝛽, the limit 𝑙𝑖𝑚௬⤍ଵ 𝑔ሺ𝑦, 𝑎, 𝑏ሻሺ1 െ 𝑦ሻ ఉ can 
be either 0 or ∞, depending on the value of 𝑎. 

3.2. Tail behaviours for interval distributions for cases B-D 

For these distributions, we again focus on their tail behaviours. A proof for the next proposition 
can be found in Appendix A. 

Proposition 3.5. The following statements hold: 
(a) Density 𝑔ሺ𝑦, 𝑎, 𝑏ሻ has a fat left tail and a fat right tail for case B for all 𝑏  0, and for case 

C if 𝑏  1. For case D, it does not have a fat right tail nor a fat left tail for any 𝑏  0. 
(b) The tailed index of 𝑔ሺ𝑦, 𝑎, 𝑏ሻ for both right and left tails is 1 for case B for all 𝑏  0, and 

is ሺ1 െ ଵ


ሻ for case C for B for 𝑏  1. 

Remark 3.6. Among distributions A, B, C, and Beta distribution, distribution B gets the highest 
tailed index of 1, independent of the choices of 𝑏  0. 

4. Algorithms for fitting interval distribution models 

In this section, we assume that Φ  in (2.2) is a function from 𝑅ଵ  to ሺ0, 1ሻ  with positive 
continuous derivatives. We focus on parameter estimation algorithms for model (1.1). 

First, we consider a simple case, where risk outcome 𝑦 is driven by a model: 

𝑦 ൌ Φሺ𝑣  𝑏𝑠ሻ,                                 (4.1) 

where 𝑏  0  is a constant, 𝑣 ൌ 𝑎  𝑎ଵ𝑥ଵ  ⋯  𝑎𝑥 , and 𝑠 ~𝑁ሺ0, 1ሻ,  independent of fixed 
effects 𝑥 ൌ ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥ሻ. The function Φ does not have to be the standard normal CDF. But when 
Φ  is the standard normal CDF, the expected value 𝐸ሺ𝑦|𝑥ሻ  can be evaluated by the formula 

𝐸ௌሾΦሺ𝑎  𝑏𝑠ሻሿ ൌ Φ ቀ 

√ଵାమቁ [12]. 

Given a sample ሼሺ𝑥ଵ, 𝑥ଶ, … , 𝑥, 𝑦ሻሽୀଵ
 ,  where ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥, 𝑦ሻ  denotes the 𝑖௧  data 

point of the sample, let 𝑧 ൌ Φିଵሺ𝑦ሻ.  and 𝑣 ൌ 𝑎  𝑎ଵ𝑥ଵ  ⋯  𝑎𝑥.  By (2.3), the log-
likelihood function for model (4.1) is: 

𝐿𝐿 ൌ ∑ ሼlog 𝑓 ቀ௭ି௩


ቁ െ logϕሺ𝑧ሻ െ 𝑙𝑜𝑔𝑏ሽ

ୀଵ ,                   (4.2) 
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where 𝑓 is the density of 𝑠. The part of ∑ logϕሺ𝑧ሻ
ୀଵ  is constant, which can be dropped off from 

the maximization. 
Recall that the least squares estimators of 𝑎, 𝑎ଵ, … , 𝑎, as a row vector, that minimize the sum 

squares 

𝑆𝑆 ൌ ∑ ሺ𝑧 െ 𝑣ሻଶ
ୀଵ                             (4.3) 

has a closed form solution given by the transpose of ሺX்XሻିଵXZ [5,9] whenever the design matrix 
X has a rank of 𝑘, where 

X ൌ ቦ

1 𝑥ଵଵ … 𝑥ଵ
1 𝑥ଵଶ … 𝑥ଶ    …
1 𝑥ଵ … 𝑥

ቧ,  Z ൌ ቦ

 𝑧ଵ
𝑧ଶ…
𝑧

ቧ. 

The next proposition shows there exists an analytical solution for the parameters of model (4.1). 
Proposition 4.1. Given a sample ሼሺ𝑥ଵ, 𝑥ଶ, … , 𝑥, 𝑦ሻሽୀଵ

 , assume that the design matrix has a 
rank of 𝑘. If 𝑠 ~ 𝑁ሺ0, 1ሻ, then the maximum likelihood estimates of parameters ሺ𝑎, 𝑎ଵ, … , 𝑎ሻ, as 
a row vector, and parameter 𝑏 are respectively given by the transpose of ሺX்XሻିଵXZ, and 𝑏ଶ ൌ
ଵ


∑ ሺ𝑧 െ 𝑣ሻଶ

ୀଵ .  In absence of fixed effects ሼ𝑥ଵ, 𝑥ଶ, … , 𝑥ሽ , parameters 𝑎  and 𝑏ଶ  degenerate 

respectively to the sample mean and variance of 𝑧ଵ, 𝑧ଶ, … , 𝑧. 

Proof. Dropping off the constant term from (4.2) and noting 𝑓ሺ𝑧ሻ ൌ ଵ

√ଶగ
exp ቀെ ௭మ

ଶ
ቁ, we have 

𝐿𝐿 ൌ െ ଵ

ଶమ ∑ ሺ𝑧 െ 𝑣ሻଶ െ 𝑛𝑙𝑜𝑔𝑏,
ୀଵ                      (4.4) 

Hence the maximum likelihood estimates ሺ𝑎, 𝑎ଵ, … , 𝑎ሻ  are the same as least squares 
estimators of (4.3), which are given by the transpose of ሺX்XሻିଵXZ. By taking the derivative of (4.4) 

with respect to 𝑏 and setting it to zero, we have 𝑏ଶ ൌ ଵ


∑ ሺ𝑧 െ 𝑣ሻଶ

ୀଵ . 

Next, we consider the general case of model (1.1), where the risk outcome 𝑦 is driven by a model: 

𝑦 ൌ Φሾ𝑣  𝑤𝑠ሿ,                               (4.5) 

where parameter 𝑤 is formulated as 𝑤 ൌ expሺ𝑢ሻ,  and 𝑢 ൌ 𝑏  𝑏ଵ𝑥ଵ   …  𝑏𝑥. We focus on 
the following two cases: 

(a) 𝑠 ~ 𝑁ሺ0, 1ሻ, 
(b) 𝑠 is standard logistic. 
Given a sample ሼሺ𝑥ଵ, 𝑥ଶ, … , 𝑥, 𝑦ሻሽୀଵ

 ,  let 𝑤 ൌ exp ሺ𝑏  𝑏ଵ𝑥ଵ  …  𝑏𝑥ሻ  and 𝑢 ൌ
𝑏  𝑏ଵ𝑥ଵ  …  𝑏𝑥. The log-likelihood functions for model (4.5), dropping off the constant part 
logሺ𝑈ଶሻ, for cases (a) and (b) are given respectively by (4.6) and (4.7): 

𝐿𝐿 ൌ ∑ െ ଵ

ଶ
ሾሺ𝑧 െ 𝑣ሻଶ/𝑤

ଶ െ 𝑢ሿ,
ୀଵ                    (4.6) 

𝐿𝐿 ൌ ∑ ሼെሺ𝑧 െ 𝑣ሻ /𝑤୧ െ 2 logሾ1  exp ሾെሺ𝑧 െ 𝑣ሻ /𝑤ሿ െ 𝑢ሽ, 
ୀଵ         (4.7) 

Recall that a function is log-concave if its logarithm is concave. If a function is concave, a local 
maximum is a global maximum, and the function is unimodal. This property is useful for searching 
maximum likelihood estimates. 

Proposition 4.2. The functions (4.6) and (4.7) are concave as a function of ሺ𝑎, 𝑎ଵ, … , 𝑎ሻ. As a 
function of ሺ𝑏, 𝑏ଵ, … , 𝑏ሻ, (4.6) is concave. 

Proof. It is well-known that, if )(xf is log-concave, then so is ),( bAzf   where bAz : 1RRm   
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is any affine transformation from the m-dimensional Euclidean space to the 1-dimensional Euclidean 
space. For (4.6), the function 𝑓ሺ𝑥ሻ ൌ െሺ𝑧 െ 𝑣ሻଶ expሺെ2𝑢ሻ  is concave as a function of 𝑣,   thus 
function (4.6) is concave as a function of ሺ𝑎, 𝑎ଵ, … , 𝑎ሻ. Similarly, this function 𝑓ሺ𝑥ሻ is concave as 
a function of 𝑢, so (4.6) is concave as a function of  ሺ𝑏, 𝑏ଵ, … , 𝑏ሻ.  

For (4.7), the linear part െሺ𝑧 െ 𝑣ሻ exp ሺെ𝑢ሻ , as a function of ሺ𝑎, 𝑎ଵ, … , 𝑎ሻ , in (4.7) is 
ignored. For the second part in (4.7), we know െ logሼ1  exp ሾ െሺ𝑧 െ 𝑣ሻ/ exp ሺ𝑢ሻሿሽ, as a function of 
𝑣, is the logarithm of the CDF of a logistic distribution. It is well-known that the CDF for a logistic 
distribution is log-concave. Thus (4.7) is concave with respect to ሺ𝑎, 𝑎ଵ, … , 𝑎ሻ. 

In general, parameters ሺ𝑎, 𝑎ଵ, … , 𝑎ሻ and  ሺ𝑏, 𝑏ଵ, … , 𝑏ሻ in model (4.5) can be estimated by 
the algorithm below. 

Algorithm 4.3. Follow the steps below to estimate parameters of model (4.5): 
(a) Given  ሺ𝑏, 𝑏ଵ, … , 𝑏ሻ, estimate ሺ𝑎, 𝑎ଵ, … , 𝑎ሻ by maximizing the log-likelihood function; 
(b) Given ሺ𝑎, 𝑎ଵ, … , 𝑎ሻ, estimate  ሺ𝑏, 𝑏ଵ, … , 𝑏ሻ by maximizing the log-likelihood function; 
(c) Iterate (a) and (b) until a convergence is reached. 

5. Conclusions 

With the interval distributions introduced in this paper, models with a random effect can be fitted 
for a continuous risk outcome by maximum likelihood approaches assuming an interval distribution. 
These models provide an alternative regression tool to the Beta regression model and fraction response 
model, and a tool for tail risk assessment as well. 
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Appendix A 

Proof of Proposition 3.5 in section 3. 
B. 𝑠  follows the standard logistic distribution and Φ  is the CDF for the standard normal 

distribution. 
C. 𝑠 follows the standard logistic distribution and Φ is its CDF. 
D. 𝑠~𝑁ሺ0,1ሻ and Φ is the CDF for standard logistic distribution. 
For case B, functions ϕ and Φ in Proposition 2.1 are respectively the standard normal density 

and CDF. Density 𝑓  for the standard logistic distribution is given by 𝑓ሺ𝑥ሻ ൌ expሺെ𝑥ሻ /
ሺ1  expሺെ𝑥ሻሻଶ. Recall the relationship 𝑧 ൌ Φିଵሺ𝑦ሻ. Then 𝑔ሺ𝑦, 𝑎, 𝑏ሻ in (2.3) is given by 

𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ భ

మ
ൌ 𝑐 exp ቀെ ௭ି


 ௭మ

ଶ
ቁ ሼ1  expሾെ ௭ି


 ሿሽିଶ,               (A.1) 

where 𝑐 ൌ √ଶగ


. Rewrite 𝑓ሺ𝑥ሻ as 𝑓ሺ𝑥ሻ ൌ expሺ𝑥ሻ /ሺ1  expሺ𝑥ሻሻଶ. Then 𝑔ሺ𝑦, 𝑎, 𝑏ሻ has the form: 

𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ భ

మ
ൌ 𝑐 exp ቀ௭ି


 ௭మ

ଶ
ቁ ሼ1  expሾ ௭ି


 ሿሽିଶ.                 (A.2) 
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With 𝑧 ൌ Φିଵሺ𝑦ሻ,  𝑙𝑖𝑚௬⤍ 𝑧 ൌ െ∞  and 𝑙𝑖𝑚௬⤍ଵ 𝑧 ൌ ∞.  Thus 𝑙𝑖𝑚௬⤍ଵ 𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ ∞ 
by (A.1), and 𝑙𝑖𝑚௬⤍ 𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ ∞ by (A.2). Hence 𝑔ሺ𝑦, 𝑎, 𝑏ሻ has a fat right tail and a fat left 
tail for all 𝑏  0. 

Next for tailed index, we use Lemma 2. We note that 𝑙𝑖𝑚௬⤍ଵ 𝑧 ൌ ∞ , and the part 

ሼ1  expሾെ ௭ି


 ሿሽିଶ in (A1.) approaches 1 when 𝑧 → ∞. Hence by (A.1) and using (2.8), we have 

for the right tail. 

𝑙𝑖𝑚௬⤍ଵ 
ሾ𝑔ሺy, , 𝑎, 𝑏ሻሿ

ି ଵ
ఉ

1 െ 𝑦
ൌ 𝑙𝑖𝑚௭⤍ାஶ  

𝑐ଵexp ሾെ 1
𝛽 ൬െ 𝑧 െ 𝑎

𝑏  𝑧ଶ

2 ൰ሿ  

1 െ Φሺzሻ

ൌ 𝑙𝑖𝑚௭⤍ାஶ 
𝑐ଵ

𝛽
ሺെ

1
𝑏

 𝑧ሻ
exp ሾെ 1

𝛽 ൬െ 𝑧 െ 𝑎
𝑏  𝑧ଶ

2 ൰ሿ  

ϕሺzሻ
  

by L’Hospital’s rule, where 𝑐ଵ ൌ 𝑐
ି భ

ഁ . Since ϕሺ𝑧ሻ ൌ ଵ

√ଶగ
exp ቀെ ௭మ

ଶ
ቁ,  the above limit is 0 when 

0 ൏ 𝛽 ൏ 1, and is ∞ if  𝛽  1. Similarly, for the left tail, by (A.2), we have 

𝑙𝑖𝑚௬⤍ 
ሾ𝑔ሺy, , 𝑎, 𝑏ሻሿ

ି ଵ
ఉ

𝑦
ൌ 𝑙𝑖𝑚௭⤍ିஶ 

𝑐ଵexp ሾെ 1
𝛽 ൬

𝑧 െ 𝑎
𝑏  𝑧ଶ

2 ൰ሿ  

Φሺzሻ

ൌ 𝑙𝑖𝑚௭⤍ିஶ 
𝑐ଵ

𝛽
ሺ
1
𝑏

െ 𝑧ሻ
exp ሾെ 1

𝛽 ൬െ 𝑧 െ 𝑎
𝑏  𝑧ଶ

2 ൰ሿ  

ϕሺzሻ
 

by L’Hospital’s rule, which is 0 when 0 ൏ 𝛽 ൏ 1, and is ∞ if 𝛽  1. Thus the left and right tailed 
indexes for case B are 1 by Lemma 2.2. 

For case C, we have ϕ ൌ 𝑓, where 𝑓ሺ𝑥ሻ ൌ ୣ୶୮ሺି௫ሻ

ሺଵାୣ୶୮ሺି௫ሻሻమ. Density 𝑔ሺ𝑦, 𝑎, 𝑏ሻ in Proposition 2.1 

is given by 

𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ భ

మ
ൌ ଵ


exp ൬ቀ1 െ ଵ


ቁ 𝑧  


൰ ሾ1  expሺെ𝑧ሻሿଶሾ1  exp ሺെ ௭ି


ሻሿିଶ.         (A.3) 

With 𝑧 ൌ Φିଵሺ𝑦ሻ,  we have 𝑙𝑖𝑚௬⤍  𝑧 ൌ െ∞  and 𝑙𝑖𝑚௬⤍ଵ  𝑧 ൌ ∞.  If 𝑏  1,  then ቀ1 െ
ଵ


ቁ  0 ,  hence 𝑙𝑖𝑚௬⤍ଵ 𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ ∞  by (A.3),  and 𝑔ሺ𝑦, 𝑎, 𝑏ሻ  has a fat right tail when 𝑏 

1. Rewrite ϕሺ𝑥ሻ as ϕሺ𝑥ሻ ൌ expሺ𝑥ሻ /ሺ1  expሺ𝑥ሻሻଶ, then 𝑔ሺ𝑦, 𝑎, 𝑏ሻ has the form: 

𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ భ

మ
ൌ ଵ


exp ൬ቀ1 െ ଵ


ቁ ሺെ𝑧ሻ െ 


൰ ሾ1  expሺ𝑧ሻሿଶ ቂ1  exp ሺ௭ି


ሻቃ

ିଶ
.         (A.4) 

Hence 𝑙𝑖𝑚௬⤍   𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ ∞ , as both ሾ1  expሺ𝑧ሻሿ  and ቂ1  exp ሺ௭ି


ሻቃ  approach 1 

when 𝑧 ⤍ െ∞. Thus 𝑔ሺ𝑦, 𝑎, 𝑏ሻ has a fat left tail. 
Next, we note that the part ሾ1  expሺെ𝑧ሻሿ and ሾ1  expሺെ𝑧  𝑎ሻ /𝑏ሿ in (A.3) both approach 

1 when 𝑧 ⤍ ∞. Hence by (A.3) and using (2.8), we have 
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𝑙𝑖𝑚௭⤍ାஶ  
ሾ𝑔ሺΦሺzሻ, 𝑎, 𝑏ሻሿିଵ/ఉ

1 െ Φሺzሻ
ൌ 𝑙𝑖𝑚௭⤍ାஶ 

𝑐 expሾെ 1
𝛽 ቀ1 െ 1

𝑏ቁ 𝑧ሿ

1 െ Φሺzሻ

ൌ  𝑙𝑖𝑚௭⤍ାஶ 

𝑐
𝛽 ቀ1 െ 1

𝑏ቁ expሾെ 1
𝛽 ቀ1 െ 1

𝑏ቁ 𝑧ሿ

 ϕሺzሻ
 

by L’Hospital’s rule, where 𝑐 ൌ 𝑏
భ
ഁexp ሺെ 

ఉ
ሻ. Since ϕሺ𝑧ሻ ൌ expሺെ𝑧ሻ /ሺ1  expሺെ𝑧ሻሻଶ, the above 

limit is 0 if 
ଵ

ఉ
ቀ1 െ ଵ


ቁ  1, and is ∞ if 

ଵ

ఉ
ቀ1 െ ଵ


ቁ ൏ 1. This means 𝑔ሺ𝑦, 𝑎, 𝑏ሻ has a fat right tail 

with tailed index ሺ1 െ 1/𝑏ሻ when 𝑏  1. Similarly, for the left tail, we have by (A.4) 

𝑙𝑖𝑚௬⤍ 
ሾሺ୷,,,ሻሿషభ/ഁ

௬
 ൌ 𝑙𝑖𝑚௭⤍ିஶ 

 ୣ୶୮ሾି భ
ഁ

ቀଵିభ
್

ቁሺି௭ሻሿ

ሺሻ
= 𝑙𝑖𝑚௭⤍ିஶ 


ഁ

ቀଵିభ
್

ቁ ୣ୶୮ሾభ
ഁ

ቀଵିభ
್

ቁ௭ሿ

 மሺሻ
 

by L’Hospital’s rule, where 𝑐 ൌ 𝑏
భ
ഁexp ሺ 

ఉ
ሻ. Using ϕሺ𝑧ሻ ൌ ୣ୶୮ሺ௭ሻ

ሺଵାୣ୶୮ሺ௭ሻሻమ, we see the above limit is 0 

for 
ଵ

ఉ
ቀ1 െ ଵ


ቁ  1 , and is ∞  if 

ଵ

ఉ
ቀ1 െ ଵ


ቁ ൏ 1.  This means 𝑔ሺ𝑦, 𝑎, 𝑏ሻ  has a tailed index ሺ1 െ

1/𝑏ሻ for the left tail when 𝑏  1. 
For case D, functions ϕ  and Φ   are respectively the density and the CDF for the standard 

logistic distribution, and 𝑓 is the standard normal density. Since ϕሺ𝑧ሻ ൌ ୣ୶୮ሺି௭ሻ

ሺଵାୣ୶୮ሺି௭ሻሻమ, by Proposition 

2.1, 

𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ భ

మ
ൌ 𝑐 exp ቀ𝑧 െ ሺ௭ିሻమ

ଶమ ቁ ሾ1  exp ሺെ𝑧ሻሿଶ,                 (A.5) 

where 𝑐 ൌ ଵ

√ଶగ
. Write ϕሺ𝑧ሻ as ϕሺ𝑧ሻ ൌ expሺ𝑧ሻ /ሺ1  expሺ𝑧ሻሻଶ. Then 𝑔ሺ𝑦, 𝑎, 𝑏ሻ has another form: 

𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ భ

మ
ൌ 𝑐 exp ቀെ𝑧 െ ሺ௭ିሻమ

ଶమ ቁ ሾ1  exp ሺ𝑧ሻሿଶ.            (A.6) 

With 𝑧 ൌ Φିଵሺ𝑦ሻ,  we have  𝑙𝑖𝑚௬⤍ 𝑧 ൌ െ∞  and 𝑙𝑖𝑚௬⤍ଵ 𝑧 ൌ ∞.  Thus 
𝑙𝑖𝑚௬⤍ଵ 𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ 0  by (A.5), and 𝑙𝑖𝑚௬⤍ 𝑔ሺ𝑦, 𝑎, 𝑏ሻ ൌ 0  by (A.6). Hence 𝑔ሺ𝑦, 𝑎, 𝑏ሻ  does not 
have a fat right tail, neither a fat left tail. 

Appendix B 

Sketches of density plots for interval distributions A-C in section 3. 
We focus on interval distributions given as the examples in section 3 with fat tails. This includes 

distributions A, B, and C. Figures B1, B2, and B3 below plot respectively the probability densities for 
these three types of interval distributions. Values for parameters a and b are given at the top of the 
chart. Two densities are included for each of three type distributions, with different values for 
parameter b but the same value for parameter a. 
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It is observed that, with 𝑏  1, all curves have a fat right tail and a fat left tail, and the curve 
with a higher parameter 𝑏 climbs up the tails more quickly than the other, as the latter has lower tailed 
index. The roughness in the middle is a consequence of squeezing the values in 𝑥-axis, in order to put 
together the left and right tails into the chart (see the value crossing in 𝑥-axis from left to right). It 
does not necessarily reflect the true behaviours of the curves. 

© 2020 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 

Figure B1. Interval distribution A           Figure B2. Interval distribution B Figure B3. Interval distribution C
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