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Abstract. Urban air pollution post a great threat to human health, and has

been a major concern of many metropolises in developing countries. Lately,

a few air quality monitoring stations have been established to inform public
the real-time air quality indices based on fine particle matters, e.g. PM2.5,

in countries suffering from air pollutions. Air quality, unfortunately, is fairly

difficult to manage due to multiple complex human activities from driving
to smelting. We observe that human activities’ hidden regular pattern offers

possibility in predication, and this motivates us to infer urban air condition
from the perspective of time series. In this paper, we focus on PM2.5based

urban air quality, and introduce two kinds of time-series methods for real-time

and fine-grained air quality prediction, harnessing historical air quality data
reported by existing monitoring stations. The methods are evaluated based in

the real-life PM2.5concentration data in the year of 2013 (January - December)

in Wuhan, China.

1. Introduction. While the atmosphere, a complex natural gaseous system, has
been an essential key to support life on earth, air pollution is recognized as a threat
to human health as well as to the earth’s ecosystems. Among all those particles in
air, particles less than 2.5 micrometers in diameter are called“fine” particles, i.e.
PM2.5. Tiny size results in its ability to travel deeply into the respiratory tract,
reaching the lungs and causing worsen medical conditions such as asthma and heart
disease. Sources of fine particles include all types of combustion, including motor
vehicles, power plants, residential wood burnSing, forest fires, agricultural burning,
and some industrial processes [1].

Ever since urban air quality is listed as one of the world’s worst toxic pollution
problems in the 2008 Blacksmith Institute World’s Worst Polluted Places report,
increasing number of air quality monitoring stations were established to inform
people the real-time concentration of air pollutants, such as PM2.5, O3, PM10,
NO2, etc, in developing countries like China, Brazil, and India. Among all air
pollutants(Wuhan), PM2.5has been most severe one as illustrated in Figure.1(a).
On the other hand in February 2012, China set limits for the first time on PM2.5in
the released ambient air quality standard, GB 3095-2012 1. PM2.5is now among the
most anxious concern in the field of air management.
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tion of the People’s Republic of China in 02.2012
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(a) The Primary Polluters of days (b) IAQI for PM2.5

Figure 1. Wuhan over 2013

Unfortunately, current air quality monitoring stations are still insufficient be-
cause such a station is in great cost of money, land, and human resources while
building and maintaining. Even Beijing, the captain of China, only has 22 stations
covering a 50× 50km land and each station is in duty of more than 113km2 in av-
erage. Moreover, urban air quality varies by locations non-linearly and is straightly
influenced by multiple complex factors, such as meteorology, traffic, and urban
structures. According to the statistics on the air quality index (AQI) recorded from
January 1, 2013 to January 1, 2014 in Beijing [10], the average deviation between
the maximum and minimum concentration of PM2.5from the 22 stations at the same
time-stamp stayed larger than 100, which almost denotes a two-level gap, i.e., the
gap between moderate and unhealthy, during over 50% of time. Figure 1(b) further
presents the distribution of the daily average PM2.5concentration in Wuhan cross
one year, which well demonstrates the skew of air quality within a year in urban
spaces.

Although many statistic-based models have been proposed by environment sci-
entists to approximate the quantitative link from factors like traffic and wind to
air quality, empirical assumptions and parameters on which they based may not be
applicable to all urban environments. Some methodologies, e.g., methodology based
on crowd and participatory sensing using sensor-equipped mobile phones, could only
work for a very few kinds of gas like CO2 but not applicable to aerosols and other
pollutants, including PM2.5. Besides, it usually needs a relatively long sensing pe-
riod (e.g., 1∼2 hours) before generating an accurate concentration. However, there
usually exists regular patter in human activities, i.e. most human activities will
repeats daily. This motivates us to mine the concentration change of PM2.5using
time series methodologies.

In this paper, we analyse and decompose the real-time PM2.5concentration data
within one year according to time series decomposition theory and infer the future
fine-grained air quality information throughout a city using historical and real-time
air quality data reported by existing monitor stations. We also product stochastic
modelling in fitting and forecasting. We take two methodologies into comparison
and discuss their strong and weak points respectively in PM2.5prediction.

Contributions. The contribution of this paper is as follows:

1. We propose a practical system of time series based PM2.5predication on the
foundation of limited real-time data without expensive devices. Predicating fine
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Table 1. Air Quality Index

Index Level Category Color
0∼50 1evel 1 good green

51∼100 level 2 moderate yellow
101∼150 level 3 unhealthy for sensitive groups orange
151∼200 level 4 unhealthy red
201∼300 level 5 very unhealthy purple
>300 level 6 hazardous maroon

particles like PM2.5can give an effective support on air quality management. Our
experimental result demonstrates the effectiveness of our method.

2. We compare and analyse the characters of two essentially-distinct methods ap-
plying to PM2.5. The varies on PM2.5are intrinsically caused by complex human
activities and deterministic and stochastic methods can separately excavate dif-
ferent aspects of hidden pattern of human activities .

Organizations. The rest of paper is organized as follows: Section 2 introduces the
background material. Section 3 and 4 present in detail the progress of deterministic
and stochastic predication, respectively. Section 5 discusses the characters of two
methods. The related work and conclusion is in Section 6 and 7.

2. Preliminary. This section presentd the basic conpects related to this research.

Definition 2.1. Air Quality Index (AQI). AQI is a number used by government
agencies to communicate to the public how polluted the air is currently. As the AQI
increases, an increasingly large percentage of the population is likely to experience
increasingly severe adverse health effects. To compute the AQI requires an air
pollutant concentration from a monitor or model. The function used to convert
from air pollutant concentration to AQI varies by pollutants, and is different in
different countries. Air quality index values are divided into ranges, and each range
is assigned a descriptor and a color code. In this paper, we use the standard issued
by Ministry of Environmental Protection, People’s Republic of China 2, as shown
in Table 1. The descriptor of each AQI level is regarded as the class to be inferred
and the color is employed in the following visualization figures.

Specifically, the calculation for AQI follows Equation (1) below:

AQI = max{IAQI1, IAQI2, · · · , IAQIn} (1)

where IAQI stands for the sub-indicators of air quality and n indicates the number
of polluters.

Recall the AQI of Wuhan in 2013, PM2.5contributed to the primary pollutant
over most of the days (illustrate in Figure 1(a)). In this paper, we concentrate the
prediction on IAQI for PM2.5only as it is the culprit of air pollution. However, our
time-series based method is straightforward to be extended to AQI prediction.

2HJ 633-2012 Technical Regulation on Ambient Air Quality Index (on trial), released by Min-
istry of Environmental Protection of the People’s Republic of China in 02.2012
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Figure 2. Autocorrelation of The Series

(a) Seasonality (b) Irregularity

Figure 3. Identifications

3. Deterministic modelling and predicting.

3.1. Identification. In order to de-constructs the time series into notional compo-
nents, we identify and construct a number if component series where each represent
a certain characteristic or type of behaviour as follows:

- the Trend Component T that reflects the long term progression of the series
- the Cyclical Component C that describes repeated but non-periodic fluctuations
- the Seasonal Component S reflecting seasonality
- the Irregular Component I (or “noise”) that describes random, irregular influ-

ences. It represents the residuals of the time series after the other components
have been removed.

Since cyclicality identification needs complex process and is less-productive, we
here consecrate on identifying compositions in the order of trend, seasonality, and
irregularity.

Trend identification. Figure 2 exhibits the autocorrelation of time series. We
find that the auto-correlation coefficient attenuation of PM2.5 is not evident (the
value lower than the two time standard deviation only after 17 steps), different from
stationary time series whose auto-correlation coefficient will quickly decay to zero
with delay periods increasing. Thus we consider it a non-stationary time series.

Seasonality identification. We denote spring, summer, fall and winter respec-
tively in blue, green, red and green in Figure 3(a). It is easily observed that sig-
nificant difference exists in PM2.5 time series among four seasons,i.e.seasonal com-
ponent of time series. Specifically, summer enjoys good quality with less PM2.5

concentration, whilst most days in winter encounter poor situation and witness
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(a) additive model (b) multiplicative model

Figure 4. Two Examples of Decomposition Model

Table 2. Goodness of Fitting

Curve Fitting SSE R-Square Adjusted R-square RMSE

Cubic Fitting 4.214× 104 0.9544 0.954 11.3

Trigonometric Fitting 2.901× 105 0.6862 0.6814 29.74

drastic fluctuations. Fall sees the transition from summer to winter. The IAQI in
spring is moderate, severe than summer and better than fall.

Irregularity identification. Figure 3(b) demonstrates the data after 5(green)
and 20(red) intervals moving average process. It is clearly discerned the random
fluctuations decreases more as the intervals increasing. Therefore, it is considered
that irregularity exists in the time series.

3.2. Decomposition. Currently, there are a variety of time-series decomposition
models, each of which suits one specific shape. Figure 3.1 shows the tendency
feature of two models, namely additive model and multiplicative model [9]. We
pick up multiplicative model to decompose the time series of PM2.5as it is easily
observed that PM2.5time series is roughly actinomorphic. This leads us assume that
the PM2.5can be decomposed into multiplicative model, i.e., PM2.5 = T×S×C×I.

Trend analysis. Since both trend and seasonality are observed in the data, we
first minimize irregularity influence via 20 intervals moving average process and
then use Seasonal multivariate regression model fitting.

Figure 5 illustrates the fitting curve from cubic curve (Figure 5(a)) and trigono-
metric (Figure 5(b)) curve fitting separately. According to fitting goodness in Ta-
ble.2, cuber curve fitting is considered with best fitting result. However, unpractical
upward trend is observed in the final form of the cubic curve. Comparatively, al-
though the fitting result from triangle curve is not as good as cuber curve’s, it is
still determined that triangle curve fitting as the final trend substitute. So the trend
fitting equation can be written as:

ST (t) =1130 sin (0.01295t− 1.094) +

1089 sin (0.01412t+ 1.803)
(2)

Seasonality analysis. During the process of moving average, not only irregular
component but also part of seasonal component can be removed. On the one hand,
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(a) Cubic Fitting : f(t) = 2.557 × 10−5t3 −
0.1399t2 + 0.9522t + 138

(b) Trigonometric Fitting : f(t) =

1130 sin(0.01295t−1.094)+1089 sin(0.01412t+
1.803)

Figure 5. Curve Fitting

Table 3. Generalized Seasonal Index

Date Sp. Sum. Fall Win. Date Sp. Sum. Fall Win.
1st -44.33 9.14 -3.75 9.66 17th 20.75 -17.18 15.41 -68.78

2nd 8.44 10.61 -4.37 25.82 18th 36.49 -9.71 2.14 -57.29

3rd -37.76 5.76 -10.01 49.94 19th -28.07 8.43 13.85 -30.17

4th -39.62 -19.09 -11.33 37.69 20th -6.62 7.24 4.54 9.57

5th -45.78 -48.95 2.67 79.07 21st 31.84 5.7 0.54 3.27

6th 6.07 -54.47 -4.02 0.41 22nd 55.66 31.84 -23.15 -91.08

7th 9.61 -46.65 3.93 5.38 23rd 28.83 26.97 -0.19 -110.79

8th -2.16 -23.5 -7.46 -62.35 24th 14.35 -11.58 6.74 -100.22

9th -1.25 -37.69 -0.54 -22.83 25th 21.88 -23.79 10.32 -106.02

10th 85.68 -16.87 15.69 -56.35 26th 94.76 -16 2.21 -106.87

11th 70.64 -18.72 19.23 -65.58 27th 167.66 -25.22 13.4 -89.42

12th 50.94 -7.57 29.42 -56.18 28th 60.24 -30.44 9.25 -46.69

13th 22.6 -14.76 14.93 -92.15 29th 8.84 -11 9.73 -24.06

14th 31.94 -40.61 14.41 -79.5 30th -0.55 -22.23 22.52 -63.51

15th 36.3 -18.13 11.21 -76.88 31st 19.49 -14.87 38.36 -42

16th 21.35 -18.32 -1.35 -79.65

we aim to remove irregular component to eliminate its interference on other compo-
nents. On the other hand, we need to maintain seasonal component. To guarantee
the effectiveness of prediction, we should add a factor, representing the removed
seasonal component. Specifically, we define the generalized seasonal index bi to
supply the incomplete seasonal component. We first remove the trend component
from the series by subtracting the trend fitting equation value of t-th day from the
real data of t-th day. In this way, the remained PM2.5 concentration is of no trend
component and can be seen as a mixture of irregular, seasonal and cyclical compo-
nents. We then derive the Generalized seasonal index bi by utilizing the remained
PM2.5 concentration.

Definition 3.1. (Generalized seasonal index). The average remained PM2.5 con-
centration of all t-th day in all months during i-th season (denoted by bi = bi(t)).
i = 1, 2, 3, 4 denotes Spring, Summer, Fall, and Winter separately. Table 3 presents
specific daily generalized seasonal indexes.
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(a) Cyclical and Irregular Component (b) Twenty Steps Moving Average Process

Figure 6. Cyclic Component Abstraction

Note that we utilize mean to decrease the interference from irregular and cyclical
component. Thus bi can be treated as a supplement of the removed seasonal com-
ponent. We then add bi to the trend fitting equation (Equation (2)). The improved
model can be presented as:

ST (t) =1130 sin (0.01295t− 1.094) +

1089 sin (0.01412t+ 1.803) + α

4∑
i=1

Qibi
(3)

where α ∈ (0, 1) is the weight of seasonal influence and

Qi =

{
1, if t ∈ i-th season

0, otherwise.

Cyclicality analysis. The naive method to detect cyclical component is observing
to see whether any cyclicality exsits in the remaining series after removing trend
and seasonal components. However, most of real-world time series does not show
strict repeated model in every cyclical time points. As in our case, few cyclical can
be detected after removing trend and seasonality (α = 0.5, see Figure.6(a)) and 20
intervals moving average (see Figure.6(b)).

As a matter of fact, real-word time series can be seen as cyclicality under cer-
tain degree of confidence and to detect that kind of cyclicality in PM2.5, we use
autoregressive support vector regression (SVR AR) with RBF kernel function, i.e.,

eγ‖‖u−v‖‖
2

. It has been proved in many real-word applications that autoregressive
support vector regression can well support series with certain cyclicality.

We apply cross validation method to select and verify the value of the parameter.
Specifically, we divide the dataset equally into 10 parts and repeat the following
operation for ten times. At i-th(i = 1, 2, ..., 10) time, we use the i-th part of data
as testing set and the rest 9 parts of data as the training set. We test the accuracy
and observe when the penalty term equals 8 and γ = 2, the result is of the highest
accuracy.

3.3. Time series prediction. Thus, the final predication model can be indicated
as

PM2.5 = ST (t) · C(t) (4)
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Figure 7. The Prediction with SVR

Figure 8. The Predication in December

where ST(t) is calculated according to Equation 3 andC(t) can be fitted from
SVR AR) with RBF(the penalty term equals 8 and γ = 2). Figure 8 demonstrates
the deterministic predication in December.

4. Stochastic modelling and predicting.

4.1. Method. The basic approach for stochastic modelling is as follow:

Definition 4.1. (Box-Jenkins model identification). The BoxJenkins method ap-
plies autoregressive moving average ARMA or ARIMA models to find the best fit
of a time-series model to past values of a time series.

The original model uses an iterative three-stage modeling approach:

(1). Model identification and model selection: guaranteeing stationariness of the
variables , identifying seasonality in the dependent series (seasonally differenc-
ing it if necessary), and using plots of the autocorrelation and partial autocor-
relation functions of the dependent time series to determine autoregressive(if
any) or moving average component.

(2). Parameter estimation: computationally arriving at coefficients that best fit
the selected ARIMA model. The maximum likelihood estimation or non-linear
least-squares estimation are most common methods.
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Table 4. Theoretical Model of ARMA(p, q)

Model ACF PACF
White Noise ρk = 0 ρ∗k = 0

AR(p)
attenuated to zero censored after the p-order:

(geometric or volatility) ρ∗k = 0, k > p

MA(q)
censored after the q-order: attenuated to zero

ρk = 0, k > q (geometric or volatility)

ARMA(p, q)
attenuated to zero attenuated to zero

(geometric or volatility) (geometric or volatility)
after q-order after p-order

(3). Model checking: testing the estimated model conformity with the specifica-
tions of a stationary univariate process. In particular, the residuals should be
independent of each other and constant in mean and variance over time. If
inadequate, return to step one and attempt to build a better model.

ARIMA(autoregressive integrated moving average) model can be used in time
series prediction based on a limited number of observations. The basic intuition
behind ARIMA is that non-stationary sequence firstly built stationary via differ-
encing of appropriate order and then realize fitting in ARMA model. Since sequence
after differencing is equal to the weighted summation of sequence before differenc-

ing, sequence after differencing can be written in ∇dxt =
d∑
i=0

(−1)iCidxt−i, in which

Cid = d!
i!(d−i)! . And such sequence can be fitted in ARMA(autoregressive moving av-

erage) model. The whole process is called autoregressive integrated moving average,
in short, ARIMA.

Definition 4.2. (ARIMA(p, d, q) model). Any model that fits stricture below can
be called ARIMA(p, d, q) model.

 Φ (B)∇dxt = Θ(B)εt
E (εt) = 0, V ar (εt) = σ2

ε , E (εsεt) = 0, s 6= t
Exsεt = 0,∀s < t

(5)

in which ∇d = (1− B)
d
. Φ (B) = 1−φ1B− . . .−φpBp is autoregressive coefficient

polynomial and Θ (B) = 1−θ1B−. . .−θqBq is moving average coefficient polynomial
of ARMA(p, q) model.
ARIMA(p, d, q) can also be written in a short one as :

∇dxt =
Θ(B)

Φ (B)
εt (6)

while εt is white noise sequence with zero mean. It is clear that ARIMA is a
combination of differencing and ARMA model.

4.2. Experiment and result.

Order identification. Since the observed data is identified in-stationary, we uti-
lize differencing approach to achieve stationary. We chose first-order and second-
order differencing separately and compared their accuracy. Figure9 and Figure10
shows the autocorrelation coefficient and partial correlation coefficient in 20 steps



180 R. LI, Y. CHEN, X. ZHAO, Y. HU AND W. XIAO

(a) Autocorrelation (b) Partial Autocorrelation

Figure 9. First Order Difference

(a) Autocorrelation (b) Partial Autocorrelation

Figure 10. Second Order Difference

of first-order and second-order differencing. The 2 times of standard deviation of
corresponding coefficients is represented by red line in each figures.

It can be observed in both results from first-order (Figure9) and second-order
(Figure10) that the autocorrelation coefficients when the steps over 2 are all within
2 times of standard deviation (Figure9(a) and 10(a)). Tailing can be identified
since the autocorrelation coefficient is gradually close to zero, thus q = 2. As for
partial correlation coefficient, it is less than 2 times of standard deviation when the
steps are over 19 and it is gradually close to 0, tailing can be identified, thus p = 19
(Figure9(b) and 10(b)). Therefore according to Table 4, the model can be identified
as ARIMA (19, 1, 2) and ARIMA(19, 2, 2).

Model fitting and prediction. The prediction results under 95% confidence level
and its upper and lower limits are as follows (Figure 11).

Residual test. For ARIMA(19, 1, 2), residual autocorrelation and partial correla-
tion coefficient of 21 order are still greater than 2 times of standard deviation. The
effect of random error on fitting and prediction is not completely eliminated. For
ARIMA(19, 2, 2), residual autocorrelation and partial correlation coefficients of all
orders are less than 2 times of standard deviation and is gradually close to zero.
The effect of random error on fitting and prediction is completely eliminated. Thus
it can be determined that ARIMA (19,2,2) is more reasonable than ARIMA (19,1,2)
in comparison of AIC (Akaike information method), SBC (Schwartz Bias) , and the
error of prediction.
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(a) ARIMA(19, 1, 2) (b) ARIMA(19, 2, 2)

Figure 11. Stochastic Prediction in December

Figure 12. The Comparison of IAQIPM2.5 on the first ten days of
December by Deterministic and Stochastic Model

5. Discussion. The two previous models are evaluated according to the real-time
urban PM2.5concentrations data obtained in Wuhan from December 1 to 10, 2013.
As can be seen from the Figure 12, stochastic time series analysis method results
in better fitting.

Deterministic time series analysis method is relatively simple and lead to a more
in-depth understanding of time series various characteristics. It allows more flexi-
bility, which on the other hand means that it needs more empirically determination
of parameters. Namely, it works with a certain degree of subjectivity, in which
assumptions are required in advance and the tiny inaccurate in assumption could
cause large deviations.

Stochastic time series analysis method leads a higher accuracy and stronger gen-
eralization ability. Comparatively, the process of stochastic time series analysis
method is more fixed. However, the vague process also leads to difficulty in under-
standing and analysing the results.

6. Related work. We brief related work in four directions.

Classical bottom-up emission models. There are two major “bottom-up”
methods in calculating air quality via the observed emission from ground surfaces.
The most common one is referencing to the nearby air quality monitor stations, usu-
ally applied by public websites reporting AQIs. However, it is with low accuracy
since air quality varies non-linearly as illustrated before. The other are classical dis-
persion models. Gaussian Plume models, Operational Street Canyon models, and
Computational Fluid Dynamics are most widely used in this methodology. These
models are in most cases a function of meteorology, street geometry, receptor loca-
tions, traffic volumes, and emission factors (e.g., g/km per single vehicle), based on
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a number of empirical assumptions and parameters that might not be applicable to
all urban environments[6].

Satellite remote sensing. Satellite remote sensing of surface air quality is re-
garded as top-down methods in this field, such as[4] and [5]. However, despite its
high cost, the result can only the air quality of atmosphere rather than the ground
one.

Crowd sensing. Significant efforts[3], [2] have been devoted to crowd sensing and
it may be a potential solution solving air pollution in the future. The devices for
PM2.5and NO2 so far are not easily portable and requires a long period sensing
time.

Urban computing. Big data has attracted a series of researches on urban com-
puting to promote urban life quality, including managing air pollution. Data from
varies aspects such as human mobility data and POIs[7], taxi trajectories[11], GPS-
equipped vehicles[8] can be used to product useful pattern in urban life. This kind
of method is based on sufficient urban data, sometimes private, which are difficult
to acquire. Becides, it is in need of a long time in pre-processing of cleaning and
reducing.

Different from classical models, methods with highly-required devices and tremen-
dous data processing, our method offers a simple but efficient aspect in inferring air
quality. Effectiveness is guaranteed on the basis of real-time data without expensive
device and long time pre-processing.

7. Conclution. In this paper, from the perspective of time series, we infer the fine-
granularity air quality in a city based on the historical reported PM2.5concentrations
from air quality monitor stations. Using deterministic and stochastic theories, we
make two predications. In deterministic point of view, we identify and decompose
the historical reported PM2.5concentrations into trend, seasonality, cyclical and
irregular factors, based on which we calculate the PM2.5concentrations equation. In
stochastic point of view, we compare the first-order and second-order differencing
methods and compute the quantitative models. Finally, we analyse the strong and
weak points of deterministic and stochastic methodologies and reach the conclusion
that stochastic is more accurate for PM2.5concentrations predication.
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