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Abstract. Big Data and Big Graphs have become landmarks of current cross-
border research, destined to remain so for long time. While we try to optimize

the ability of assimilating both, novel methods continue to inspire new ap-

plications, and vice versa. Clearly these two big things, data and graphs,
are connected, but can we ensure management of their complexities, compu-

tational efficiency, robust inference? Critical bridging features are addressed

here to identify grand challenges and bottlenecks.

1. Introduction. Big Data brings many problems to the general attention of
physicists, mathematicians, social scientists, biologists, etc. [18, 1]. A first attempt
to categorize them into major groups runs into the problem of choosing a criterion
of classification among many available ones. Differentiation of Big Data operates
through their types (complex data structures) and the relationships that can be es-
tablished between them (complex data patterns). Knowing Big Data distributional
laws might simplify the task of understanding the essential characteristics (sufficient
statistics) of their complexities through newly designed sampling techniques, fast
data mining methods and efficient algorithmic processing.

1.1. Data dominium and statistical complexity. Let us consider three fea-
tures or attributes of data complexity destined to change due to the effect of size
or bigness: dimensionality, heterogeneity and uncertainty (Figure 1). Let us also
assume that Big Data uncertainty requires almost axiomatic solutions (say, cross-
validation), ranging across a myriad of statistical model selection methods suitably
adapted. In general, uncertainty can be associated to entropy and considering a
fluctuation theorem for networks, changes in entropy reflect positive changes in re-
silience against perturbations [6]. In particular, bigger average shortest path lengths
in resilient networks mitigate node removal effects, inducing slower network disin-
tegration.

Among the challenges, the one coming from imbalanced data classification and
incompleteness, is inherently data dependent. In general, given data with a strati-
fied structure, a lack of balance exists when the classes are not equally represented
in the data, which might reflect the sparseness of features rather than the class

2010 Mathematics Subject Classification. Primary: 68Qxx; Secondary: 81P40.
Key words and phrases. Complexity, dimensionality, heterogeneity, graph connectivity, entan-

glement, symmetries.

163

http://dx.doi.org/10.3934/bdia.2016002


164 ENRICO CAPOBIANCO

definition itself [5]. Thus, a class of interest could be the one addressing treated pa-
tients, and presenting few instances compared to a more largely represented class of
control patients. Moving to a larger dataset is the most immediate solution towards
the goal of rebalancing the classes. Sampling is also a strategy that can augment
the poorer class (over-sampling) or diminish the richer one (under-sampling). The
common aspect is ending up in both scenarios with synthetic samples. Importing
a penalization strategy into the model is another possible route aimed to discount
classification mistakes. By bringing penalties into the model, the latter can re-
balance the over- and under-represented classes.

Figure 1. Big Data complexities: Uncertainty, Dimensionality, Heterogeneity

1.2. Interestingly, with Big Data one turns from the usual curse of dimensionality
(large p, small n, with p number of measurements, and n the number of samples)
also to a curse of heterogeneity (Figure 1) [28]. Here, a data generation mixture pro-
cessing could be conceivable as an underlying Big Data mechanism through which
the emergence of sub-populations may be observed [9, 16]. Simply speaking, the
data mixture would mirror a variety of heterogeneous groups, say k, and considering
y as our response, X as our covariate vector, Θ as a parameter vector, and d(.) as
density functions, a possible Big Data Generating Process might be associated with
the mixture probability density function D as follows:

Dπ(y,X,Θ) = π1d1(y,X,Θ1) + π2d2(y,X,Θ2) + . . .+ πkdk(y,X,Θk) (1)

Several interdependent influences need to be considered for model selection pur-
poses in an attempt to improve analyses and inference: additional dimensions or
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further stratifications in data are expected to weaken the ratio between system-
atic versus erratic systems characterization. Nevertheless, major problems are most
likely coming from:

• Mismatch between dimensions (typically, sample size and characterizing vari-
ables), requiring regularized solutions;

• Existence of inherent but latent stratifications, inducing clusters or commu-
nities;

• Influence of stochastic components (only in part observable)

Superior precision of estimates and stabilization of variability are expected with
Big Data, but the complexity increases too, due to novel classifications and sam-
pling rates, both becoming sub-optimal at aggregate level. With regard to the latter
aspect, an important question is: how likely is the chance of operating at under-
sampled data conditions with Big Data? Then, how to recover a correct sampling
rate in such a context, a problem related to the so-called Nyquist rate? An as-
sociated problem is aliasing, which arises when a signal is discretely sampled at a
rate that does not allow to capture the changes in the signal. To avoid aliasing,
the sampling frequency should be at least twice the highest frequency contained in
the signal [12, 24, 4]. With a plethora of measurements coming from heterogeneous
digital instruments and sensors, the sampling rate from corresponding signals is
necessarily different at individual source and most likely largely undetermined at
the aggregate level. The challenge is that of identifying specific data stratifications
and segmentations, at the cost of relatively heavy computations.

With Big Data, not only the likely increase of dimensionality might augment
the general complexity (spurious correlations, error propagation etc.) and affect
the confidence in models, but in many cases the original data comes unstructured
or based on a huge number of primitives, and in both cases either transformations
or reductions are pursued. In general, the patterns at individual and population
levels may differ substantially, and thus be hardly summarized by some statistics
or predicted with some confidence.

It is expected that by integrating information from a variety of sources, the
assimilation of the whole data spectrum could not incur in significant loss of in-
formation (a good example might be again a subset of patients responding to the
same treatment). Therefore, big data in medicine, for instance, would benefit from
the ability to recognize disease heterogeneity and to stratify even further in order
to be more accurate in the assessment of therapies [2]. In such regards, we might
thus consider the blessing of Big Data.

Finally, Figure 1 implies a key role for sufficient statistics, supposed to simplify
statistical analysis [20]. A crucial question is: what is a sufficient statistics in Big
Data? Can we achieve full information about the data from only a reduced set of it,
considering that we only have a partial knowledge of the granularity of the original
Θ ? In turn, how measurable and reliable can be other statistics (say, necessary
statistics) that are computed from the previous one? Moving from data to graphs
can elucidate further this matter.

2. All-connected systems complexity. Despite data liquidity flows fast and
abundantly, Big Data does not represent a self-organized space, say Θ. Observable
connections co-exist with many false signals (false positives) and latent connections
(false negatives). Linked, and even more linkable data, are destined to become
crucial domains, once features are identified (Figure 2). In parallel with Eq. (1),
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networks too encompass latent structures and stochastic aspects, under the hy-
pothesis of an average network connectivity degree fluctuating according to some
probability law.

Therefore, hidden networks can depend on a network generator mechanism sub-
ject to some level of unknown uncertainty. Mixture mechanisms enable network
approximation by a superposition of random networks (Poisson type, for large
N) multiplied by the hidden variable distribution (HVD) [22, 19]. Thus, given
a Poisson-like p(k), an observed network degree distribution is possibly represented
as

p(k) =

∫
π(λ)p(k|λ)dλ (2)

More in general, there exists an interplay between information and disequilib-
rium in a system, which can represent complexity C according to: C = UD, with
U as the uncertainty measure (such as Shannon Information or entropy), and D
as the disequilibrium (distance form equilibrium or equipartition of the probability
distribution between states) [17]. Complexity grows or attenuates depending on
both information and disequilibrium. Notably, while the former factor refers to
the probability distribution of accessible states of a system in equilibrium (infer-
ence principle of maximum entropy), no methods in disequilibrium can deliver the
probability distribution, i.e. we cannot predict the system’s behavior.

When we consider the space Θ, its expansion occurs because both U and D may
grow. Instead, joint consideration of Big Graph space, say Ψ, suggests reduction
of complexity by reconciling single node dynamics within entangled entities of a
more complex nature but undergoing a common probability law, thus a different
behavior and state of equilibrium. The representation property of networks can also
take advantage from tensors (multidimensional arrays), in which each dimension is
a mode. Let us name T a n-node tensor with n = 1 . . . , N , and N big, which is T ∈
R(I1xI2x...xIN ). Some tensors would involve modes embedding node features. This
way, tensor networks can enable multidimensional intra- an inter-modularization
interactive dynamics according to various degrees of features interdependence.

The context built through F possibly mitigates data information gaps, but likely
does not compensate for them. Indeed, F needs to be well designed to parallel
the role played by a set of sufficient statistics as a coarse representation of data
useful to identify good statistical estimation procedures, say. Data gaps that do not
convey information about the underlying distribution, would have effects balanced
by sufficient statistics replacing the sample information without any loss. Because
of missing data, inhomogeneous measurements, different scales, etc., it is likely
that Big Data would exacerbate such gaps and the corresponding information loss
could be harder to contrast or not even recoverable by sufficient statistics. Without
measuring the latter, we cannot determine its distribution either. Mapping data
to features becomes almost a necessity, and many projective techniques allow such
step. Among the most popular approaches, compressive sensing is the one looking at
the signals/data structure to represent them with minimal measurements/features
[3, 7, 8].

In Ψ, two main properties are key. One is multiplexing, which addresses the
fact that multiple layers of complex interactions interplay among network nodes,
such that the latter are interconnected via multiple types of links [14]. The other
is modularization, which delivers a community map from the initial network, thus
dealing naturally with heterogeneity.
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Figure 2. Interoperability between two big spaces, Data and
Graphs, through features

As said earlier with tensor networks, nodes are particularly interesting when their
feature contents are considered, say a certain function β(f ∈ F ) may be applied to
them. This is to say that the connectivity patterns obtained from β(fn, fm), given
two features fn and fm, would constrain the adjacency matrix to the form An,m =
β(fn, fm), thus qualitatively enriching the network [26]. Back to modularization, the
more complex appears the structure of the feature patterns and the harder becomes
to partition the network into modules or communities. The latter would usually
require some kind of algorithmic search (greedy-like) [21], but may also involve
further pre-processing steps, for instance the elimination of problematic nodes like
hubs. Then, it might be facilitating random walk switching between modules, thus
better conductance property and in turn goodness of community structure [15]. It
is known that conductance of scale-free networks is a very heterogeneous property
that depends on the node degrees [13].

3. Entanglement. It is important to note that tensor networks recall a rich ar-
chitecture of interconnected nodes whose glue is due to entanglement, telling about
the underlying information [25]. Many topological measures provide information on
network structures, including entropic ones. Mutual information can be for instance
computed between two network modules, say I and J , so as to measure their cor-
relation by MI = S(I) + S(J)− S(IJ), in which both individual (first two terms)
and combined (third term) entropies are considered. However, also entanglement is
a quantum measure of correlation that can be put in relationships with topology,
thus associating graphs to quantum states [10].
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In general, quantum entanglement occurs when for interacting particles their
quantum state cannot be described independently but only as a system. When such
system interplays with the environment, a loss of information occurs, something
generally called decoherence. In isomorphic graphs, defined by having adjacency
matrix unique up to permutations of rows and columns, the same entanglement
entropy is reflected into equivalent network states. The presence of synchronization
[23] (say, nodes pulsing at the same frequency and thus representing a synchronized
state) somehow ensures about the existence of entanglement between nodes, and
protects the network from decoherence effects.

4. Symmetries. Network hubs are good candidate nodes to analyze node and edge
dynamics. They have been the first object of network control, for instance. And
it turns out they are not categorized as drivers due to the fact that due to their
nature, the relatively large interconnected network regions receive similar signals
through them, leaving unexplored many other regions which are possible targets.
This is an effect of the presence of symmetries induced by the hubs, which reduce
the number of nodes to be controlled but at the same time expand the number of
edges through which the control signals flow [27].

In general, symmetries in a network induce, through some transformations, the
invariance in its elements. This holds for transformations leaving the network s
properties unchanged. Network invariant is called any property that is preserved
under any of its possible isomorphisms, thus independently of its representation. A
symmetry group Sg acting on a set of nodes N of a network defines for each node
n ∈ N an orbit, Ox = {s ∗ x : s ∈ Sg} [11]. The symmetry group partitions the
sets of nodes into unique orbits, thus reducing the redundancy. If we consider the
stochastic nature of networks, and the relevance of network ensembles, these objects
call for further analysis under the lens of symmetries.
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