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Abstract. Entropy weighting used in some soft subspace clustering algo-

rithms is sensitive to the scaling parameter. In this paper, we propose a novel

soft subspace clustering algorithm by using log-transformed distances in the
objective function. The proposed algorithm allows users to choose a value of

the scaling parameter easily because the entropy weighting in the proposed

algorithm is less sensitive to the scaling parameter. In addition, the proposed
algorithm is less sensitive to noises because a point far away from its cluster

center is given a small weight in the cluster center calculation. Experiments
on both synthetic datasets and real datasets are used to demonstrate the per-

formance of the proposed algorithm.

1. Introduction. In data clustering or cluster analysis, the goal is to divide a
set of objects into homogeneous groups called clusters [10, 18, 20, 26, 12, 1]. For
high-dimensional data, clusters are usually formed in subspaces of the original data
space and different clusters may relate to different subspaces. To recover clusters
embedded in subspaces, subspace clustering algorithms have been developed, see for
example [2, 15, 19, 17, 9, 21, 16, 22, 3, 25, 7, 11, 13]. Subspace clustering algorithms
can be classified into two categories: hard subspace clustering algorithms and soft
subspace clustering algorithms.

In hard subspace clustering algorithms, the subspaces in which clusters embed
are determined exactly. In other words, each attribute of the data is either associ-
ated with a cluster or not associated with the cluster. For example, the subspace
clustering algorithms developed in [2] and [15] are hard subspace clustering algo-
rithms. In soft subspace clustering algorithms, the subspaces of clusters are not
determined exactly. Each attribute is associated to a cluster with some probability.
If an attribute is important to the formation of a cluster, then the attribute is as-
sociated to the cluster with high probability. Examples of soft subspace clustering
algorithms include [19], [9], [21], [16], and [13].

In soft subspace clustering algorithms, the attribute weights associated with clus-
ters are automatically determined. In general, the weight of an attribute for a
cluster is inversely proportional to the dispersion of the attribute in the cluster. If

2010 Mathematics Subject Classification. Primary: 62H30, 68T10, 91C20; Secondary: 62P10.

Key words and phrases. Data clustering, subspace clustering, attribute weighting, k-means.

93

http://dx.doi.org/10.3934/bdia.2016.1.93


94 GUOJUN GAN AND KUN CHEN

the values of an attribute in a cluster is relatively compact, then the attribute will
be assigned a relatively high value. In the FSC algorithm [16], for example, the
attribute weights are calculated as

wlj =
1∑d

h=1

(
Vlj+ε
Vlh+ε

) 1
α−1

, l = 1, 2, . . . , k, j = 1, 2, . . . , d, (1)

where ε is a small positive number used to prevent dividing by zero, α > 1 is a
parameter used to control the smoothness of the attribute weights, and

Vlj =
∑
x∈Cl

(xj − zlj)2. (2)

Here k is the number of clusters, d is the number of attributes, and zl is the center of
the lth cluster Cl. In the EWKM algorithm [21], the attribute weights are calculated
as

wlj =
exp

(
−Vljγ

)
∑d
s=1 exp

(
−Vlsγ

) , k = 1, 2, . . . , n, l = 1, 2, . . . , d, (3)

where γ > 0 is a parameter used to control the smoothness of the attribute weights.
One drawback of the FSC algorithm is that a positive value of ε is required

in order to prevent dividing by zero when an attribute has identical values in a
cluster. Using the entropy weighting, the EWKM algorithm does not suffer from
the problem of dividing by zero. However, the attribute weights calculated in the
EWKM algorithm are sensitive to the parameter γ when the range of the attribute
dispersions (e.g., Vlj) in a cluster is large. For example, suppose that a dataset has
two attributes, whose dispersions in a cluster are 10 and 30, respectively. If we use
a small value of γ such as γ = 1, the attribute weights will be

w1 =
e−10

e−10 + e−30
=

1

1 + e−20
= 1, w2 =

e−30

e−10 + e−30
=

1

1 + e20
= 0.

If we use γ = 10, the attribute weights will be

w1 =
e−1

e−1 + e−3
=

1

1 + e−2
= 0.88, w2 =

e−3

e−1 + e−3
=

1

1 + e2
= 0.12.

From the above example we see that choosing an appropriate value for the parameter
γ is a difficult task when the attribute dispersions in a cluster is large. Feature group
weighting has been introduced to address the issue [7, 14].

In this paper, we address the issue from a different perspective. Unlike the group
feature weighting approach, the approach we employ in this paper involves using
the log transformation to transform the distances so that the attribute weights are
not dominated by a single attribute with the smallest dispersion. In particular,
we present a soft subspace clustering algorithm called the LEKM algorithm (log-
transformed entropy weighting k-means) to address the aforementioned problem.
The LEKM algorithm extends the EWKM algorithm by using log-transformed dis-
tances in its objective function. The resulting attribute dispersions in a cluster are
more compact than those from the EWKM algorithm. Due to the small difference
of the attribute dispersions, the LEKM algorithm is less sensitive to the parameter
than other soft subspace clustering algorithms are.

The remaining part of this paper is structured as follows. In Section 2, we give
a brief review of the LAC algorithm [9] and the EWKM algorithm [21]. In Section
3, we present the LEKM algorithm in detail. In Section 4, we present numerical
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experiments to demonstrate the performance of the LEKM algorithm. Section 5
concludes the paper with some remarks.

2. Related work. In this section, we introduce the EWKM algorithm [21] and the
LAC algorithm [9], which are soft subspace clustering algorithms using the entropy
weighting.

2.1. The EWKM algorithm. Let x1,x2, . . . ,xn be n data points, each of which
is described by d attributes. Let k be the desired number of clusters. Then the
objective function of the EWKM algorithm is defined as follows [21]:

F (U,W,Z) =

k∑
l=1

 n∑
i=1

d∑
j=1

uilwlj(xij − zlj)2 + γ

d∑
j=1

wlj lnwlj

 , (4)

where γ > 0 is a parameter, U = (uil)n×k is a n × k partition matrix, and W =
(wlj)k×d is a k × d weight matrix. In addition, the partition matrix U and the
weight matrix W satisfy the following conditions:

k∑
l=1

uil = 1, i = 1, 2, . . . , n, (5a)

uil ∈ {0, 1}, i = 1, 2, . . . , n, l = 1, 2, . . . , k, (5b)
d∑
j=1

wlj = 1, l = 1, 2, . . . , k, (5c)

and
wlj > 0, l = 1, 2, . . . , k, j = 1, 2, . . . , d. (5d)

Like the k-means algorithm [23, 4], the EWKM algorithm tries to minimize the
objective function using an iterative process. At the beginning, the EWKM algo-
rithm initializes the cluster centers by selecting k points from the dataset randomly
and initializes the attribute weights with equal values. Then the EWKM algorithm
keeps updating U , W , and Z one at a time by fixing the other two. Given W and
Z, the partition matrix U is updated as

uil =

{
1, if

∑d
j=1 wlj(xij − zlj)2 ≤

∑d
j=1 uiswsj(xij − zsj)2 for 1 ≤ s ≤ k,

0, if otherwise,

for i = 1, 2, . . . , n and l = 1, 2, . . . , k. Given U and Z, the weight matrix W is
updated as

wlj =
exp

(
−Vljγ

)
∑d
s=1 exp

(
−Vlsγ

)
for l = 1, 2, . . . , k and j = 1, 2, . . . , d, where

Vlj =

n∑
i=1

uil(xij − zlj)2.

Given U and W , the cluster centers are updated as

zlj =

∑n
i=1 uilxij∑n
i=1 uil

for l = 1, 2, . . . , k and j = 1, 2, . . . , d. The runtime complexity of one iteration of
the EWKM algorithm is O(nkd).
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The parameter γ in the EWKM algorithm is used to control the smoothness
of the attribute weights. If γ approaches to infinity, then all attributes have the
same weights. In such cases, the EWKM algorithm becomes the standard k-means
algorithm. Since the attribute weights are based on exponential normalization, the
weights are sensitive to the parameter γ when the attribute dispersions (e.g., Vlj)
have a wide range.

2.2. The LAC algorithm. The LAC algorithm (Locally Adaptive Clustering) [9]
and the EWKM algorithm are similar soft subspace clustering algorithms in that
both algorithms discover subspace clusters via exponential weighting of attributes.
However, the LAC algorithm differs from the EWKM algorithm in the definition of
objective function. Clusters found by the LAC algorithm are referred to as weighted
clusters. The objective function of the LAC algorithm is defined as

E(C, Z,W ) =

k∑
l=1

d∑
j=1

(
wlj

1

|Cl|
∑
x∈Cl

(xj − zlj)2 + hwlj logwlj

)
, (6)

where k is the number of clusters, d is the number of attributes, Z = {z1, z2, . . . , zk}
is a set of cluster centers, W = (wlj)k×d is a weight matrix, C = {C1, C2, . . . , Ck}
is a set of clusters, and h > 0 is a parameter. The weight matrix also satisfies the
conditions given in Equations (5c) and (5d).

Like the k-means algorithm and the EWKM algorithm, the LAC algorithm also
employs an iterative process to optimize the objective function. Similar to the
EWKM algorithm, the LAC algorithm initializes the cluster centers by selecting k
points from the dataset randomly and initializes the attribute weights with equal
values. Given the set of cluster centers Z and the set of weight vectors W , the
clusters are determined as follows:

Sl =

x :

d∑
j=1

wlj(xj − zlj)2 <
d∑
j=1

wsj(xj − zsj)2,∀s 6= l

 (7)

for l = 1, 2, . . . , k. Given the set of cluster centers Z and the set of clusters
{S1, S2, . . . , Sk}, the set of weight vector is determined as follows:

wlj =
exp(−Vlj)/h∑d
s=1 exp(−Vls/h)

(8)

for l = 1, 2, . . . , k and j = 1, 2, . . . , d, where

Vlj =
1

|Sl|
∑
x∈Sl

(xj − zlj)2.

Given the set of clusters {S1, S2, . . . , Sk}, the cluster centers are updated as follows:

zlj =
1

|Sl|
∑
x∈Sl

xj (9)

for l = 1, 2, . . . , k and j = 1, 2, . . . , d. The runtime complexity of one iteration of
the LAC algorithm is O(nkd).

Comparing Equation (6) with Equation (4), we see that the distances in the
objective function of the LAC algorithm are normalized by the sizes of the cor-
responding clusters. As a result, the dispersions (i.e., Vlj) calculated in the LAC
algorithm are smaller than those calculated in the EWKM algorithm. However,
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the dispersions calculated in the LAC algorithm can still have a wide range for
small-sample high-dimensional data such as gene expression data [8].

3. The LEKM algorithm. In this section, we present the LEKM algorithm. The
LEKM algorithm is similar to the EWKM algorithm [21] and the LAC algorithm
[9] in that the entropy weighting is used to determine the attribute weights.

Let X = {x1,x2, . . . ,xn} be a dataset containing n points, each of which is
described by d numerical features or attributes. Let Z = {z1, z2, . . . , zk} be a set
of cluster centers, where k is the number of clusters. Then the objective function
of the LEKM algorithm is defined as

P (U,W,Z)

=

k∑
l=1

n∑
i=1

uil

d∑
j=1

wlj ln
[
1 + (xij − zlj)2

]
+ λ

k∑
l=1

n∑
i=1

uil

d∑
j=1

wlj lnwlj

=

k∑
l=1

n∑
i=1

uil

 d∑
j=1

wlj ln
[
1 + (xij − zlj)2

]
+ λ

d∑
j=1

wlj lnwlj

 , (10)

where U = (uil)n×k is a n × k binary matrix satisfying Equations (5a) and (5b),
W = (wlj)k×d is a k×d satisfying Equations (5c) and (5d), and λ > 0 is a parameter.
In the above equation, xij and zlj denote the values of xi and zl in the jth attribute,
respectively. The matrix U is the partition matrix in the following sense. If uil = 1,
then the point xi belongs to the lth cluster. The matrix W is the weight matrix
containing the attribute weights. If wlj is relatively large, then the jth attribute is
important for the formulation of the lth cluster.

Similar to the EWKM algorithm, the LEKM algorithm tries to minimize the
objective function given in Equation (10) iteratively by finding the optimal value
of U , W , and Z according to the following theorems.

Theorem 3.1. Let W and Z be fixed. Then the partition matrix U that minimizes
the objective function P (U,W,Z) is given by

uil =

{
1, if D(xi, zl) ≤ D(xi, zs) for all s = 1, 2, . . . , k;
0, if otherwise,

(11)

for i = 1, 2, . . . , n and l = 1, 2, . . . , k, where

D(xi, zs) =

d∑
j=1

wlj ln
[
1 + (xij − zsj)2

]
+ λ

d∑
j=1

wlj lnwlj .

Proof. Since W and Z are fixed and the rows of the partition matrix U are inde-
pendent of each other, the objective function is minimized if for each i = 1, 2, . . . , n,
the following function

f(ui1, ui2, . . . , uik) =

k∑
l=1

uilD(xi, zl) (12)

is minimized. Note that uil ∈ {0, 1} and

k∑
l=1

uil = 1.
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The function defined in Equation (12) is minimized if Equation (11) holds. This
completes the proof.

Theorem 3.2. Let U and Z be fixed. Then the weight matrix W that minimizes
the objective function P (U,W,Z) is given by

wlj =
exp

(
−Vljλ

)
∑d
s=1 exp

(
−Vlsλ

) (13)

for l = 1, 2, . . . , k and j = 1, 2, . . . , d, where

Vlj =

∑n
i=1 uil ln

[
1 + (xij − zlj)2

]∑n
i=1 uil

.

Proof. The weight matrix W that minimizes the objective function P (U,W,Z) sub-
ject to

d∑
j=1

wlj = 1, l = 1, 2, . . . , k,

is the matrix W that minimizes the following function

f(W ) = P (U,W,Z) +

k∑
l=1

βl

 d∑
j=1

wlj − 1


=

k∑
l=1

n∑
i=1

uil

 d∑
j=1

wlj ln
[
1 + (xij − zlj)2

]
+ λ

d∑
j=1

wlj lnwlj


+

k∑
l=1

βl

 d∑
j=1

wlj − 1

 . (14)

The weight matrix W that minimizes Equation (14) satisfies the following equations

∂f(W )

∂wlj
=

n∑
i=1

uil
(
ln
[
1 + (xij − zlj)2

]
+ λ lnwlj + λ

)
+ βl = 0

for l = 1, 2, . . . , k and j = 1, 2, . . . , d, and

∂f(W )

∂βl
=

d∑
j=1

wlj − 1 = 0

for l = 1, 2, . . . , k. Solving the above equations leads to Equation (13).

From Equation (13) we see that the attribute weights of the lth cluster are
the exponential normalizations of Vl1, Vl2, . . ., Vld. Since Vlj is the sum of log-
transformed distances, the range of the magnitudes of Vl1, Vl2, . . ., Vld is small.
Hence the weights are less sensitive to the parameter λ.

Theorem 3.3. Let U and W be fixed. Then the set of cluster centers Z that min-
imizes the objective function P (U,W,Z) satisfies the following nonlinear equations

zlj =

∑n
i=1 uil

[
1 + (xij − zlj)2

]−1
xij∑n

i=1 uil [1 + (xij − zlj)2]
−1 (15)

for l = 1, 2, . . . , k and j = 1, 2, . . . , d.
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Proof. If the set of cluster centers Z minimizes the objective function P (U,W,Z),
then for all l = 1, 2, . . . , k and j = 1, 2, . . . , d, the derivative of P (U,W,Z) with
respect to wlj is equal to zeros. In other words, we have

∂P

∂zlj
= wlj

n∑
i=1

uil
[
1 + (xij − zlj)2

]−1
[−2(xij − zlj)] = 0.

Since wlj > 0, we have

n∑
i=1

uil
[
1 + (xij − zlj)2

]−1
[−2(xij − zlj)] = 0,

from which Equation (15) follows.

In the standard k-means algorithm, the EWKM algorithm, and the LAC algo-
rithm, the center of a cluster is calculated as the average of the points in the cluster.
In the LEKM algorithm, however, the center of a cluster is governed by a nonlinear
equation in such a way that the center is a weighted average of the points in the
cluster. In addition, if a point is far away from its center, then the point is given
a low weight in the center calculation. As a result, the LEKM algorithm is less
sensitive to outliers than the EWKM algorithm and the LAC algorithm. Since the
LEKM algorithm is an iterative algorithm, we can in practice update the cluster
centers as follows:

zlj =

∑n
i=1 uil

[
1 + (xij − z∗lj)2

]−1
xij∑n

i=1 uil

[
1 + (xij − z∗lj)2

]−1 (16)

for l = 1, 2, . . . , k and j = 1, 2, . . . , d, where Z∗ = {z∗1, z∗2, . . . , z∗k} is the set of
cluster centers from the previous iteration. When the algorithm converges, the
cluster centers in the current iteration are the same as those from the previous
iteration and Equation (16) is the same as Equation (15).

To find the optimal values of U , W , and Z that minimize the objective function
given in Equation (10), the LEKM algorithm proceeds iteratively by updating one
of U , W , and Z at a time with other other two fixed. The pseudo-code of the
LEKM algorithm is shown in Algorithm 1. The computational complexity of one
iteration of the LEKM algorithm is O(nkd). Although the runtime complexity of
the LEKM algorithm is the same as those of the EWKM algorithm and the LAC
algorithm, we expect the LEKM algorithm to be slower than the EWKM algorithm
and the LAC algorithm as more operations are involved in the LEKM algorithm.

The LEKM algorithm requires four parameters: k, λ, δ, and Nmax. The parame-
ter k is the desired number of clusters. The parameter λ controls the smoothness of
the attribute weights. The larger the value of λ, the more uniform of the attribute
weights. The last two parameters are used to terminate the algorithm. Table 1
gives some default values of some parameters.

4. Numerical experiments. In this section, we present numerical experiments
based on both synthetic data and real data to demonstrate the performance of the
LEKM algorithm. We also compare the LEKM algorithm with the EWKM algo-
rithm and the LAC algorithm in terms of accuracy and runtime. We implemented
all three algorithms in Java and used the same convergence criterion as shown in
Algorithm 1.
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Algorithm 1: Pseudo-code of the LEKM Algorithm.

Input: X, k, λ, δ, Nmax
Output: Optimal values of U , W , and Z

1 Initialize W (0) with equal values (i.e., set wlj = 1/d);

2 Initialize Z(0) by selecting k points from X randomly;

3 Update U (0) according to Theorem 3.1;

4 s← 0;

5 P (0) ← 0;

6 while True do
7 Update Z(s+1) according to Equation (16);

8 Update U (s+1) according to Theorem 3.1;

9 Update W (s+1) according to Theorem 3.2;

10 s← s+ 1;

11 P (s+1) ← P
(
U (s+1),W (s+1), Z(s+1)

)
;

12 if
∣∣P (s+1) − P (s)

∣∣ < δ or s ≥ Nmax then
13 Break;

14 end

15 end

Parameter Default Value

λ 1
δ 10−6

Nmax 100

Table 1. Default parameter values of the LEKM algorithm.

In our experiments, we use the corrected Rand index [8, 13] to measure the
accuracy of clustering results. The corrected Rand index is calculated from two
partitions of the same dataset and its value ranges from -1 to 1, with 1 indicating
perfect agreement between the two partitions and 0 indicating agreement by chance.
In general, the higher the corrected Rand index, the better the clustering result.

Since the all the three algorithms are k-means-type algorithms, they are sensi-
tive to initial cluster centers [6, 13]. To compare the performance of these three
algorithms on the first synthetic dataset, we run these algorithm 100 times and
calculate the average accuracy and runtime. In each run, we use a different seed to
select random initial cluster centers. To compare the three algorithms in a consis-
tent way, we used the same 100 seeds for all three algorithms. To test the impact of
the parameters (i.e., γ in EWKM, h in LAC, and λ in LEKM), we use five different
values for the parameter: 1, 2, 4, 8, and 16.

4.1. Experiments on synthetic data. To test the performance of the LEKM
algorithm, we generated two synthetic datasets. The first synthetic dataset is a
2-dimensional dataset with two clusters and is shown in Figure 1. From the figure
we see that the cluster in the top is compact but the cluster in the bottom contains
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several points that are far away from the cluster center. We can consider this dataset
as a dataset containing noises.

−4 −2 0 2 4

−
10

−
8

−
6

−
4

−
2

0
2

V1

V
2

Figure 1. A 2-dimensional dataset with two clusters.

Parameter EWKM LAC LEKM

1 0.0351 (0.0582) 0.0024 (0.0158) 0.9154 (0.2704)
2 0.0378 (0.0556) 0.9054 (0.2322) 0.9063 (0.2827)
4 0.012 (0.031) 0.8019 (0.2422) 0.9067 (0.2815)
8 -0.0135 (0.0125) 0.7604 (0.2406) 0.9072 (0.2799)
16 -0.013 (0.0134) 0.7527 (0.2501) 0.9072 (0.2799)

Table 2. The average accuracy of 100 runs of the three algorithms
on the first synthetic dataset. The numbers in parenthesis are the
corresponding standard deviations over the 100 runs. The param-
eter refers to γ, h, and λ in EWKM, LAC, and LEKM, respectively.

Table 2 shows the average corrected Rand index of 100 runs of the three al-
gorithms on the first synthetic dataset. From the table we see that the LEKM
algorithm produced more accurate results than the LAC algorithm and the EWKM
algorithm. The EWKM produced the least accurate results. Since the dispersion
of an attribute in a cluster is normalized by the size of the cluster in the LAC
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1 2

C2 35 25
C1 25 15

(a)

1 2

C2 59 0
C1 1 40

(b)

1 2

C2 60 0
C1 0 40

(c)

Table 3. The confusion matrices of the first synthetic dataset cor-
respond to the runs with the lowest objective function values. The
parameter used in these runs is 2. The labels “1” and “2” in the
first row indicate the given clusters. The labels “C1” and “C2” in
the first column indicate the found clusters. (a) EWKM. (b) LAC.
(c) LEKM.

and LEKM algorithms, the LAC and LEKM algorithms are less sensitive to the
parameter.

Table 3 shows the confusion matrices produced by the best run of the three
algorithms on the first synthetic dataset. We run the EWKM algorithm, the LAC
algorithm, and the LEKM algorithm 100 times on the first synthetic dataset with
parameter 2 (i.e., γ = 2 in EWKM, h = 2 in LAC, and λ = 2 in LEKM) and chose
the best run to be the run with the lowest objective function value. From Table
3 we see that the LEKM algorithm was able to recover the two clusters from the
first synthetic dataset correctly. The LAC algorithm clustered one point incorrectly.
The EWKM algorithm is sensitive to noises and clustered many points incorrectly.

Weight

C1 1 3.01E-36
C2 1 2.85E-51

(a)

Weight

C1 0.8931 0.1069
C2 0.5057 0.4943

(b)

Weight

C1 0.5448 0.4552
C2 0.5055 0.4945

(c)

Table 4. The attribute weights of the two clusters correspond to
the runs with the lowest objective function values. The parameter
used in these runs is 2. The labels “C1” and “C2” in the first
column indicate the found clusters. (a) EWKM. (b) LAC. (c)
LEKM.

Table 4 shows the attribute weights of the two clusters produced by the best
runs of the three algorithms. As we can see from the table that the attribute
weights produced by the EWKM algorithm are dominated by one attribute. The
attribute weights of one cluster produced by the LAC algorithm is also affected by
the noises in the cluster. The attribute weights of the clusters produced by the
LEKM algorithm seem reasonable as the two clusters are formed in the full space
and approximate the same attribute weights are expected.

Table 5 shows the average runtime of the 100 runs of the three algorithms on the
first synthetic dataset. From the table we see that the EWKM algorithm converged
the fastest. The LAC algorithm and the LEKM algorithm converged in about the
same time.

The second synthetic dataset is a 100-dimensional dataset with four clusters.
Table 6 shows the sizes and dimensions of the four clusters. This dataset was also
used to test the SAP algorithm developed in [13]. Table 7 summarizes the clustering
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Parameter EWKM LAC LEKM

1 0.0005 (0.0005) 0.0021 (0.0032) 0.0016 (0.0009)
2 0.0002 (0.0004) 0.0018 (0.0026) 0.0013 (0.0006)
4 0.0002 (0.0004) 0.0017 (0.0025) 0.0014 (0.0011)
8 0.0003 (0.0004) 0.0018 (0.0026) 0.0016 (0.0017)
16 0.0002 (0.0004) 0.0018 (0.0025) 0.0016 (0.002)

Table 5. The average runtime of the three algorithms on the first
synthetic dataset. The numbers in parenthesis are the correspond-
ing standard deviations over the 100 runs. The numbers are in
seconds.

Cluster Cluster Size Subspace Dimensions

A 500 10,15,70
B 300 20,30,80,85
C 500 30,40,70,90,95
D 700 40,45,50,55,60,80

Table 6. A 100-dimensional dataset with 4 subspace clusters.

results of the three algorithms. From the table we see that the LEKM algorithm
produced the most accurate results when the parameter is small. When the pa-
rameter is large, the attribute weights calculated by the LEKM algorithm become
approximately the same. Since the clusters are embedded in subspaces, assigning
approximately the same weight to attributes prevents the LEKM algorithm from
recovering these clusters.

Parameter EWKM LAC LEKM

1 0.557 (0.1851) 0.5534 (0.1857) 0.9123 (0.147)
2 0.557 (0.1851) 0.5572 (0.1883) 0.928 (0.1361)
4 0.557 (0.1851) 0.5658 (0.1902) 0.6128 (0.1626)
8 0.557 (0.1851) 0.574 (0.2028) 0.3197 (0.1247)
16 0.5573 (0.1854) 0.6631 (0.2532) 0.2293 (0.0914)

Table 7. The average accuracy of 100 runs of the three algorithms
on the second synthetic dataset.

Table 8 shows the confusion matrices produced by the runs of the three algo-
rithms with the lowest objective function value. From the table we see that only
three points were clustered incorrectly by the LEKM algorithm. Many points were
clustered incorrectly by the EWKM algorithm and the LAC algorithm. Figures
2, 3, and 4 plot the attribute weights of the four clusters corresponding to the
confusion matrices given in Table 8. From Figures 2 and 3 we can see that the
attribute weights were dominated by a single attribute. Figure 4 shows that the
LEKM algorithm was able to recover all the subspace dimensions correctly.

Table 9 shows the average runtime of 100 runs of the three algorithms on the
second synthetic dataset. From the table we see that the LEKM algorithm is slower
than the other two algorithms. Since the center calculation of the LEKM algorithm
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A B C D

C1 445 18 0 31
C3 17 269 0 32
C4 16 13 0 605
C2 22 0 500 32

(a)

A B C D

C2 453 8 30 29
C3 23 13 0 671
C4 24 17 470 0
C1 0 262 0 0

(b)

A B C D

C4 500 1 0 1
C1 0 299 0 0
C2 0 0 499 0
C3 0 0 1 699

(c)

Table 8. Confusion matrices of the second synthetic dataset pro-
duced by the runs with the lowest objective function values. In
these runs, the parameter was set to 2. (a) EWKM. (b) LAC. (c)
LEKM.
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Figure 2. Attribute weights of the four clusters produced by the
EWKM algorithm.
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Figure 3. Attribute weights of the four clusters produced by the
LAC algorithm.

Parameter EWKM LAC LEKM

1 0.7849 (0.4221) 1.1788 (0.763) 10.4702 (0.1906)
2 0.7687 (0.4141) 0.8862 (0.4952) 10.3953 (0.1704)
4 0.7619 (0.4101) 0.8412 (0.4721) 10.5236 (0.2023)
8 0.7567 (0.4074) 0.8767 (0.4816) 10.5059 (0.2014)
16 0.7578 (0.4112) 0.8136 (0.5069) 10.4122 (0.189)

Table 9. The average runtime of 100 runs of the three algorithms
on the second synthetic dataset.

is more complicate than that of the EWKM algorithm and the LAC algorithm, it
is expected that the LEKM algorithm is slower than the other two algorithms.

In summary, the test results on synthetic datasets have shown that the LEKM
algorithm is able to recover clusters from noise data and recover clusters embedded
in subspaces. The test results also show that the LEKM algorithm is less sensitive to
noises and parameter values that the EWKM algorithm and the LEKM algorithm.
However, the LEKM algorithm is in general slower than the other two algorithm
due to its complex center calculation.



106 GUOJUN GAN AND KUN CHEN

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●
●
●●●

0 20 40 60 80 100

0.
01

0.
03

0.
05

0.
07

C1

Attribute

W
ei

gh
t

0 20 40 60 80 100

0.
01

0.
03

0.
05

0.
07

C2

Attribute

W
ei

gh
t

0 20 40 60 80 100

0.
01

0.
03

0.
05

C3

Attribute

W
ei

gh
t

0 20 40 60 80 100

0.
02

0.
04

0.
06

0.
08

C4

Attribute

W
ei

gh
t

Figure 4. Attribute weights of the four clusters produced by the
LEKM algorithm.

4.2. Experiments on real data. To test the algorithms on real data, we ob-
tained two cancer gene expression datasets from [8]1. The first dataset contains
gene expression data of human liver cancers and the second dataset contains gene
expression data of breast tumors and colon tumors. Table 10 shows the information
of the two real datasets. The two datasets have known labels, which tell the type
of sample of each data point. The two datasets were also used to test the SAP
algorithm in [13].

Dataset Samples Dimensions Cluster sizes

Chen-2002 179 85 104,76
Chowdary-2006 104 182 62,42

Table 10. Two real gene expression datasets.

Table 11 and Table 12 summarize the average accuracy and the average runtime
of 100 runs of the three algorithms on the Chen-2002 dataset, respectively. From the
average corrected Rand index shown in Table 11 we see that the LEKM algorithm
produced more accurate results than the EWKM algorithm and the LAC algorithm
did. However, the LEKM algorithm was slower than the other two algorithm.

1The datasets are available at http://bioinformatics.rutgers.edu/Static/Supplements/

CompCancer/datasets.htm

http://bioinformatics.rutgers.edu/Static/Supplements/CompCancer/datasets.htm
http://bioinformatics.rutgers.edu/Static/Supplements/CompCancer/datasets.htm
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Parameter EWKM LAC LEKM

1 0.025 (0.0395) 0.0042 (0.0617) 0.2599 (0.2973)
2 0.0203 (0.0343) 0.0888 (0.1903) 0.2563 (0.2868)
4 0.0135 (0.0279) 0.041 (0.1454) 0.2743 (0.2972)
8 0.0141 (0.0449) 0.0484 (0.1761) 0.2856 (0.2993)
16 0.0002 (0.0416) 0.0445 (0.1726) 0.2789 (0.2984)

Table 11. The average accuracy of 100 runs of the three algo-
rithms on the Chen-2002 dataset.

Parameter EWKM LAC LEKM

1 0.0111 (0.0031) 0.0162 (0.0083) 0.102 (0.0297)
2 0.0123 (0.0033) 0.0124 (0.006) 0.1035 (0.0286)
4 0.0143 (0.006) 0.0151 (0.0105) 0.1046 (0.0316)
8 0.0122 (0.0043) 0.0137 (0.0089) 0.1068 (0.0337)
16 0.0144 (0.007) 0.014 (0.0091) 0.105 (0.0323)

Table 12. The average runtime of 100 runs of the three algorithms
on the Chen-2002 dataset.

Parameter EWKM LAC LEKM

1 0.3952 (0.3943) 0.5197 (0.2883) 0.5826 (0.3199)
2 0.3819 (0.3825) 0.19 (0.2568) 0.5757 (0.3261)
4 0.3839 (0.3677) 0.0772 (0.1016) 0.5823 (0.3221)
8 0.4188 (0.3584) 0.0595 (0.0224) 0.5756 (0.3383)
16 0.4994 (0.3927) 0.0625 (0.0184) 0.582 (0.3363)

Table 13. The average accuracy of 100 runs of the three algo-
rithms on the Chowdary-2006 dataset.

Parameter EWKM LAC LEKM

1 0.0115 (0.0048) 0.0109 (0.0042) 0.1369 (0.0756)
2 0.011 (0.0046) 0.0156 (0.0093) 0.1446 (0.0723)
4 0.0103 (0.0042) 0.0147 (0.0076) 0.1514 (0.0805)
8 0.0107 (0.005) 0.0141 (0.0063) 0.1524 (0.0769)
16 0.0113 (0.0047) 0.0138 (0.0068) 0.1542 (0.0854)

Table 14. The average runtime of 100 runs of the three algorithms
on the Chowdary-2006 dataset.

The average accuracy and runtime of 100 runs of the three algorithms on the
Chowdary-2006 dataset are shown in Table 13 and Table 14, respectively. From
Table 13 we see than the LEKM algorithm again produced more accurate clustering
results than the other two algorithm did. When the parameter was set to be 1, the
LAC produced better results than the EWKM algorithm did. For other cases,
however, the EWKM algorithm produced better results than the LAC algorithm
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did. The LAC algorithm and the EWKM algorithm are much faster than the LEKM
algorithm as shown in Table 14.

In summary, the test results on real datasets show that the LEKM algorithm
produced more accurate clustering results on average than the EWKM algorithm
and the LAC algorithm did. However, the LEKM algorithm was slower than the
other two algorithms.

5. Concluding remarks. The EWKM algorithm [21] and the LAC algorithm [9]
are two soft subspace clustering algorithms that are similar to each other. In both
algorithms, the attribute weights of a cluster are calculated as exponential normal-
izations of the negative attribute dispersions in the cluster scaled by a parameter.
Setting the parameter is a challenge when the attribute dispersions in a cluster
have a large range. In this paper, we proposed the LEKM (log-transformed entropy
weighting k-means) algorithm by using log-transformed distances in the objective
function so that the attribute dispersions in a cluster are smaller than those in the
EWKM algorithm and the LAC algorithm. The proposed LEKM algorithm has
the following two properties: first, the LEKM algorithm allows users to choose a
value for the parameter easily because the attribute dispersions in a cluster have a
small range; second, the LEKM algorithm is less sensitive to noises because data
points far away from they corresponding cluster centers are given small weights in
the cluster center calculation.

We tested the performance of the LEKM algorithm and compared it with the
EWKM algorithm and the LAC algorithm. The test results on both synthetic
datasets and real datasets have shown that the LEKM algorithm is able to outper-
form the EWKM algorithm and the LAC algorithm in terms of accuracy. However,
one limitation of the LEKM algorithm is that it is slower than the other two algo-
rithm because updating the cluster centers in each iteration in the LEKM algorithm
is more complicate than that in the other two algorithms.

Another limitation of the LEKM algorithm is that it is sensitive to initial cluster
centers. This limitation is common to most of the k-means-type algorithms, which
include the EWKM algorithm and the LAC algorithm. Other efficient cluster center
initialization methods [24, 5, 6] can be used to improve the performance of the k-
means-type algorithms including the LEKM algorithm.

Acknowledgments. The authors would like to thank referees for their insightful
comments that greatly improve the quality of the paper.
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