
Big Data and Information Analytics doi:10.3934/bdia.2016.1.81
c©American Institute of Mathematical Sciences
Volume 1, Number 1, January 2016 pp. 81–91

SPATIO-TEMPORAL KEYWORDS QUERIES IN HBASE

Xiaoying Chen, Chong Zhang, Zonglin Shi and Weidong Xiao

Science and Technology on Information Systems Engineering Laboratory
National University of Defense Technology

Changsha 410073, China

Abstract. With the amount of data accumulated to tens of billions of scale,
HBase, a distributed key-value database, plays a significant role in providing

effective and high-throughput data service and management. However, for

the applications involving spatio-temporal data, there is no good solution, due
to inefficient query processing in HBase. In this paper, we propose spatio-

temporal keyword searching problem for HBase, which is a meaningful issue in

real life and a new challenge in this platform. To solve this problem, a novel
access model for HBase is designed, containing row keys for indexing spatio-

temporal dimensions and Bloom filters for fast detecting the existence of query
keywords. And then, two algorithms for spatio-temporal keyword queries are

developed, one is suitable for the queries with ordinary selectivity, the other is

a parallel algorithm based on MapReduce aiming for the large range queries.
We evaluate our algorithms on a real dataset, and the empirical results show

that they are capable to handle spatio-temporal keyword queries efficiently.

1. Introduction. With the development of wireless communication and position-
ing technology, more and more data about locations are collected and used for
many applications, such as location-based services. In particular, the format of the
data could be generalized to (location, time, texts), where the location represents
the geo-coordinates where event happens (or some object lies), and time means
the valid time when the event happens at location (or the object is at location),
and texts are used to describe or record the state of the event (or object). For
instance, someone publishes a micro-blog associated with geo-location tag at 6:30
pm, in which some comments about a restaurant are attached. Another example
about real-estate advertising is that every advertisement contains geo-coordinates
of the property, the publishing time and texts describing the property. Users are
often interested in the spatial, temporal and textual attributes of the data, and re-
trieve useful information through the combination of these three dimensions. Such
queries are called spatio-temporal keyword (STK) queries. For instance, find the
users publishing micro-blogs containing words pasta and pizza in the range of this
shopping mall yesterday.

However, tens of billions of spatio-temporal data would be a serious problem for
applications. HBase [1] is a distributed non-sql, key-value database, and is capable
to store such a huge amount of data. However, due to the non-sql characteristics
of HBase, it is inefficient to process spatio-temporal keyword queries using the

2010 Mathematics Subject Classification. Primary: 68W15; Secondary: 68P20.
Key words and phrases. Spatio-temporal keyword query, HBase, Hilbert curve, bloom filter,

MapReduce.
This work is supported by NSF of China grant 61303062.

81

http://dx.doi.org/10.3934/bdia.2016.1.81

82 XIAOYING CHEN, CHONG ZHANG, ZONGLIN SHI AND WEIDONG XIAO

built-in functions of HBase. Consequently, it is highly necessary to design efficient
algorithms for processing spatio-temporal keyword queries in HBase. A previous
work [9] about processing spatial or multi-attributes queries in HBase is different
from ours, because they merely consider spatial dimension in query processing. To
the best of our knowledge, this is the first work for processing spatio-temporal
keyword queries in HBase.

Our motivation is to adopt HBase to process STK queries efficiently. First, a
space filling curve, Hilbert curve [8], is used to encode the spatial dimension into one-
dimensional codes, i.e., for a location referred by geo-coordinates, it is represented
by a number denoting the relative position in the original space. Based on this, we
design a suitable access model for HBase, containing row keys for indexing spatio-
temporal dimensions and Bloom filters [3] for fast detecting the existence of query
keywords. After that, we develop two algorithms, one is suitable for the query with
ordinary selectivity, the other is a parallel algorithm for the large range query. We
evaluate our algorithms on a real dataset, and the results show that our algorithms
are capable to handle spatio-temporal keyword queries efficiently. In summary, we
make the following contributions:

• We propose spatio-temporal keyword queries processing problem in HBase,
which is a new challenge for HBase platform.

• We design a novel access model for HBase to store spatial, temproal and
textual information.

• We propose efficient algorithms for processing spatio-temporal keyword queries
in HBase.

The rest of this paper is organized as follows. Section 2 reviews related works
on spatio-temporal queries and HBase queries. Section 3 formally defines spatio-
temporal keyword problem. Section 4 presents an access model for HBase. Al-
gorithms for spatio-temporal keyword queries are presented in section 5. And we
experimentally evaluate our algorithms in section 6. Finally, section 7 concludes
the paper with directions for future works.

2. Related work. To our knowledge, the state of the art for spatio-temporal key-
word queries in HBase is less well studied. However, some researches focusing on
distributed index could be referenced. As an attractive choice for large-scale data
processing, Cloud storage system currently adopts a hash-like approach to retrieve
data that only support simple keyword-based queries, but lacks various forms of
information search. To overcome this disadvantage, Zhou et al. [10] propose a novel
SkipNet and B+-tree based index structure, called SNB-index. SNB-index uses the
B+-tree to construct efficient local index in the lower layer, while it selects local
index nodes to form a SkipNet-based global overlay in the upper layer. SNB-index
also can be employed in systems such as GFS and Hadoop [2], which ensures it
scalable and flexible. Experimental results show that SNB-index is valid and can
be an alternative approach for constructing an auxiliary index in Cloud computing
systems.

For supporting similarity search in cloud system, Cheng et al. [4] propose VF-
CAN, a novel indexing scheme, which integrates content addressable network (CAN)
based routing protocol and the improved vector approximation file (VA-file) index.
There are two index levels in this scheme: global index and local index. In the
local index, VA-file approximation vectors are clustered by k-means according to
their degree of proximity. In the global index, storage nodes are organized into an

SPATIO-TEMPORAL KEYWORDS QUERIES IN HBASE 83

overlay network CAN, and only clustering information of local index is issued to the
entire overlay network through the CAN interface. The experimental results show
that VF-CAN reduces the index storage space and improves query performance
effectively.

For multi-dimensional data applications, Nishimura et al. [9] proposes MD-HB-
ase, a scalable multi-dimensional data store supporting efficient multi-dimensional
range and nearest neighbor queries. MD-HBase layers a multi-dimensional index
structure over a range partitioned key-value store. Using a design based on lin-
earization, its implementation layers standard index structures like K-D trees and
Quad trees.

As we have mentioned above, many applications not only require finding objects
closest to a specified location, but also that containing a set of keywords. Felipe
et al. [6] present an efficient method to answer top-k spatial keyword queries. It
adopts a structure called IR2-Tree (Information Retrieval R-Tree) which combines
an R-Tree with superimposed text signatures. Algorithms are proposed to construct
and maintain an IR2-Tree, and answer top-k spatial keyword queries. With exper-
imentally comparison with current methods, superior performance and excellent
scalability of the algorithms are shown.

Cong et al. [5] propose a novel indexing framework for location top-k text re-
trieval. It integrates the inverted file for text retrieval and the R-tree for spatial
proximity query. Several hybrid indexing approaches are explored within the frame-
work. Algorithms utilize the proposed indexes to compute the top-k query by taking
into account both text relevancy and location proximity to prune the search space.

In practical applications, it is need to consider the nature of the movement of
objects. Traditional indexes have good query performance but can not handle this
data processing problem in that they are not efficient for update which is crucial
for an index for moving objects, as they change their position frequently. Jensen et
al. [7] represent moving-object locations as vectors that are time stamped based on
their update time. Then B+-tree based data structure is adopted to index moving
objects according to their time stamp and otherwise preserves spatial proximity.
This method supports range and nearest neighbor queries, as well as continuous
queries. Bx-tree which is based on the B+-tree, outperforms the TPR-tree in range
queries and kNN queries concerning the current or near-future positions of the
objects.
3. Problem definition. In this section, we first present the definitions for spatio-
temporal keyword data and queries, and then describe the HBase logical table. For
simplicity, only two-dimensional space is considered in this paper, however, our
method can be directly extended into higher dimensional space.

Spatio-temporal data. A record r of spatio-temporal data can be denoted as
〈x, y, t, W , A〉, where (x, y) means the geo-location of the record, t means the valid
time when the data is produced, W is a set of keywords, W={w1, w2, . . . , wn}, A
represents other attributes, such as user-id, object’s shape, etc.

Spatio-temporal keyword query. Given a set Ust of records of spatio-
temporal data, a spatio-temporal keyword (STK) query Q=〈Rq, ts, te,Wq〉, where
Rq=(xl, yl, xu, yu) means a query range with lower-left coordinate (xl, yl) and
upper-right coordinate (xu, yu), Wq={wq1 , wq2 , . . . , wqm} is a set of query key-
words, aims to find a subset Sst={rs | rs ∈ Ust} satisfying that:

rs.(x, y) ∈ Rq
rs.t ∈ [ts, te]

84 XIAOYING CHEN, CHONG ZHANG, ZONGLIN SHI AND WEIDONG XIAO

rs.W ∩Wq 6= φ

Logical view of HBase table. Without loss of generality, we give the descrip-
tions for HBase table. HBase is a distributed key-value database which consists of
a number of computing nodes cooperatively processing large-scale data. A physical
table in HBase is partitioned into several regions each of which is maintained by a
node. From the logical view, a table is similar to a grid, where a cell can be located
by the given row identifier and column identifier. Row identifiers are implemented
by row keys (rk) which are index by B+-tree, and the column identifier is repre-
sented by column family (cf) + column key (ck), where a column family consists
of several column keys. The value in a cell can be referred to as the format (rk,
cf : ck). Table 1 shows a logical view of a table in HBase. For instance, value v1
can be referred to as (rk1, cf1:ck1).

Table 1. A HBase Logical Table

cf1 cf2
ck1 ck2 ck3 cka ckb

rk1 v1 v2 v3 v4 v5
rk2 v6 v7 v8 v9 v10

4. Spatio-temporal keyword access model for HBase. In this section, we
describe a spatio-temporal keyword access (STKA) model for the logical view of
HBase table. The model is built based on Hilbert curve and Bloom filter. We first
introduce Hilbert curve, which maps high-dimensional data into one-dimensional
space and then describe the access model.

4.1. Hilbert curve. Hilbert curve is a kind of space filling curve which maps
multi-dimensional space into one-dimensional space. In particular, the whole space
is partitioned into equal-size cells and then a curve is passed through each cell
for only once in term of some sequence, so that every cell is assigned a sequence
number. Different space filling curves are distinguished by different sequencing
methods. Due to information loss in the transformation, different space filling
curves are evaluated by the criteria, locality preservation, meaning that how much
the change of proximities is from original space to one-dimensional space. Hilbert
curve is proved to be the best locality preserved space filling curve. With Hilbert
curve, any object in the original space is transformed into [0, 22λ − 1] space, where
λ is called the order of Hilbert curve. Figure 1 shows four Hilbert curves in two-
dimensional space with λ=1, 2, 3 and 4. In Figure 1 (b), there are two points p1
and p2, and the sequence number 2 and 13 is obtained through the curve for them,
respectively. Note that p1 and p2 are neighbors in the original space, but apart
from each other by 11 unit distances in one-dimensional space.

We describe two functions for Hilbert curve, one is mapping a point in the original
space to a value in one-dimensional space, the other is mapping a range window to
a series of intervals. Specifically, for a Hilbert curve with order=λ,

• coorToCode(p). Given a point p=(x1, x2, . . . , xn) in n-dimensional space S,
coorToCode(p) returns a cell number (between 0 and 22λ − 1) referring the
cell where p lies within S.

SPATIO-TEMPORAL KEYWORDS QUERIES IN HBASE 85

(a) λ=1 (b) λ=2 (c) λ=3 (d) λ=4

p1

p2

R1

Figure 1. Hilbert Curves

• rectToIntervals(R). Given a range window R=(xl1, xl2, . . . , xln, xu1 , xu2 , . . . ,
xun) in n-dimensional space S, where xli and xui (1 ≤ i ≤ n) are the lower and
upper bound of the ith-dimension, respectively, rectToIntervals(R) returns
a series of intervals representing the cells intersecting with R in S.

For instance, in Figure 1 (b), coorToCode(p1) = 2, coorToCode(p2) = 13, and
rectToIntervals(R1) = {[1,2], [7,8], [11,15]}.

4.2. STKA model. For each record r=〈x, y, t, W , A〉, the row key is generated
as t⊕ coorToCode(x, y). Note that for different records, they may share the same
row key, which means a row key might correspond to several records. And we use
Bloom filter to denote the union of keyword sets of records. A Bloom filter is a
space-efficient probabilistic data structure which is used to test whether an element
is a member of a set. If the returned value is false for testing whether element e
belongs to set C, then it is definite that e is not in C. However, if the result is
true, e may be in C, which means false-positives are possible and further inspection
should be taken. In particular, for a set of records S={r1, r2, . . . , rm}, the Bloom
filter BS=addSet({wi,j | wi,j ∈ Wi, 1 ≤ j ≤ |Wi|, 1 ≤ i ≤ m}), where function
addset() means inserting keyword list into Bloom filter structure, and Wi is the
keyword set of ri (1 ≤ i ≤ m).

The STKA model is 〈rowkey, B, listof(x,y,W ,A)〉, where rowkey identifies a set
of records S, each of which has t⊕ coorToCode(x, y)=rowkey, and B is the Bloom
filter of union of the keywords in S, and listof(x,y,W ,A) is a list, each element in
which contains geo-location, keyword set, and other attributes of each records in S.

The STKA model is suitable for the logical view of HBase table. Table 2 shows
an example of the model. For storing listof(x,y,W ,A), multiple column groups
(loc, wordlist, attr) are used.

Table 2. STKA model for HBase

stdata
bf loc1 wordlist1 attr1 loc2 wordlist2 attr2 . . .

rowkey1 B1 (x1, y1) W1 A1 (x2, y2) W2 A2 . . .
. .

rowkeyk Bk (xm, ym) Wm Am (xn, yn) Wn An . . .

86 XIAOYING CHEN, CHONG ZHANG, ZONGLIN SHI AND WEIDONG XIAO

5. Algorithms for STK queries. In this section, we first describe the processing
for STK queries on original model. Considering massive data processing, we use
MapReduce [2] framework to design parallel algorithm for STK queries.

5.1. STK queries. For a STK query Q=〈Rq, ts, te,Wq〉, where Rq=(xl, yl, xu,
yu) means a query range, Wq={wq1 , wq2 , . . . , wqm} is a set of query keywords, the
basic idea for spatio-temporal range queries processing is to transform the spatial
range and temproal range into a series of row keys, and using these row keys to
retrieve the records and examin them whether they satisfy the query condition. To
be more specific, firstly, the query spatial range is converted into a series of Hilbert
value intervals. Then, according to row key design patterns, row keys are generated
by time concatenating the Hilbert value. After that, we use scan, an interface of
HBase, to retrieve the records within the row key range, and then we use Bloom
filter to test whether these records intersect with the query keywords. Finally, to
avoid false-positive, those satisfied records in the previous step must be further
examined. Algorithm 1 describes the processing for STK queries in detail.

For the sake of legibility, some functions and variables of the algorithm are ex-
plained below:

1. rectToIntervals(R) returns a series of intervals, each of which is denoted as
[Henter,Hexit];

2. connectHTable() connects to HBase and returns the table;
3. rowkeyRange is a range of row keys, represented by a starting row key and

an ending row key;
4. ResultScanner is a collection of rows retrieved by scanning table, whose row

keys are in rowkeyRange;
5. bf.intersect(Wq) is the function of Bloom filter bf to test whether bf intersects

with Wq;
6. getNextSTRecord() returns next spatio-temporal record in a row;
7. Qlist is the result list for the query.

In line 1, Rq is transformed into a series of intervals. From line 3 to 20,
the involved rows are retrieved and examined. In line 9, a collection of rows
ResultScanner is retrieved, corresponding to a time stamp in (ts, te) and an area
in Rq. The Bloom filter of the union of keywords in each row is examined whether
it intersects with Wq in line 11. If the intersection is not null, every spatio-temporal
record in the row is further examined on location and word list (from line 12 to 16).
For the satisfied record, the result is added into Qlist (line 14).

5.2. Parallel STK queries. As we have mentioned above, with the development
of wireless communication and positioning technology, more and more data about
locations are collected, so it is necessary to consider the problems of massive data
processing. For a STK query with large range predicates, a great number of rows
are retrieved, which is a bottleneck of performance. Consequently, it is necessary
to design parallel algorithm which involved computing nodes to process the query
simultaneously, so that throughput and efficiency increase. Based on MapReduce
framework, we design a parallel algorithm for STK queries.

The basic work flow is that, firstly, an intermediate file containing all the involved
row key ranges for the query is generated, in which each record corresponds to a
row key range in HBase. Then Map procedure reads the records in the file and
outputs them to Reduce procedure. And then in the Reduce, corresponding nodes

SPATIO-TEMPORAL KEYWORDS QUERIES IN HBASE 87

Algorithm 1 Spatio-temporal Keyword Query
Input:

(ts, te) //temporal range of query
Rq(xl, yl, xu, yu) //spatial range of query

Wq //query keywords

Output:
Qlist //result list

1: intervals = rectToIntervals(Rq);

2: table = connectHTable(); //connect to table in HBase for query
3: while ts < te do

4: for each interval in intervals do
5: startrowkey = ts + interval.Henter; //starting row key

6: endrowkey = ts + interval.Hexit; //ending row key

7: rowkeyRange = (startrowkey, endrowkey); //row key range for scanning
8: Scan = scan(rowkeyRange); //scan table

9: ResultScanner = table.getScanner(Scan); //results of scanning

10: for each Result in ResultScanner do
11: if Result.bf.intersect(Wq) 6= null then

12: while (str = Result.getNextSTRecord()) 6= null do

13: if (str.loc ∈ Rq)&&(str.wordlist ∩Wq 6= φ) then
14: Qlist.add(str); //add result to query result list

15: end if

16: end while
17: end if

18: end for

19: end for
20: ts = ts + 1;

21: end while

retrieve and examine rows simultaneously to get results. Algorithm 2 describes the
parallel algorithm for STK queries based on MapReduce framework.

Pseudo-codes between line 2 and 11 describe the generation for the intermediate
file Filerecord. In line 8, the row key range is written into the file in terms of file
record in the loops in line 3 and 4. Map procedure is showed between line 13 and
15, and context.write(record) means outputting record to Reduce step. Pseudo-
codes between line 2 and line 11 describe Reduce procedure. In line 17, the record
passed by Map is parsed into the row key range. The remaining codes are similar
to Algorithm 1.

6. Experimental evaluation. We evaluate our algorithms on a real dataset,
which contains trajectories of taxis in Beijing. In particular, each record in the
dataset contains vehicle ID, geo-location, recording time stamp, etc. For each
record, we randomly assign it a list of keywords with size varied from 7 to 15
words. For comparison, we extract 5 datasets in different sizes from the original
one in terms of temporal range. Table 3 shows the datasets in detail.

Our algorithms are implemented in Java, and run on a three-node cluster with
Hadoop 2.5.1 and HBase 0.98.6, in which each node is equipped with Intel(R)
Core(TM) i3 CPU @ 3.40GHz, 4GB main memory, and 500GB storage, and oper-
ating system is CentOS release 6.5 64bit, and network bandwidth is 10Mbps.

6.1. STK queries. First, we evaluate the algorithm for STK queries. And we
introduce two parameters to test the algorithm under various conditions. One is

88 XIAOYING CHEN, CHONG ZHANG, ZONGLIN SHI AND WEIDONG XIAO

Algorithm 2 Parallel Spatio-temporal Keyword Query
Input:

(ts, te) //temporal range of query
Rq(xl, yl, xu, yu) //spatial range of query

Wq //query keywords

Output:
Qlist //result list

1: /*generating intermediate file Filerecord for Map and Reduce*/

2: intervals = rectToIntervals(Rq);
3: while ts < te do

4: for each interval in intervals do

5: startrowkey = ts + interval.Henter; //starting row key
6: endrowkey = ts + interval.Hexit; //ending row key

7: rowkeyRange = (startrowkey, endrowkey); //row key range for scanning
8: Filerecord.write(rowkeyRange); //write rowkeyRange range to Filerecord

9: end for

10: ts = ts + 1;
11: end while

12: /*Map input: file Filerecord */

13: while (record = Filerecord.getNextRecord()) 6= null do
14: context.write(record); //output the record

15: end while

16: /*Reduce input: output of Map */
17: rowkeyRange = parse(record); //parse record into rowkey range

18: table = connectHTable(); //connect to table in HBase for query

19: Scan = scan(rowkeyRange); //start scanning
20: ResultScanner = table.getScanner(Scan); //results of scanning

21: for each Result in ResultScanner do
22: if Result.bf.intersect(Wq) 6= null then

23: while (str = Result.getNextSTRecord()) 6= null do

24: if (str.loc ∈ Rq)&&(str.wordlist ∩Wq 6= φ) then
25: Qlist.add(str); //add result to query result list

26: end if

27: end while
28: end if

29: end for

Table 3. Dataset

Dataset Temporal Range Size (records)
dataset1 0:00-0:48, Nov. 1st 1 million
dataset2 0:00-8:25, Nov. 1st 10 million
dataset3 0:00-23:59, Nov. 1st 30 million
dataset4 Nov. 1st & Nov. 2nd 60 million
dataset5 Nov. 1st, Nov. 2nd & Nov. 3rd 100 million

selectivity θ defined as:

θ =
L(ts,te)

Lt
·
ARq

AS

where L(ts,te) means the length of query temporal range (ts, te), Lt means the length
of temporal extent of the dataset, ARq

means the area of query spatial range Rq,
and AS means the area of the whole space. Selectivity specifies the size of the query
range, and the larger θ is, the more spatio-temporal records are involved. The

SPATIO-TEMPORAL KEYWORDS QUERIES IN HBASE 89

other parameter is the number of query keywords κ, and a larger κ will recall more
records.

Firstly, we fix κ=5(in reality, the number of keywords users usually query is less
than 5), and vary θ from 3% to 50%. For each value of θ, we issue 10 queries with
different temporal ranges and spatial ranges, and collect the average response time
as the measurement of performance. Figure 2 shows the results.

0 1 0 2 0 3 0 4 0 5 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

De
lay

(m
s)

� (%)

 d a t a s e t 1
 d a t a s e t 2
 d a t a s e t 3
 d a t a s e t 4
 d a t a s e t 5

Figure 2. Response Time vs. Selectivity (κ=5)

We can see that response time increases with θ for all the datasets. This is
because a larger selectivity would access more records to be retrieved and exam-
ined, which increases the processing time. Furthermore, the response time grows
linearly with θ. This can be explained by the transformation from spatio-temporal
dimensions into one-dimensional space, and by the fast detection of Bloom filter for
keywords matching. Another observation is that with the enlargement of dataset
size(the amount of data from dataset1 to dataset5 increases), the response time also
increases. The explanation is that for a fixed selectivity θ, STK query would recall
more records with the increase of data amount .

We fix θ=15%, and vary κ from 3 to 10. The average response time is computed
similarly to the previous one. Figure 3 shows the results.

Similarly, the response time increases with κ. The explanation is similar to the
previous case, i.e., a larger κ would involve more records to be accessed.

6.2. Parallel STK queries. After studying the performance of STK queries, we
compare parallel STK query with the original one to observe the improvement. For
both of them, we issue 5 different queries on dataset 1, and Table 4 shows the
conditions in detail.

Figure 4 shows the results. We can see that at the beginning, i.e, the number
of scanned records is not much, STK query is faster than the parallel one, because
the cost of writing and parsing the intermediate file in the MapReduce procedure
impacts the performance. However, with the query range enlarged, the parallel
STK query is more efficient than the original one. This can be explained by the
parallelism of processing the query, making accessing and comparing to operate

90 XIAOYING CHEN, CHONG ZHANG, ZONGLIN SHI AND WEIDONG XIAO

2 4 6 8 1 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

De
lay

(m
s)

�

 d a t a s e t 1
 d a t a s e t 2
 d a t a s e t 3
 d a t a s e t 4
 d a t a s e t 5

Figure 3. Response Time vs. Number of Query Keywords (θ=15%)

Table 4. Query Conditions

Conditions Temporal Spatial Number of Number of
Range(min) Range(km) Keywords Scanned Records

c1 10 1 3 3987
c2 20 2 5 18786
c3 30 3 5 42457
c4 40 4 7 99789
c5 50 5 10 108040

C 1 C 2 C 3 C 4 C 5
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

De
lay

(m
s)

C o n d i t i o n s

 S T K Q u e r y
 P a r a l e l l S T K Q u e r y

Figure 4. STK Query vs. Parallel STK Query

simultaneously. Therefore, the parallel STK queries are applicable for the condition
with large selectivity.

7. Conclusion. In this paper, we propose the spatio-temporal keyword queries in
HBase, which is a new problem for HBase platform. We devise a proper access

SPATIO-TEMPORAL KEYWORDS QUERIES IN HBASE 91

model for HBase, utilized Hilbert curve and Bloom filter. Two algorithms are de-
veloped suitable for ordinary and large query selectivities, respectively. We conduct
experiments on a real dataset, and the results show our methods are capable for
large scale spatio-temporal keyword queries.

In the future, we plan to extend our work to the inner structure of HBase index
table, in order to improve efficiency of spatio-temporal keyword queries.

Acknowledgments. This work is supported by NSF of China grant 61303062. We
would like to thank Peijun He for helping with the implementation.

REFERENCES

[1] HBase, 2015. Available from: http://hbase.apache.org.

[2] Hadoop, 2015. Available from: http://hadoop.apache.org.

[3] J. Blustein and A. El-Maazawi, Bloom filters. a tutorial, analysis, and survey, Halifax, NS:
Dalhousie University, (2002), 1–31.

[4] C. Cheng, C. Sun, X. Xu and D. Zhang, A multi-dimensional index structure based on im-

proved VA-file and CAN in the cloud, International Journal of Automation and Computing,
11 (2014), 109–117.

[5] G. Cong, C. S. Jensen and D. Wu, Efficient retrieval of the top k most relevant spatial web

objects, VLDB Endowment , 2 (2009), 337–348.
[6] I. D. Felipe, V. Hristidis and N. Rishe, Keyword search on spatial databases, In ICDE , (2008),

656–665.
[7] C. S. Jensen, D. Lin and B. C. Ooi, Query and update efficient B+-tree based indexing of

moving objects, VLDB Endowment , 30 (2004), 768–779.

[8] B. Moon, H. V. Jagadish, C. Faloutsos and J. H. Saltz, Analysis of the clustering properties
of the Hilbert space-filling curve, IEEE Transactions on Knowledge and Data Engineering,

13 (2001), 124–141.

[9] S. Nishimura, S. Das, D. Agrawal and A. E. Abbadi, MD-HBase: A Scalable Multi-
dimensional Data Infrastructure for Location Aware Services, In MDM , 1 (2011), 7–16.

[10] W. Zhou, J. Lu, Z. Luan, S. Wang, G. Xue and S. Yao, SNB-index: A SkipNet and B+ tree

based auxiliary Cloud index, Cluster Computing, 17 (2014), 453–462.

Received May 2015; revised August 2015.

E-mail address: 1473550256@qq.com

E-mail address: leocheung8286@yahoo.com

E-mail address: 997860224@qq.com

E-mail address: wilsonshaw@vip.sina.com

http://hbase.apache.org
http://hadoop.apache.org
http://dx.doi.org/10.1007/s11633-014-0772-y
http://dx.doi.org/10.1007/s11633-014-0772-y
http://dx.doi.org/10.14778/1687627.1687666
http://dx.doi.org/10.14778/1687627.1687666
http://dx.doi.org/10.1109/ICDE.2008.4497474
http://dx.doi.org/10.1016/B978-012088469-8.50068-1
http://dx.doi.org/10.1016/B978-012088469-8.50068-1
http://dx.doi.org/10.1109/69.908985
http://dx.doi.org/10.1109/69.908985
http://dx.doi.org/10.1109/MDM.2011.41
http://dx.doi.org/10.1109/MDM.2011.41
http://dx.doi.org/10.1007/s10586-013-0246-y
http://dx.doi.org/10.1007/s10586-013-0246-y
mailto:1473550256@qq.com
mailto:leocheung8286@yahoo.com
mailto:997860224@qq.com
mailto:wilsonshaw@vip.sina.com

	1. Introduction
	2. Related work
	3. Problem definition
	4. Spatio-temporal keyword access model for HBase
	4.1. Hilbert curve
	4.2. STKA model

	5. Algorithms for STK queries
	5.1. STK queries
	5.2. Parallel STK queries

	6. Experimental evaluation
	6.1. STK queries
	6.2. Parallel STK queries

	7. Conclusion
	Acknowledgments
	REFERENCES

