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Abstract. A bias-variance dilemma in categorical data mining and analysis

is the fact that a prediction method can aim at either maximizing the overall
point-hit accuracy without constraint or with the constraint of minimizing the

distribution bias. However, one can hardly achieve both at the same time.

A scheme to balance these two prediction objectives is proposed in this ar-
ticle. An experiment with a real data set is conducted to demonstrate some

of the scheme’s characteristics. Some basic properties of the scheme are also
discussed.

1. Introduction. A bias-variance dilemma in categorical data mining and analysis
is the fact that a prediction method can aim at either maximizing the overall point-
hit accuracy without constraint or with the constraint of minimizing the distribution
bias, but can hardly achieve both at the same time. The dilemma was notified,
analyzed and illustrated by S. Geman et al. [9] in 1992. The origin of this dilemma
is that a machine learning algorithm claiming to be distribution unbiased has to
pay the price of high variance. It means that the prediction distribution to be as
close as possible to the real target’s distribution has to expect a high point-to-point
prediction error, and vice versa.

This issue has also been widely discussed from practical technic points of view
since then, sometimes under different terminologies. Yaniv and Foster[23] examined
an “accuracy-informativeness” trade-off in three judgement estimation studies and
proposed a trade-off model and a trade-off parameter to describe the penalty for
lack of informativeness. Friedman[8] describes the similar problem in classification
about distribution bias versus variance, suggesting that a lower bias tend to in-
creases variance and thus there is always a “bias-variance trade-off”. It has been
noticed that the Monte Carlo method, which is usually considered distribution un-
biased, has a problem in point-hit accuracy compared to optimal estimation. Mark
and Baram [21] then suggested an improvement to increase the accuracy with a loss
to unbiasedness. Yu et al. [24] extended the tradeoff to a bias-variance-complexity
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trade-off framework and proposed a complex system modeling approach by opti-
mizing a model selection criterion of bias, variance and complexity. Zhou et al. [25]
detailed a solution in a recommender system to solve the dilemma. They linearly
combines two methods, one of which favors diversity and one on accuracy, and sug-
gest that the solution is to define a utility function regarding the combinations and
to optimize the function by tuning the combination coefficient.

Most of the discussions above study the bias and variance on a numerical response
variable. R. Tibshirani discussed their categorical equivalence in [22]. A generalized
bias-variance formulation is discussed in [5] and [16] .

To illusrate this dilemma, we only consider the purely categorical data situation:
both explanatory and response variables are of (nominal) categorical type in this
article. We also consider a data set consisting of only two categorical variables X
and Y , assume that Y is at a certain degree associated with X and that Y has some
unknown values to be estimated.

However it should be noted that a data set in the practice of big data mining is
usually high dimensional with mixed data type. It can be viewed as two categorical
variables though after a few proper processes. A numerical target variable Y can
be categorized by unsupervised discretization methods; same can be accomplished
to the numerical source variables by supervised discretization methods; a proper
supervised feature selection can reduce the number of source variables to such a
small yet powerful number that they can be viewed as one explanatory variable.
One can refer to [4, 11, 14, 19] for details regarding feature selection. The discussions
to discretization can be found in [15].

To estimate the unknown values of Y for any given known value of X, we may
either estimate Y by maximum likelihood, a.k.a conditional mode or the optimal
prediction in [10, Section 5], or by expectation or the proportional prediction in [10,
Section 9]. The former would yield the highest point-hit accuracy rate without any
considerations of distribution bias. The latter would produce the highest point-
hit accuracy with a constraint to the least distribution bias of Y . The point-hit
accuracy rate achieved by the latter approach is in general lower than that by
the former. Indeed, when sample size is large enough and representative, and the
unknown part of Y is random, the point-hit accuracy rate difference between the
optimal and proportional predictions is, according to [10, Sections 5 and 9],

n∑
i=1

max
j∈{1,2,...,k}

p(X = xi, Y = yk)−
n∑

i=1

k∑
j=1

p(X = xi, Y = yj)p(Y = yj |X = xi) ≥ 0

where the equality holds if and only if Y is completely dependent of X.
A very simple example of this dilemma can be described as follows. A table with

90 rows and 2 columns, A and B, has 10 unknown values in B to be estimated (or
predicted), shown in Table 1. Please note that NA represents an unknown value in
the table. The mission is to estimate the unknowns with low distribution bias and
high point-hit accuracy.

For simplicity, we assume that the unknown part has exactly the same conditional
distribution as the known part, i.e., the proportion of b1 and b2 in a1 is 3 : 1 and
that b1 : b2 in a2 is 3 : 5. To minimize the imputation error, the prediction to
A = a1 has to be b1 and the prediction to A = a2 be b2, which is an inevitably
biased imputation; to reduce the level of bias, the ratio of b1 and b2 when A = a1
needs to be 3 : 1 and that same should be 3 : 5 when A = a2 . The expected
accurate rate of the first case is 0.6875 and that of the second case is only 0.578125.
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Table 1. Contingency table to a simple example

A B Tot.
a1 b1 30
a1 b2 10
a2 b1 15
a2 b2 25
a1 NA 16
a2 NA 16

In general, for a given conditional distribution {p(y1|xi)}, {p(y2|xi)}, . . . ,
{p(yk|xi)}, the predicted conditional distribution has to be {p(ŷ1|xi)} = 0,...,
{p(ŷM |xi) = 1},,...,{p(ŷk|xi) = 0} where p(yM |xi) = maxj=1,...,k {p(yj |xi)} to get
the expected maximum accuracy. The overall accuracy rate is then

n∑
i=1

p(xi)p(yM |xi) =

n∑
i=1

p(xi, yM ) (1)

It is equivalent to the Goodman-Kruskal λ[10, Section 5], denoted by λY |X ,

λY |X =

∑n
i=1 ρim − ρ·m

1− ρ·m
where

ρim = max
j∈{1,2,...,k}

{p(X = xi;Y = yj)}

and

ρ·m = max
1≤j≤k

{p(Y = yj)}.

On the other hand, the least distribution biased prediction, or the prediction with
the maximum expectation (or the proportional prediction [10, Section 9] is to predict

Y by the exact conditional probability of Y on X, i.e, {p(Ŷ = yj |X = xi)} = p(Y =
yj |X = xi)}. The expected accuracy rate is

ωY |X :=

n∑
i=1

k∑
j=1

p(Y = yj |X = xi)p(X = xi, Y = yj) (2)

The accuracy rate is linked to the Goodman-Kruskal-tau[10, Section 9] (or the
GK-tau, denoted by τY |X) as follows

ωY |X = (1−
∑
j

p(Y = yj)
2)τY |X +

∑
j

p(Y = yj)
2,

where,

τY |X =

∑n
i=1

∑k
j=1 p(Y = j|X = xi)p(X = xi;Y = yj)−

∑k
i=1 p(Y = yj)

2

1−
∑k

i=1 p(Y = yj)2
.

It can be proven ([14]) that τY |X is the highest point-hit accuracy rate under the
constraint that the estimated part of Y has the same distribution as the known part
of Y .

More details and discussions about λ and τ can be found in [10, 14]. Other
prediction procedures can be found in [1, 2, 7, 12, 13, 20].
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Thus if all variables are categorical and samples are representative and (the sam-
ple size is large) enough, either the highest observable (realistic) point-hit accuracy
rate with the lowest distribution bias or the highest point-hit accuracy with no care
of response distribution bias can be achieved via an appropriate feature selection
based on the corresponding association measures as discussed above. But generally
the two optimizations cannot be realized at the same time hence one may want to
achieve a certain level of balance between these two. This is exactly what we pro-
pose in this article: a scheme to balance the optimizations goal to maximizing the
prediction accuracy and that to minimizing the prediction bias. Some experiments
with real data Famex96 are conducted to demonstrate the characteristics of this
scheme. Basic mathematical properties of this scheme are also discussed. Please
note that these experiments are designed to estimate the unknown values in a table
with a response variable. To focus on this subject, we ignore all other important
issues in high dimensional, mix-typed data prediction such as discretization, feature
selection, model selection, etc.

The definition of this scheme is described in Section 2 along with the prediction
strategy. The experiments are discussed in Section 3. The relationship between the
parameter introduced in this scheme and the prediction performance is also studied
in that section. The last section is the conclusion remarks and the future work.

2. The balancing scheme. Our discussion is about a framework balancing the
expected point-hit accuracy with distribution faithfulness and the likely maximum
point-hit-accuracy. The variable with unknown values is considered as the response
(or dependent) variable, while others are the explanatory (or independent) variables.
The data set is divided into two parts by the values in the response variable. All rows
with known values in the response variable goes to the learning part and others go
to the prediction part. The response variable in the prediction part will be predicted
using the values of its independent variables and the information learned from the
learning part. Please note that all the variables in both parts are considered as
categorical.

Assume that the response variable Y in the learning part has k distinct values:
y1, y2,..., yk. To simplify the discussion, we assume that there is only one source
variable X in both parts and X in the learning part has n distinct values: x1, x2,...,
xn. A threshold θ is then defined as follows.

θ = αρm + (1− α)ρM (3)

where α ∈ [0, 1] while

ρm = 0.5× min
1≤i≤n

max
1≤j≤k

p(Y = yj |X = xi),

ρM = max
1≤i≤n

max
1≤j≤k

p(Y = yj |X = xi)

and p(∗) is the probability of ∗.
Apparently, it is a point between the half of the minimum maximum conditional

probability and the maximum maximum conditional probability. The prediction
method for a given X = xi can be then described as follows. If its maximum
conditional probability is greater the predefined threshold θ, its prediction is in favor
of increasing point-hit accuracy; otherwise its prediction is in favor of lowering bias.
The underlying idea of this scheme is that how to predict the unknowns depends on
the tradeoff level, or a balancing rate α, between lowest bias and highest accuracy.
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Please note that the coefficient of 0.5 is just a choice of convenience. Any positive
number less than 1 can play the same trick, which is to assure all predictions to be
conditional mode based when α = 1.

Our prediction to increase the point-hit accuracy is to predict the unknowns by
the conditional mode. Monte-Carlo simulation is used to lower bias, which is to
randomly pick yj according to a simulated distribution of p(Y = yj |X = xi).

3. Empirical experiment and discussion. The data set that we use in this ex-
periment is The Survey of Family Expenditure conducted by Statistic Canada in
1996 (Famex96)[6]. This data set has 10, 417 rows and 239 columns. We specifically
choose some of its categorical variables to investigate how the prediction accuracy
and bias are affected by the balancing rate introduced in the last section and the
unknown proportion of the response variable. To focus on this subject, only two cat-
egorical variables are included in each experiment, one as the independent variable
and another one as the dependent variable. We also randomly generate unknown
values only in the response variable for the same reason.

It is needed to mention that there are various types of unknown (or missing) val-
ues. Three types were introduced in [3, 18]: missing completely at random (MCAR),
missing at random (MAR)and not missing at random (NMAR). [1] classifies missing
values as four: missing by definition of the subpopulation, missing completely at
random (MCAR), missing at random (MAR), and nonignorable (NI) missing val-
ues. Each type usually requires a different processing method. The missing values
are generated completely at random for the sake of simplicity.

The first experiment uses type of dwelling (HSG TY PE) as the independent
variable and household type categories (HH TY PE) as the dependent variable.
When the missing rates, denoted as r are 0.05, the learning part has 9,899 rows
and the prediction part has 518 rows. The contingency table for the learning part
is listed in Table2.

Table 2. X = HSG TY PE;Y = HH TY PE; r = 0.05: learning

x y # p(y|x) x y # p(y|x) x y # p(y|x)
1 1 755 0.13 3 1 98 0.20 5 1 1209 0.51
1 2 1543 0.26 3 2 84 0.175 5 2 430 0.18
1 3 2552 0.432 3 3 152 0.32 5 3 229 0.1
1 4 401 0.07 3 4 20 0.04 5 4 36 0.02
1 5 328 0.06 3 5 83 0.17 5 5 251 0.11
1 6 203 0.03 3 6 22 0.05 5 6 101 0.04
1 7 130 0.02 3 7 22 0.05 5 7 125 0.05
2 1 56 0.17 4 1 112 0.23 6 1 89 0.29
2 2 69 0.21 4 2 104 0.21 6 2 73 0.23
2 3 118 0.37 4 3 143 0.29 6 3 77 0.25
2 4 17 0.05 4 4 21 0.04 6 4 7 0.02
2 5 32 0.1 4 5 69 0.14 6 5 36 0.12
2 6 16 0.05 4 6 18 0.04 6 6 16 0.05
2 7 14 0.04 4 7 24 0.05 6 7 14 0.045

Observe that the bold part in this table represent the maximal conditional prob-
abilities, which will be the result of a prediction by (conditional) mode(s). Table
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3 and Table 4 are the prediction results for the balancing rate α = 0 and α = 1
respectively.

Table 3. X = HSG TY PE;Y = HH TY PE; r = 0.05;α = 0:
prediction

y\ŷ 1 2 3 4 5 6 7 SUM
1 37 29 29 4 9 7 5 120
2 33 28 44 6 11 3 6 131
3 24 40 81 6 12 6 4 173
4 3 8 11 4 1 0 1 28
5 10 6 8 3 4 2 3 36
6 6 3 6 3 0 0 0 18
7 5 3 3 0 1 0 0 12
SUM 118 117 182 26 38 18 19 518

Table 4. X = HSG TY PE;Y = HH TY PE; r = 0.05;α = 1:
prediction

y\ŷ 1 3 SUM
1 62 58 120
2 34 97 131
3 22 151 173
4 28 28
5 16 20 36
6 5 13 18
7 5 7 12
SUM 144 374 518

The simple match rate is used to measure the point-hit accuracy, which gives us
an accuracy rate of 0.41 when α = 1 and an accuracy of 0.3 when α = 0 . The
distribution bias is evaluated by 4, inspired by Kullback-Leibler divergence[17], as
follows.

d(Ŷ |Y ) =

m∑
j=1

p(yj)|p(ŷj)− p(ŷj)| (4)

As in the K − L divergence, 4 is smaller when the prediction’s distribution is
closer to the real ones. There are also two advantages of 4 over the K−L divergence:
(1) 4 does not over estimate the case of category missing in the prediction; (2) 4
has a fixed range of [0, 1]. By this definition of bias, α = 1 gives a bias of 0.3 and
α = 0 gives a bias of 0.14 which supports our claims to the balancing rate’s property
regarding bias.

When α varies from 0 to 1, Figure1 shows the increase of accuracy and bias as
expected.

Finally Figure3 shows that the effect of the missing rate to the prediction per-
formance is negligible.
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Figure 1. X = HSG TY PE;Y = HH TY PE; r = 0.05: predic-
tion by trend

Figure 3. X = HSG TY PE;Y = HH TY PE; r = 0.05: predic-
tion by trend

4. Discussion and future work. In conclusion, sacrifices in maximizing point-
hit accuracy has to be made to achieve least bias in prediction and vise versa. To
address this tradeoff issue, we define a balancing scheme so the prediction accuracy
can be reduced to certain level to tune down the prediction distribution bias. We
introduce a balancing rate, a parameter, α, where 0 ≤ α ≤ 1 to measure this tradeoff
level. When one categorical independent value’s conditional mode is less than a
threshold calculated by this rate, it is considered less important in contributing to
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the accuracy rate, thus needs to be predicted to minimize the bias, i.e., by a Monte
Carlo simulation. Otherwise, it is better to predict by conditional mode to achieve
the best accuracy. Experiments show how the balancing rate affects the prediction
performance and how the tradeoff effect changes along with it. We will be focusing
on how this scheme is extended to other predictive methods like neural network,
clustering and decision tree in the future.
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