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Abstract. Since being recently raised, curriculum learning (CL) and self-

paced learning (SPL) have attracted increasing attention due to its multiple

successful applications. While currently the rationality of this learning regime
is heuristically inspired by the cognitive principle of humans, there still isn’t

a sound theory to explain the intrinsic mechanism leading to its effectiveness,

especially on some successful attempts on big/noise data. To address this is-
sue, this paper presents some theoretical results for revealing the insights under

this learning scheme. Specifically, we first formulate a new learning problem

aiming to learn a proper classifier from samples generated from the training
distribution which is deviated from the target distribution. Furthermore, we

find that the CL/SPL regime provides a feasible solving strategy for this learn-
ing problem. Especially, by first introducing high-confidence/easy samples and

gradually involving low-confidence/complex ones into learning, the CL/SPL

process latently minimizes an upper bound of the expected risk under target
distribution, purely using the data from the deviated training distribution. We

further construct a new SPL learning algorithm based on random sampling,

which better complies with our theory, and substantiate its effectiveness by
experiments implemented on synthetic and real data.

1. Introduction. Recently, curriculum learning (CL) [2] and self-paced learning
(SPL) [12] have been attracting increasing attention in machine learning and com-
puter vision. Both learning paradigms are inspired by the learning principle under-
lying the cognitive process of humans/animals, which generally starts with learning
easier aspects of an learning task, and then gradually takes more complex examples
into consideration.

Since being raised, multiple variations of this CL/SPL learning regime, like self-
paced reranking [8], self-paced learning with diversity [9], and self-paced curriculum
learning [10], have been proposed to further ameliorate its capability. Its effective-
ness has also been extensively validated in various machine learning and computer
vision tasks, including object detector adaptation [20], dictionary learning [19],
long-term tracking [18] and matrix factorization [23]. Especially, this paradigm has
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been integrated into the system developed by CMU Informedia team, and achieved
the leading performance in challenging semantic query (SQ)/000Ex tasks of the
TRECVID MED/MER competition organized by NIST in 2014 [22]. Just as indi-
cated by the initial work [2] along this line, two advantages of the CL/SPL learn-
ing have been empirically substantiated, especially under big data/noisy scenar-
ios [12, 8, 9, 10, 1, 11]: generalization improving and convergence speedup.

Albeit with superior performance in applications, the reasonability of the CL/SPL
regime is only intuitively explained by its cognitive understanding, while short of a
sound theory to reveal the insightful mechanism leading to its effectiveness. Specif-
ically, current CL/SPL learning methods need to iteratively solve varying optimiza-
tion problems under gradually increasing pace parameters [12, 8, 9, 10], while there
is still not a theoretical argument presented to clarify where these methods converge
to and which objective is these methods intrinsically solve.

To the above issue, this work initializes the learning theory for CL/SPL and
provides an insightful explanation for the effectiveness mechanism under this line
of learning schemes. Specifically, the main contribution of this paper can be sum-
marized as the following aspects.

Different from the traditional learning theory assuming the similar training and
test distribution, a new theory is formalized to understand the learning problem
under the assumption that there exists deviation between training and test/target
distributions. This actually is the case often encountered in this era of big data.
Nowadays, in various learning tasks like object recognition, event detection and user
behavior analysis, learners always need to achieve massive data source for training.
In general these massive data are collected and annotated from company users
(e.g., the Netflix database1), the web (e.g., the LFW database2) or by making use
of crowdsourcing involvement (e.g., the ImageNet database3). The subjective un-
derstanding of any annotator is inevitably more-or-less deviated from the objective
oracle knowledge underlying data. This naturally conducts the deviation from the
training distribution (accumulated from knowledge of all involved annotators) and
the true target one, especially in those ambiguous annotated regions. This inspires
us to formulate this learning problem and investigate its learning theory.

Under the premise of the proposed learning theory, the insight of CL/SPL can
be rationally explained. Especially, the theory clarifies that the CL/SPL regime
actually attempts to minimize an upper bound of the expected risk under target
distribution, purely from the data generated from the deviated training distribution.
In specific, easy samples in CL/SPL correspond to those in high-confidence anno-
tated area of training distribution, which is also consistent with the high-confidence
region of the target distribution (where annotators can easily confirm and agree).
Complex ones, however, are more likely to be located in the ambiguous annotated
regions, corresponding to the more deviated area between training and target dis-
tributions (where users are easily get uncertain or even wrongly cognized). Thus
to start training from easy samples by CL/SPL actually simulates learning from
the high-confidence target region, while to gradually incrementing complex ones
means that the samples residing on ambiguous training regions then come to be
involved. Through this process, the faithful information delivered by those high-
confidence/easy samples incline to soundly guide the learning towards the expected

1http://www.netflixprize.com/
2http://www.image-net.org/
3http://vis-www.cs.umass.edu/lfw/
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target, while being less hampered by those low-confidence/complex samples rela-
tively more deviated from the target. This naturally conducts the advantages of
SPL, i.e., better generalization to target and faster convergence in a sound manner,
as compared to the traditional learning mode, which considers or even emphasizes
unreliable low-confidence samples throughout the learning process.

Besides, based on the proposed theory, we can construct a new CL/SPL learning
scheme based on random sampling. This new scheme better complies with the
deduced upper bound of the expected risk on the target distribution, and thus can
be more faithfully explained by our theory. We also substantiate the effectiveness
of the proposed learning scheme by experiments on synthetic dan real data.

The rest of this paper is organized as follows. Section 2 briefly reviews the re-
lated work on CL/SPL. Section 3 introduces the new learning problem and our
motivations. Section 4 establishes the main learning theory for this learning prob-
lem, and clarifies its intrinsic relationship to CL/SPL. The SPL learning algorithm
by random sampling is constructed in Section 5, and evaluated by experiments in
Section 6. The paper is then concluded with a future research.

2. Related work. Inspired by the learning principle of humans/animals, [2] for-
mulated the curriculum learning paradigm. Its core idea is to iteratively involve
samples into learning in sequence, where easy samples are learned first and more
complex ones are gradually included when the learner is ready for them. These
gradually included sample sequences from easy to complex are called curriculums
learned in different grown-up stages of training. In specific, [2] formalized the CL
problem as follows. Let Ptrain(z) be the training distribution from which the input
data are generated, where z is a random variable representing a sample for the
learner (corresponds to a pair of (x, y) for supervised learning). Let 0 ≤Wλ(z) ≤ 1
be the weight superimposed on z at step λ in the curriculum sequence, with the
pace parameter 0 ≤ λ ≤ 1. The corresponding training distribution at step λ is

Qλ(z) ∝Wλ(z)Ptrain(z), (1)

such that
∫
Z
Qλ(z)dz = 1, where Z denotes the whole training set. A sequence

Qλ(z) can be called a curriculum if it satisfies that both its entropy H(Qλ) and its
weight function Wλ(z) are monotonically increasing with respect to the increasing
pace λ. This strategy has been empirically evaluated to be helpful in enhancing
generalization capability and fastening the convergence speed in multiple applica-
tions [17, 1].

To make the CL idea more implementable in applications, [12] first formulated
the key principle of CL as a concise optimization model named SPL. The SPL model
includes a weighted loss term on all samples and a general SPL regularizer imposed
on sample weights. By sequentially optimizing the model with gradually increasing
pace parameter on the SPL regularizer, more samples can be automatically included
into training from easy to complex in a pure self-paced way. [8] and [23] further
built a guideline to construct a rational SPL regularizer, and formalized the SPL
model as the following optimization problem:

min
w,v∈[0,1]n

n∑
i=1

viL(yi, f(xi,w)) + r(v;λ), (2)

where L(y, f(x,w)) denotes the loss between the annotated label y and the esti-
mated one f(x,w), with model parameter w, and vi denotes the binary variable,



114 TIELIANG GONG, QIAN ZHAO, DEYU MENG AND ZONGBEN XU

Hard samples of “Bus” in SIN dataset

Hard samples of “Chair” in Pascal VOC dataset

Hard samples of “Dog” returned by Google Image

Figure 1: Some relatively complex samples from the SIN and Pascal VOC data sets,
and returned by Google image search engine.

which indicates whether the i-th sample is easy or not. r(v;λ) is the SPL regu-
larizer. λ is a parameter controlling the learning pace. The larger λ is, the more
samples are involved in training and the more “grown-up” the trained model is.
Under this guide line, multiple variations of SPL models have been constructed,
including self-paced reranking (SPaR) [8], self-paced learning with diversity [9], and
self-paced curriculum learning [10], and multiple applications of this SPL frame-
work have been attempted, such as object detector adaptation [20], specific-class
segmentation learning [13], visual category discovery [14], long-term tracking [18]
and background subtraction [23]. Especially, the SPaR method was integrated into
the system developed by CMU Informedia team, and achieved leading performance
in challenging SQ/000Ex tasks of the TRECVID MED/MER competition organized
by NIST [22].

In this paper, we attempt to explore the insightful reason behind these successful
applications of CL/SPL. To the best of our knowledge, this is the first theoretical
explanation work for this newly emerging methodology.

3. A new understanding for the learning problem in big data sceneries.
The current learning tasks always need to collect a massive data set for training.
Such a large magnitude makes it only possible to achieve the expected data from
crowdsourcing, especially for supervised learning tasks. This often conducts large
amount of ambiguous (or complex in CL/SPL) samples for general users in the
obtained data, as illustrated in Figure 1, showing typical “hard” samples from the
SIN4 and Pascal VOC5 data sets, and returned by Google image search engine6.
The reason is that any participant has his/her own specific viewpoint on a problem
as compared to most others, and there is thus inevitably a deviation from each
collector/annotator’s subjective understanding to the objective oracle knowledge of

4http://www.ee.columbia.edu/ln/dvmm/a-TRECVID/
5http://host.robots.ox.ac.uk/pascal/VOC/
6https://images.google.com/

http://www.ee.columbia.edu/ln/dvmm/a-TRECVID/
http://host.robots.ox.ac.uk/pascal/VOC/
https://images.google.com/
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Figure 2: Left: Illustration for the training/target distribution Ptrain(x)/Ptarget(x),
as well as a sequence of pace distributions Qλ(x) varying from Ptarget(x) to Ptrain(x).
Note that Ptrain(x) has an evident heavy tail as compared to Ptarget(x). Right: The
corresponding weight functions with respect to varying pace λ.

the problem. This naturally leads to the problem that the training distribution,
Ptrain(z), accumulated by all collector/annotator’s knowledge, is different from the
test/target distribution, Ptarget(z), to which the learning really needs to generalize.

Albeit deviated, useful information under Ptarget(z) can still be explored from
Ptrain(z). Most participants share a same common sense on high-confidence samples,
and these faithful samples thus tend to be distributed in a region with relatively
large density. For supervised learning problem, such region should be located intra-
class and relatively far from the classification boundary where samples are easy to
be misclassified. In these high-confidence areas, the subjective understanding of hu-
mans and the objective knowledge should be consistent and Ptrain(z) and Ptarget(z)
should be accordant. Comparatively, those ambiguous/complex samples, conducted
by the cognitive differences or even misoperation of annotators, should occupy a rel-
atively smaller proportion in data and located in a region with smaller density. Their
locations should be near classification boundary or even inner wrong classes (e.g.,
noises/outliers) in supervised learning. This naturally leads to an evident heavy-
tailed shape of Ptrain(z) as compared to Ptarget(z) in such low-confidence regions,
as shown in Figure 2.

In small/clean sample cases, such a low-confidence region is always with few gen-
erated samples due to its small density and small base number of samples. Thus it
tends to be configured as a blank “margin” area. Through finding a classification
surface to maximize this margin, the decision boundary can always be effectively lo-
cated [21]. In the premise of practical big/noisy data, however, such margin tends to
be very hard to enanchor. Both relatively high density of marginal samples (caused
by noise/outliers) and large data cardinality (caused by big data) tend to fill the
margin, and the heavy noises/outliers even seriously mislead the margin location.
This might explain the fail cases of traditional margin-emphasizing algorithms like
SVM [21], Adaboost [7], and etc., in some real data applications [8, 9].

It is thus rational to more emphasize the high-confidence (i.e., easy) samples
rather than low-confidence (i.e., complex) ones in certain real data cases, instead
of treating the former as non-support-vectors and ignoring their role in learning.
This constitutes the basic methodology under CL/SPL, which more complies with
the human learning process. Such high-confidence-sample-emphasizing idea has
also been employed to build never-ending machine learning systems that acquire
the ability to extract structured information from unstructured data [4, 15] by
persistently picking up high-confidence samples in iteration.
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In sum, our argument is that in real big/noisy data scenarios, both learning
theories and implementation methods need to be handled in new viewpoints. In
theory, instead of similar [5, 6], the target distribution is often deviated from the
training, especially in those low-confidence regions; and in implementation, high-
confidence samples, i.e., the traditional non-support-vectors, might be put more
emphasis in learning, as the CL/SPL methodology suggests.

In the following, we will provide some preliminary theoretical results on this new
setting of learning problem, and deliver a rational theoretical explanation for the
working mechanism under CL/SPL methodology.

4. SPL learning theory.

4.1. Problem setting. In this work we mainly investigate the binary classifica-
tion problem. Following the classic setting of learning theory, our aimed learning
problem is: Let X be a compact subset of Rd, Y = {−1, 1} be the label set and
Z = X × Y be the whole set. The binary classification problem aims at learning a
proper classifier f : X → Y from the input training samples {zi = (xi, yi)}ni=1 gener-
ated from the underlying training distribution Ptrain(Z) = Ptrain(X|Y )Ptrain(Y ) [6],
such that the following expected risk can be minimized:

R(f) :=

∫
Z

Lf (z)Ptarget(x|y)Ptarget(y)dz,

where Ptarget(Z) = Ptarget(X|Y )Ptarget(Y ) denotes the target distribution on Z,

and Lf (z) = 1f(x)6=y = 1−yf(x)
2 , denoting the loss function measuring the difference

between the predicted and true labels. Both Ptrain(Z) and Ptarget(Z) are fixed while
unknown. The following empirical risk is thus considered for actual implementation:

Remp(f) =
1

n

n∑
i=1

Lf (zi). (3)

We assume Ptarget(y = 1) = Ptrain(y = 1) = 1/2 for easy evaluation and denote
P+

train(x) = Ptrain(x|y = 1), P−train(x) = Ptrain(x|y = −1), P+
target(x) = Ptarget(x|y =

1), P−target(x) = Ptarget(x|y = −1). Since the deduction for both y = 1 and y = −1
cases are exactly similar, we only consider one case in the following and denote
Ptrain(x) and Ptarget(x) omitting notion +1 or −1.

4.2. A simulated curriculum format. We first formulate Ptarget(x) as the wei-
ghted expression of Ptrain(x):

Ptarget(x) =
1

α∗
Wλ∗(x)Ptrain(x), (4)

where 0 ≤ Wλ∗(x) ≤ 1 and α∗ =
∫
X
Wλ∗(x)Ptrain(x)dx denotes the normalization

factor7. Based on Eq. (4), Ptarget(x) actually corresponds to a curriculum as
defined in Eq. (1) under the weight function Wλ∗(x). As analyzed in the last
section, Wλ∗(x) should be of small values in the low-confidence area of Ptarget

where complex samples are located, while have larger values (close to 1) in the
high-confidence area where easy samples reside. This can be easily understood by
observing Figure 2.

Eq. (4) can be equivalently reformulated as

Ptrain(x) = α∗Ptarget(x) + (1− α∗)E(x) (5)

7We thus have α∗ ≤ 1 since Wλ∗ (x)Ptrain(x) ≤ Ptrain(x).



A THEORETICAL PERSPECTIVE OF CURRICULUM LEARNING 117

where

E(x) =
1

1− α∗
(1−Wλ∗(x))Ptrain(x).

Here it is easy to see E(x) is a distribution (
∫
X
E(x)dx = 1) formulated by the

weighted Ptrain(x) under the weight function (1 − Wλ∗(x)). This term actually
measures the deviation from Ptarget to Ptrain. In high-confidence area of Ptarget, E(x)
corresponds to the nearly zero-weighted Ptrain, and thus the deviations/errors tend
to be small. On the contrary, in the low-confidence area, E(x) imposes relatively
large weights on Ptrain, naturally leading to its large deviation values. This complies
with our aforementioned analysis on the deviation measure. The more confidently
a sample is annotated, the less deviated its label should be from the true one.

We can then construct the following curriculum sequence for our theoretical
evaluation:

Qλ(x) = αλPtarget(x) + (1− αλ)E(x), (6)

where αλ varies from 1 to α∗ with increasing pace parameter λ. Correspondingly, the
curriculum Qλ simulates the changing process from Ptarget to Ptrain, as illustrated in
Figure 2. Note that Qλ(x) can also be regularized into the curriculum formulation
as Eq. (1) as follows:

Qλ(x) ∝Wλ(x)Ptrain(x),

where

Wλ(x) ∝ αλPtarget(x) + (1− αλ)E(x)

α∗Ptarget(x) + (1− α∗)E(x)

with 0 ≤Wλ(x) ≤ 1 through normalizing its maximal value as 1.

Note that the initial stage of this CL process sets Wλ ∝ Ptarget

Ptrain
, which is of larger

weights in the high-confidence area while much smaller in low-confidence area due
to the heavy-tail problem. The weights are thus of more vibrations. With the pace
λ increasing, the large weights in high-confidence area become smaller while small
ones in low-confidence area become larger, leading to more uniform distributed
weights with smaller variations. After normalizing Wλ(x) into the interval [0, 1], its
values tend to consistently increase in λ, which can be easily understood by Figure
2. This thus complies with the weight-increasing condition defined for a curriculum
in [2].

By taking (6) as the pace distribution, we attempt to present some theoretical
results on CL/SPL strategy. These results will help us get some useful insights
under this interesting learning scheme.

4.3. CL/SPL learning theory. First we need some preliminary definitions.

Definition 4.1. Let G be a function family mapping from Z to [a, b], P (Z) a
distribution on Z and S = (z1, · · · , zm) a set of i.i.d. samples drawn from P . The
empirical Rademacher complexity of G with respect to S is then defined by

R̂m(G) = Eσ
[

sup
g∈G

1

m

m∑
i=1

σig(zi)
]
, (7)

where σis are i.i.d. samples drawn from the uniform distribution in {−1, 1}. The

Rademacher complexity of G is defined by the expectation of R̂m(G) over all samples
S:

Rm(G) = ES∼Pm |R̂S(G)|. (8)
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Definition 4.2. The Kullback-Leibler divergence DKL(p‖q) between two densities
p(Ω) and q(Ω) is defined by

DKL(p‖q) =

∫
Ω

p(x) log
p(x)

q(x)
dx. (9)

Based on the above definitions, we can estimate the generalization error bound
for CL/SPL learning under the curriculum Qλ. Firstly we present the following
necessary lemmas for this task.

Lemma 4.3. (Bretagnolle-Huber inequality) Let p and q be density functions, and
then we have ∫

|p(x)− q(x)|dx ≤ 2
√

1− exp{−DKL(p ‖ q)}. (10)

Lemma 4.4. [16] Let H be a family of function taking value in {−1, 1} and P be
the distribution over the input space X. Then for any δ > 0, with confidence at
least 1− δ over a sample set S, the following holds for any f ∈ H:

R(f) ≤ Remp(f) + Rm(H) +

√
ln(1/δ)

2m
. (11)

In addition, we have

R(f) ≤ Remp(f) + R̂m(H) + 3

√
ln(2/δ)

2m
. (12)

Lemma 4.5. Suppose S ⊆ {x : ‖x‖ ≤ R} be a sample set of size m, and H =
{x 7−→ sgn(wT · x) : minS |wTx| = 1 ∧ ‖w‖ ≤ B} be hypothesis class, where
w ∈ Rn, x ∈ Rn, and then we have

R̂m(H) ≤ BR√
m
. (13)

Proof.

R̂m(H) =
1

m
Eσ
[

sup
‖w‖≤B

m∑
i=1

σisgn(wixi)
]

≤ 1

m
Eσ
[

sup
‖w‖≤B

m∑
i=1

σi|sgn(wixi)|
]

≤ 1

m
Eσ
[

sup
‖w‖≤B

m∑
i=1

σi|wixi|
]
≤ B

m
Eσ
[
‖
m∑
i=1

σixi‖
]

≤ B

m
Eσ
[[
‖
m∑
i=1

σixi‖2
]] 1

2

=
B

m
Eσ
[[
‖

m∑
i,j=1

σiσj(xixj)‖2
]] 1

2

≤ B

m

[
Eσ
[
‖
m∑
i=1

xi‖2
]] 1

2

=
BR√
m
.
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Then we give the main results of this work.

Theorem 4.6. Suppose {zi}mi=1 are i.i.d. samples drawn from the pace distribution
Qλ. Let m+/m− be the number of positive/nagetive samples, m∗ = min{m−,m+},
and H the function family projecting to {−1, 1}. Then for any δ > 0 and f ∈ H,
with confidence at least 1− 2δ we have:

R(f) ≤ 1

2
R+
emp(f) +

1

2
R−emp(f)

+
1

2
Rm+(H) +

1

2
Rm−(H) +

√
ln(1/δ)

m∗

+ (1− αλ)
√

1− exp{−DKL(P+
target ‖ E+)}

+ (1− αλ)
√

1− exp{−DKL(P−target ‖ E−)}, (14)

and

R(f) ≤ 1

2
R+
emp(f) +

1

2
R−emp(f)

+
1

2
R̂m+(H) +

1

2
R̂m−(H) + 3

√
ln(2/δ)

m∗
+

+ (1− αλ)
√

1− exp{−DKL(P+
target ‖ E+)}

+ (1− αλ)
√

1− exp{−DKL(P−target ‖ E−)}, (15)

where E+, E− denote the error distribution corresponding to P+
target, P

−
target, and

R+
emp(f), R−emp(f) denote the empirical risk on positive samples and negative sam-

ples, respectively.

Proof. We first rewrite the expected risk as

R(f) =

∫
Z

Lf (z)Ptarget(x|y)Ptarget(y)dz

=
1

2

∫
X+

Lf (x,y)Ptarget(x|y = 1)dx

+
1

2

∫
X−

Lf (x,y)Ptarget(x|y = −1)dx

:=
1

2
(R+(f) +R−(f)).

The empirical risk tends not to approximate the expected risk due to the inconsis-
tence of Ptrain and Ptarget. However, by introducing intermediate risk with pace
distribution, namely the pace risk, and denoting by EQλ(f) in the error analysis,
we can formulate the following error decomposition

1

2
(R+(f) +R−(f))− 1

2
(R+

emp(f) +R−emp(f))

=
1

2
[R+(f)− EQ+

λ
(f) + EQ+

λ
(f)−R+

emp(f)]

+
1

2
[R−(f)− EQ−

λ
(f) + EQ−

λ
(f)−R−emp(f)]

:= S1 + S2. (16)
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Let S1 = A1 + A2 and S2 = B1 + B2, where A1 = 1
2 (R+(f) − EQ+

λ
(f)), A2 =

1
2 (EQ+

λ
(f)−R+

emp), B1 = 1
2 (R−(f)− EQ−

λ
(f)), B2 = 1

2 (EQ−
λ

(f)−R−emp(f)). Here,

EQ+
λ

(f) and EQ−
λ

(f) denote the pace risk with respect to positive samples and

negative samples, respectively.
We first focus on the estimation of A1. By the fact the 0-1 loss is bounded by 1,

we have

A1 ≤
1

2

∫
X+

(
P+
target(x)−Q+

λ (x)
)
dx

=
1

2

∫
X+

(
P+
target(x)− αλP+

target(x)− (1− αλ)E+(x)
)
dx

=
1

2
(1− αλ)

∫
X+

(
P+
target(x)− E+(x)

)
dx

≤ (1− αλ)
√

1− exp{−DKL(P+
target ‖ E+)}

(17)

The last inequality is obtained by Lemma 4.3. For the estimation of A2, according
to Lemma 4.4, the following holds with confidence 1− δ

A2 ≤
1

2
Rm+(H) +

1

2

√
ln(1/δ)

2m+
. (18)

In the similar way, we can bound B1 and B2 as follows

B1 ≤ (1− αλ)
√

1− exp{−DKL(P−target ‖ E−)}, (19)

and

B2 ≤
1

2
Rm−(H) +

1

2

√
ln(1/δ)

2m−
. (20)

By taking m∗ = min{m+,m−} and combining Eqs. (17) (18) (19) (20), we can
easily get Eq. (14). In addition, one can further get:

Rm(H) ≤ R̂m(H) +

√
ln(2/δ)

2m
. (21)

By replacing Rm(H) in Eq. (14) with Eq. (21), we have (15).
The proof is then completed.

Note that the above established error bounds upon 0-1 loss are hard to optimize.
We thus further deduce another bound under the commonly utilized hinge loss.

Corollary 1. Suppose {(xi, yi)}mi=1 ⊂ (X ×{−1, 1}) are i.i.d. samples drawn from
the pace distribution Qλ with radius |X| ≤ R. Denote m+/m− be the number
of positive/nagetive samples and m∗ = min{m−,m+}. Let H = {x 7−→ wTx :
minS |wTx| = 1 ∧ ‖w‖ ≤ B}, and φ(t) = (1 − t)+ for t ∈ R be the hinge loss
function. Then for any δ > 0 and g ∈ H, with confidence at least 1 − 2δ, it holds
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that:

R(sgn(g)) ≤ 1

2m+

m+∑
i=1

φ(yig(xi)) +
1

2m−

m−∑
i=1

φ(yig(xi))

+
RB√
m∗

+ 3

√
ln(1/δ)

m∗

+ (1− αλ)
√

1− exp{−DKL(P+
target ‖ E+)}

+ (1− αλ)
√

1− exp{−DKL(P−target ‖ E−)}. (22)

Proof. Based on Lemma 4.5 to Eq. (15), and the fact that the hinge loss is the
upper bound of 0− 1 loss, we can then obtain the result.

Note that there are three components in the upper bound of the expected risk
under Ptarget. The first row corresponds to the empirical risk on training samples
generated from Qλ. With λ increasing, these samples start by mainly generating
from high-confident (easy) area of Ptarget in probability and gradually involve more
complex ones. The second row reflects the approximation capability of training sam-
ples to evaluate information of Qλ. The more samples are considered, the smaller
this term is and the better approximation can be achieved. The last two rows mea-
sure the generalization capability of the learned classifier, which is monotonically
increasing with respect to both the KL-divergence between the error distribution E
and the target Ptarget, and the pace parameter λ. That is, the more deviated is the
error E from Ptarget, the more difficult is to learn a proper classifier from training
data which can generalize well on Ptarget. Also, in the late stage of CL/SPL (cor-
responding to large λ), the generalization of the learned classifier tends to be worse
due to the gradually more evident deviation from the curriculum Qλ to Ptarget. The
last two terms actually compromise the approximation and generalization capabil-
ities of this CL/SPL process with Qλ.

This theory reveals the following insights underlying this CL/SPL process. The
“easy-to-complex” property of the curriculum Qλ intrinsically facilitates the infor-
mation transfer from Ptrain to Ptarget, and makes it feasible to approximate the
solution of the learning problem as set in Section 4.1, i.e., to learn a classifier with
minimal expected risk on Ptarget through the empirical risk on training samples
generated from Ptrain. In specific, we can approach the task of minimizing the
expected risk on Ptarget by gradually increasing the pace λ, generating relatively
high-confidence (easy) samples from Qλ, and minimizing the empirical risk on these
samples. This complies with the core idea under previous CL/SPL regimes. It is
interesting that the previous investigations attribute the advantage of CL/SPL by
that its performance is soundly guided by the faithful easy samples, while our theory
further reveals that this regime facilitates learning to approach a good generalization
to the target distribution.

5. SPL insight: Approximate rational curriculums from training data.

5.1. Simulate Qλ from training samples. When we only have samples
{(xi, yi)}ni=1 ⊂ X × {−1, 1} generated from Ptrain, we can approximately simu-
late a rational Qλ as Eq. (6) in the following way. For easy discussion, we still only
consider either of +1 and −1 cases, and ignore the notion +1 or −1.
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First, let’s approximate P̂train = piδxi(x), where δxi(x) denotes the Dirac delta

function centered at xi and pi = 1
m . It is easy to see that P̂train supposes a uniform

density on each sample xi. Next, in the beginning λ paces, we impose a smaller
weights vi(λ) on low-confidence samples located near inter-class boundary than
those on high-confidence regions to formulate the initial Q̂λ(x) ∝

∑n
i=1 vi(λ)piδxi(x).

By dominantly suppressing the heavy-tailed region of P̂train, i.e., by putting nearly

zero weights vi(λ) on those evident low-confidence samples, Q̂0 is expected to form a
rational approximation to Ptarget. We then increase the pace λ to gradually increase

the small weight vi(λ) to 1. The corresponding Q̂λ(x) ∝
∑n
i=1 vi(λ)piδxi(x) then

approximates a curriculum sequence varying from Q̂0 to P̂train like Eq. (6).

5.2. Revisit previous SPL models. Instead of minimizing the empirical risk

Remp(f) as illuminated in our theory, let’s minimize its expected value under Q̂λ
as:

min
w

EQ̂λ

(
1

n

n∑
i=1

L(yi, f(xi,w))

)
= EQ̂λL(y, f(x,w))

⇔ min
w

∑
i

vi(λ)L(yi, f(xi,w)), (23)

where the first expectation is taken with respect to {xi}ni=1 which are i.i.d samples

drawn from Q̂λ. As analyzed above, vi(λ) should satisfy: (1) Under fixed λ, vi(λ) is
monotonically increasing with its confidence degree; (2) For each sample xi, vi(λ)
is monotonically increasing with respect to the pace λ.

An useful knowledge to judge whether the label confidence of a sample is high
or low is through its learning error. That is, the high-confidence sample tends to
be located inside the region of its category, thus always leading to its small training
error, and vice versa. From this understanding, Eq. (23) exactly corresponds to
current SPL learning models [8, 23, 10], which fit these weight values to accord with
the similar requirements through supplementing a self-paced regularizer on vi(λ) in
Eq. (23), as shown in the previous SPL model (2).

In this sense, we might explain the effectiveness of the previous SPL models
by the following insight. Based on our theoretical results, this learning scheme
tends to learn from the deviated training information to discover ground truth
knowledge of the target distribution, through learning in a sound manner from
high-confidence/easy/small-loss samples to low-confidence/complex/large-loss ones.
Throughout this learning process, it intrinsically tries to minimize an upper bound
of the expected risk on the target distribution, through being terminated at a proper
compromised pace. This fully complies with the experience of its real implementa-
tions in multiple applications [8, 9, 23].

5.3. SPL with random sampling. Note that current SPL models are all deter-
ministic, while the empirical risk in the upper bound (22) is calculated on randomly
generated samples. We thus want to build a new SPL algorithm by using random
sampling mechanism. The core idea is to approximate the pace distribution Qλ by
imposing weights on samples, and then sampling from this distribution to form new
SPL training samples.

The implementation details are as follows. At each iteration, we first compute
the losses of all training samples based on the current model. Then we solve the
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Algorithm 1 Self-Pace Learning with Random Sampling (RS-SPL)

Input: training data D = {xi, yi}ni=1, initial pace parameter λ,m and stepsize µ, k.
Output: model parameter w.

1: Train a model on entire training set to obtain loss {L(yi, f(xi,w))}ni=1.
2: repeat
3: Solve (24) to obtain v(λ).
4: v(λ) = v(λ)/‖v(λ)‖1.

5: Draw m samples from
n∑
i=1

vi(λ)piδxi(x) to form Dλ.

6: Train a new model on Dλ to obtain w.
7: If λ is small, increase λ by µ and increase m by k.
8: until stopping criteria satisfied

following optimization problem to form weights on all samples:

min
v

n∑
i=1

viL(yi, f(xi,w)) + r(v, λ), (24)

where r(v, λ) is the self-paced regularizer as defined in Eq. (2). After that,

we normalize v by v/‖v‖1 to construct the empirical pace distribution Q̂λ(x) =

vi(λ)piδxi(x), and then redraw samples from the training set according to Q̂λ. A
new model is then recursively trained on these samples. The whole process is sum-
marized in Algorithm 1.

There are many choices for r(v, λ) based on three axiomic conditions defined on
it [8]. We just readily use the following due to its easiness and effectiveness:

r(v, λ) = −γ
n∑
i=1

log
(
vi +

1

λ
γ
)
, (25)

where γ > 0 is a tuning parameter. The optimal v(λ) to (24) can be analytically
computed by

vi(λ)=

{
1

log γ log(L(yi,f(xi,w))+γ) L(yi,f(xi,w))<λ

0 L(yi,f(xi,w))≥λ.

6. Experiments. In this section, we implemented experiments on synthetic and
real classification datasets. The linear SVM, implemented by LibSVM [3], is utilized
as the comparison method.

6.1. A synthetic example. We first give a synthetic example to illustrate be-
havior of the proposed RS-SPL algorithm. The data were generated as follows:
Two 2-D Gaussian distributions, each associated with a class, were specified as
the target distribution. The training distribution is further mixed with another
two 2-D Gaussian distributions, each centered at the low density area of the target
distribution of corresponding class to enforce deviation. We generated 2000 clean
training samples, 1000 per class, and 2000 test samples from the target distribu-
tions. Then 400 samples from the deviated distributions, 200 per class, were added
to the training set. The resulted training and test samples are shown in Figure 3.

In order to understand the behavior of RS-SPL, we implemented Algorithm 1
to this synthetic data and plot in Figure 4 the selected samples and the learned
separating hyperplane during the SPL process. It can be observed that, samples
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Figure 3: Samples used in our synthetic experiment. Left: Training samples. Tri-
angles and squares are sampled from the target distribution, and crosses and pluses
from the deviated distribution. Right: Test samples, generated from the target
distribution.
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Figure 4: Upper: The selected training samples and the learned separating hyper-
plane (black line) in SPL iterations. Lower: Corresponding performance on the test
samples.

from the high density region of the training distribution are selected first. As the
SPL iteration continues, more and more samples with comparatively high confi-
dence are included for training the classifier, and the separating hyperplane tends
to be learned more accurately. However, when “hard” samples, i.e., those deviated
samples, are included at the latter stages of SPL, the learned hyperplane tends to
be disordered. Such behavior can also be substantiated by the accuracy tendency
on the test data as shown in Figure 5. These results coincide with the SPL learning
theory developed in Section 4, which asserts that the optimal expected risk tends
to be achieved as a tradeoff between the better approximation capability of increas-
ingly more samples and the worse generalization derived by the divergence from the
pace distribution to the target.

6.2. Real data evaluation. We also implemented the proposed method to 5 real-
world classification datasets, including magic8, image, waveform, ringnorm and

8http://archive.ics.uci.edu/ml/datasets.html

http://archive.ics.uci.edu/ml/datasets.html
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Figure 5: Classification accuracy (%) with respect to the SPL iteration in synthetic
experiment.

Table 1: Statistics of 5 utilized real classification datasets.

Dataset # Instances # Features
magic 19020 10

waveform 5000 21
image 2310 18

ringnorm 7400 20
twonorm 7400 20

Table 2: Classification accuracy (%) on 5 real-world classification datasets. The
results are averaged over 50 runs.

Dataset # Batch Train # SPL Train
magic 79.13± 0.28 79.74± 0.77

waveform 88.05± 0.52 88.30± 0.53
image 84.46± 1.11 86.26± 1.07

ringnorm 77.09± 0.63 77.36± 0.59
twonorm 97.71± 0.20 97.81± 0.17

twonorm9. The numbers of instances and features of each dataset are summarized
in Table 1.

We randomly split each dataset into two subsets with equal sizes for training and
testing, respectively. Then we applied the proposed RS-SPL algorithm to training
a SVM classifier on the training set, and evaluated its performance in terms of
classification accuracy on the test set. The parameters for SVM and RS-SPL were
selected via hold-out validation on training set. We averaged the performance for
each dataset over 50 runs as summarized in Table 2. As a comparison, we also
include the results of the batch-trained SVM. We can see that the proposed SP-
SPL algorithm can improve the classification accuracy over batch training. Its
effectiveness can thus be validated.

9http://www.raetschlab.org/Members/raetsch/benchmark

http://www.raetschlab.org/Members/raetsch/benchmark
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7. Conclusion. We have presented a theoretical explanation for the working in-
sight underlying the CL/SPL paradigm. Specifically, we clarify that the insight
of the CL/SPL strategy is to learn knowledge of the target information from the
given samples generated from the training distribution, which is deviated from the
target. We have also argued that such a learning problem tends to happen in real
big data scenarios due to the bias between subjective understanding of data collec-
tors/annotators and objective oracle knowledge underlying data. Besides, our the-
ory suggests the importance of high-confidence/easy samples in learning, which are
generally taken as non-support-vectors in traditional learning methods and whose
role is more or less underestimated. We further designed a new SPL algorithm with
random sampling, which better complies our theory, and verified its effectiveness
by experiments on synthetic and real data.

Our future research includes designing feasible termination condition for CL/SPL
iteration based on our theory, deriving theory under unequal probabilities between
P (y = 1) and P (y = −1), making the upper bound tighter, and applying the
RS-SPL algorithm to more realistic big data sets.
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