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Abstract: Mast cells (MCs) are a part of the innate immune system and express receptors for microbial 
and viral pathogens characteristic of this system. The pathological role of MCs has been demonstrated 
for a number of highly virulent viral infections. The role of MCs and their Fc receptors for IgE in the 
immediate-type hypersensitivity reactions and in immunocomplex reactions is well-known, although 
the role of MCs and their Fc receptors for IgG (FcγR) in immunocomplex processes is much less 
studied. Antibody-dependent enhancement syndrome (ADE) has been observed in a number of viral 
infections and is associated with greater secondary infection. ADE is enhanced by virus-specific 
antibodies, which are not involved in the virus penetration into the cell but are capable of forming 
immune complexes. The role of MCs in ADE is well-established for dengue infection, RSV infection 
and coronavirus (CoV) infection. The involvement of IgG-mediated mast cell responses in other 
human viral infections including Coronavirus disease 2019 (COVID-19) is poorly understood. 
Recently discovered mast cell activation disease is considered one of the causes of severe post-
infectious complications in COVID-19. If the role of MCs in the pathogenesis of severe viral infections, 
including ADE in recurrent viral infection is clarified, these cells and the products they release may 
serve as promising targets for such therapeutic agents as histamine receptor blockers or membrane 
stabilizers to prevent possible complications. 
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Abbreviations: ADE: antibody-dependent enhancement; APC: antigen presenting cells; CNS: central 
nervous system; CoV: coronavirus; COVID-19: coronavirus disease; DENV: dengue virus; EV: 
extracellular vesicles; FcεR: high-affinity IgE receptor; FcγR: Fc receptors for IgG; IIV: inactivated 
influenza vaccines; IL: interleukin; MC: mast cell; MDA5: melanoma differentiation-associated 
protein 5; MCET: mast cells extracellular trap; MCT: MCs, containing only tryptase; MCTC: MCs 
containing tryptase and chymase; MCC: MCs containing only chymase; NOD: nucleotide-binding 
oligomerization domain; RIG-I: Retinoic acid-inducible gene I; RSV: respiratory syncytial virus; RV: 
rhinovirus; SARS: severe acute respiratory syndrome; TLRs: Toll-like receptors; TNFα: tumor 
necrosis factor alpha; VAERD: vaccine-associated enhanced respiratory disease 

1. Introduction 

Influenza viruses and coronaviruses (CoV) are some of the pathogens that cause pandemics in the 
modern world. The influenza virus is one of the few respiratory viruses against which vaccines have 
been developed and widely used. At the same time, a large group of non-influenza respiratory viruses 
contributes to the overall structure of the respiratory infection incidence. Several acute respiratory viral 
infections caused by a respiratory syncytial virus (RSV), rhinovirus or parainfluenza viruses may be 
complicated by post-infectious bronchial hyperreactivity [1–4], and vaccines have not yet been used 
against these infections. When developing vaccines against new emergent viruses, it is necessary to 
study immune-pathogenesis taking into account the role of various factors of innate and adaptive 
immunity including those in recurrent infections.  

2. Mast cells 

Mast cells (MCs) and basophils originate from the same myeloid lineage of hematopoietic 
progenitor cells (CD34+) with the difference that basophils come out the bone marrow mature. On 
contrary, MCs mature after migrating to tissues, and MC properties depend on their localization. MCs 
are located near the skin and mucous membranes, where infectious pathogens or foreign antigens most 
often enter the body [5]. MCs inhabit almost all peripheral tissues with the exception of the retina and 
the body's few types of avascular tissue [5]. MCs have been recognized for decades to be present in 
not only the tissues of the peripheral nervous system but also the central nervous system [6]. MCs 
synthesize and accumulate biologically active substances (histamine, prostaglandine, leukotrienes) and 
chronic inflammation factors (cytokines, chemokines), as well as tissue remodeling factors (proteases, 
growth factors) in cytoplasmic granules [7]. The components of MC granules are classified based on 
MC function characteristics into preformed components, providing for immediate MC reactions, and 
components synthesized in response to activation signals, which are associated with long-term forms 
of their response reactions [8]. Human MCs are usually classified depending on the content of neutral 
proteases—tryptases and chymases—in their granules. This classification includes three types of MC: 
MCT, containing only tryptase; MCTC containing tryptase and chymase; MCC containing only 
chymase in the composition of the granules [9]. In addition to pro-inflammatory action, MCs have the 
ability to suppress immunological responses; for example, by producing the anti-inflammatory 
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cytokine IL-10 or through the destruction of cytokines by proteases are released from granules [9]. 
Based on the induced ability of MCs to synthesize both pro-inflammatory cytokines and a variety of 
growth factors, there are proposals to separate MCs into pro-inflammatory MC1 and anti-inflammatory 
MC2 by analogy with macrophage populations [10]. 

Elimination of biologically active substances from MCs can occur gradually as necessary for 
homeostasis. On the contrary, in response to external pathogens and antigens effects, MC granules 
released immediately by cell degranulation. Following degranulation, MCs can restore the synthesis 
and accumulation process, i.e. capable of regranulation [11]. 

The most important mediator in the rapid degranulation phase is histamine, which affects the 
nerve structures of the immediate environment (afferent nerves—C-fibers and stretch receptors, 
efferent nerves, histamine receptors), epithelium, smooth muscle and mast cells themselves. Normally, 
histamine is an integral component of almost all organs, tissues, cavity fluids, secretions, and blood; 
its greatest content is noted in the skin (especially the eyelids, head, and neck) and in the lungs [12]. 
The content of calcium ions in cells producing histamine, as well as the permeability of cell membranes 
for these ions, is of great importance in the mechanism of synthesis and secretion of histamine [13]. 
The consequences of an increased release of histamine depend on its binding to a specific type of 
histamine receptor. The H1-receptor drives cellular migration, activity in afferent nerve fibers, 
vasodilatation and bronchoconstriction, whereas the H2-receptor modifies gastric acid secretion, 
airway mucus production, and vascular permeability [14]. 

Spatial colocalization of MCs and nerve terminals was shown for the mucous membranes in 
various organs and tissues, including airways [15]. A direct membrane-membrane interaction is shown 
between MC and nerve terminals [15]. Neuro-MC signaling occurs mainly through the secretion of 
mediators, but moving the whole granule to the neuron cytoplasm also possible [16]. Importantly, that 
MC can act as both a receptor cell and an effector cell. The results of numerous experiments indicate 
that mediators secreted by MCs are able to influence neuronal activity, providing the CNS with 
information about the onset of the inflammatory process and its localization [17]. 

There is also the mechanism of cross-communication of MCs using extracellular vesicles (EV). 
EVs can be released from several cell types that are implicated in allergy processes, including MCs, 
dendritic cells, T-lymphocytes, and the ciliary epithelium of the respiratory system. For example, EV 
secreted by MCs induces dendritic cell maturation [18]. The ability of EVs obtained from human and 
mouse mast cell lines to transfer biologically active RNA to other MCs was noted [19]. In vitro 
experiments have shown that MC-derived EV can induce epithelial to mesenchymal transition in 
human lung adenocarcinoma cell line (A-549) [20]. 

MCs express recognition receptors for pathogen-associated molecular patterns, such as 
superficial and intracellular Toll-like receptors (TLRs), intracellular Nucleotide-binding 
oligomerization domain (NOD)-like receptors (NLRs) and Retinoic acid-inducible gene I (Rig-I) 
family receptors [21]. Also, complement binding receptors (CR3, CR5) and Fc receptors for 
immunoglobulin E (IgE) and immunoglobulin G (IgG) are expressed on the surface of MCs [9,21,22]. 
Accordingly, the activation of MCs occurs with the participation of both innate and adaptive immunity 
factors. However, special attention is paid to allergic inflammation, where the antigen-antibody 
complexes are the damaging agents. The role of MCs and their high-affinity IgE receptors (FcεR) in 
immediate hypersensitivity and immunocomplex reactions (the Arthus phenomenon, etc.) is well 
known. IgE binds to FcεR and persists for a long time on the MC surface. When the organism re-meets 
the allergen, IgE antibodies, formed during the first contact with this allergen and fixed on the surface 
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of MCs, bind the allergen, which leads to degranulation of MCs with the release of mediators [23]. On 
the contrary, the role of MC receptors for IgG (Fcγ), which are not related to allergies and 
hypersensitivity, is much less studied [24]. 

MCs may play a positive role in clearing pathogens in many bacterial, viral, and parasitic 
infections through degranulation, antimicrobial peptide secretion, neutrophil recruitment, or 
extracellular DNA trapping [25,26]. Data from epidemiological studies indicate that IgE antibodies 
play a protective role in parasitic infections in humans, since the levels of parasite-specific IgE and 
resistance to infection are positively correlated [27]. Moreover, mechanisms for killing bacteria with 
MCs continue to be elucidated. Thus, MC are able to perform phagocytosis like neutrophils and 
macrophages, which kill bacteria using a combination of oxidative and non-oxidative bactericidal 
systems, also inherent in MC [28]. Recently, it was shown that MCs exhibit extracellular activity 
involved in destroying bacteria. Extracellular traps, originally identified for neutrophils (NETs) [29] 
are able to provide physiological barriers, prevent the spread of microorganisms and increase the 
interstitial content of antimicrobial substances [30]. It turned out that MCs are also able to secrete their 
nuclear DNA to form extracellular traps [31]. The key components of mast cell extracellular traps 
(MCETs) are DNA molecules and histones of nuclear chromatin; bactericidal substances, such as 
tryptase and cathelicidin LL-37 [26]. 

In addition to secretory function, MCs may also act as non-typical antigen-presenting cells 
(APCs) [32]. It has been shown that there is an increase in the expression of MHC class II and co-
stimulatory molecules in activated MCs in vitro. It was demonstrated in animal studies that MCs can 
present antigens while interacting with different lymphocyte subsets including regulatory T cells (Treg) 
and CD8+ T lymphocytes thus participating in the adaptive immune response [33,34]. 

3. Mast cells in airways 

Alveolar epithelial cells, endothelial cells, resident alveolar macrophages, dendritic cells, and 
several MC types are involved in protecting the lung from pathogens. Of the various types of MСs, MCT 
predominates in the alveoli, whereas MCTC was found in the submucosa. MCC, being a rare type of 
mast cell, is sometimes found in the nasal mucosa, as well as in the alveoli and lymph nodes [8,10]. As 
mentioned earlier, MCs can have different properties depending on the localization, so MCs of the 
same type may differ in the expression patterns in terms of the number of receptors, enzymes, and 
growth factors. For example, MCT in the bronchi are characterized by a higher level of expression of 
the enzyme histidine decarboxylase compared to MCT in the alveoli; MCT and MCTC in the 
conducting airways have a high level of FcεRI expression, while similar cells in the alveolar 
parenchyma practically do not contain this receptor on their surface [35]. Pathogenic roles of MCs in 
airways include immune-modulatory, pro-inflammatory and pro-fibrotic activities. The released MC 
histamine increases vascular permeability, causes vasodilation and stimulates the contraction of 
bronchial smooth muscles. The inflammatory cytokine TNF-α promotes local and systemic 
inflammation while enhancing the recruitment of neutrophils to the site of infection. Granular 
proteases are also capable of increasing vascular permeability and enhancing the recruitment of 
neutrophils to the site of inflammation, or may act directly to degrade toxic proteins [36]. Nasal and 
bronchial MCs are involved in allergic rhinitis and asthma, as well as chronic obstructive pulmonary 
disease, respiratory infections and lung fibrosis [37,38]. 
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4. The role of mast cells in viral infections 

MCs can be infected with a number of viruses, including HIV, hantavirus, reovirus, rhinovirus, 
dengue virus (DENV) and influenza A virus [39–43], and have been shown to selectively produce 
neurotransmitters that activate the vascular endothelium and recruit immune effector cells [43,44]. MC 
activation in viral infections occurs by: (1) inflammatory mediators of epithelial infection (IFN, 
chemokines, IL-33); (2) viral particles; (3) viral replication intermediates. The importance of mast cells 
in viral infections is well-studied in dengue fever [39,41]. DENV, which enters the body through the 
skin, can directly bind to the MC surface [40]. MCs react to the impact of DENV by degranulation and 
the release of preformed mediators. The eicosanoid leukotriene B4 and proteases released by MCs 
increase vascular permeability, and synthesized TNF-α, IL-6, IFN-α, and chemoattractants recruit NK 
cells and T cells to the site of infection [41]. 

Viral replication intermediates, such as single-stranded or double-stranded RNA molecules can 
be recognized by membrane-bound and endosomal TLRs (TLR-3, TLR-7/8) and intracellular antiviral 
sensors (RIG-I, MDA-5) of MCs [21,45]. The dsRNA, an important intermediate in viral replication, 
induces the expression of type 1 interferons and other pro-inflammatory cytokines during the early 
stage of dengue or influenza infections. [46,47]. MC TLR-9 can recognize methylated regions of viral 
DNA, such as in Herpes Simplex Virus [40]. Additionally, IgG and IgE receptors can interact with MC 
by cross-linking with virus-specific antibodies and thus enhancing MC activation [40].  

The main preformed mediators and components synthesized upon MC activation in viral 
infections are presented in Figure 1. 

 

Figure 1. Effect of mast cell activation on viral-induced inflammatory responses. (1) 
Viruses infect epithelial cells, in response to this, pro-inflammatory cytokines are released. 
(2) Tissue mast cells can be activated by pro-inflammatory cytokines or directly by viruses. 
(3) Viral replication intermediates, such as single-stranded or double-stranded RNA 
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molecules can be recognized by membrane-bound and endosomal TLRs and intracellular 
antiviral sensors (RIG-I, MDA-5). (4) Mast cells activation leads to the secretion of 
effector molecules. IL: interleukin; TNFα: tumor necrosis factor-α; MCP-1: monocytic 
chemoattractant protein-1; MIP-1: macrophage inflammatory protein-1; RANTES: 
chemokine CCL5; TARC: chemokine CCL-17. (5) Mast cell products can activate and 
increase the permeability of endothelial cells, which, together with chemotactic molecules, 
leads to migration of inflammatory cells in infected tissues. 

4.1. The role of IL-31-IL-33 axis in immune responses and mast cells activity 

IL-31, a cytokine produced by CD4+ T helper cells, was identified for the first time in 2004 [48]. 
IL-31 controls signaling, induces proinflammatory cytokines, and regulates cell proliferation. The 
main targets of IL-31 are fibroblasts and eosinophils, which are activated through the IL-31 receptor 
(IL-31R). To date, several isoforms of the IL-31 receptor have been identified. Among them, CRL and 
the IL-31 receptor alpha (RA)v2 are the soluble forms showing no transmembrane region, whereas IL-
31RAv1 and IL-31RAv4 display the classical features of type I cytokine receptors [49]. 

IL-33 is also known as an “alarmin” because its serum level increases as a consequence of 
necrosis processes and induces the augmentation of inflammatory cytokines. IL-31 and IL-33 seem to 
activate and enhance the maturation of MCs [50,51]. IL-33 increases its expression after cell death, 
and most likely results in the induction of other cytokines including IL-31. In many cases, IL-31 and 
IL-33 are related to each other and their expression correlates with the severity of the disease. The 
presence of one interleukin might stimulate the induction of the other, amplifying inflammation. 
Influencing their balance could be helpful in modulating the first responses of the immune system in 
order to prevent the development of many inflammation-related diseases. IL-33 plays an important 
role in many pathologies, especially in inflammatory ones, as well as in the balance of the immune 
response (Th2-associated). Thus IL-33 seems to be closely associated with allergic inflammatory 
diseases, including atopic dermatitis and asthma [52]. IL-33 could induce bronchial asthma because it 
is increased during the production of inflammatory cytokines by Th2 cells [53]. Th2 cells are one of 
the main producers of IL-31. Some studies demonstrated a positive correlation between IL-31 and 
atopic dermatitis (AD) severity, this suggests an important role of IL-31 in the regulation of AD. Some 
researchers demonstrated that the expression of IL-31 [54] and IL-31R [55] was increased in allergic 
diseases, especially in asthma. 

Vocca et al. found very high serum levels of IL-31 and IL-33 in many inflammatory and 
autoimmune diseases, especially in lung illnesses [52,56]. According to these data, IL-33 has main 
target tissues like airways and skin. The activation of the IL-33/ST2 axis can be considered also as a 
biomarker of both Th2/IL-31 and Th17 immune response for diseases associated with cell damage like 
asthma, chronic obstructive pulmonary disease, AD, rheumatoid arthritis, and heart failure. For this 
reason, IL-33 can be useful for the diagnosis and the evaluation of the activity and progression of many 
inflammatory diseases [50,57,58]. 

Experimental mice models demonstrated that IL-33 blockade worsened contact hypersensitivity, 
and, on the other hand, injection of IL-33 inhibited contact hypersensitivity and induced regulatory T 
cells (Tregs) [59]. The study by Wang et al. [60] confirmed these results, noticing that IL-33 plays an 
anti-inflammatory effect targeting microRNA-155 in MCs. Moreover, a study conducted in a mouse 
model of poison ivy allergic contact dermatitis (ACD) showed that IL-33/ST2 signaling is present in 
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primary sensory neurons and promotes pruritus in affected mice [61]. The involvement of IL-31 and 
IL-33 was also confirmed among human models. More specifically, IL-31 was found to be expressed 
in skin biopsies of ACD patients, whereas IL-33 was induced in keratinocytes [62]. Beyond the effects 
on immune response, mast cells can modify bone metabolism and are capable of intervening in the 
genesis of pathologies such as osteoporosis and osteopenia [63]. 

4.2. The role of vitamin D and gut microbiota in immune responses 

Vitamin D (VD) induces changes in bone metabolism, but it is also able to influence immune 
response, suppressing mast cell activation and IgE synthesis from B cells and increasing the number 
of dendritic cells and IL-10-generating regulatory T cells. Connections were revealed between MCs 
and VD, which contribute, through the activation of different molecular or cellular activation pathways, 
to the determination of bone pathologies and the onset of allergic diseases. B cells can produce VD [64] 
while naïve T cells grown with VD-primed B cells demonstrated decreased proliferation, provoked by 
the presence of CD86 on B cells [65]. VD receptors (VDr) connected to the promoter of TNF-α reduce 
the acetylation of RNA polymerase II and histone H3/H4, reducing the production of TNF-α in MCs. 
These findings make it evident that VD is necessary to preserve the steadiness of MCs, whereas the 
deficit of VD provokes the stimulation of MCs [66,67]. It is well known that the release of granules 
and the discharge of histamine from MCs are involved in the genesis of urticaria [68,69]. VD has been 
suggested for this therapy, as MCs have the VDr capable of blocking degranulation of compounds 
provoked by IgE [70]. As VD can produce IL-10, this indicates that VD/VDr-dependent stimulation 
of IL-10 generation by skin MCs can participate in the MCs’ capability of reducing skin inflammation 
after chronic UVB irradiation [67]. These findings suggest that stimulating the anti-inflammatory 
effects of MCs by adding VD might be a new strategy for decreasing tissue injury and inflammation 
in different pathological conditions. The relationship between MCs and VD is not limited to the 
possibility of VD influencing the activity of MCs in allergic manifestations and both have been shown 
to have a role in determining bone pathology [63]. In fact, MCs generate mediators that alter bone 
metabolism. VD not only have a significant effect on DC development but also instructs the DCs to 
stimulate Tregs to generate IL-10 [71]. Almerighi, et al. have confirmed that VD reduces inflammation 
caused by CD40L and increases IL-10 generation by CD4+ T cells [72], stimulating the Tregs. There 
is growing evidence that the VD pathway is an important factor in the impact of gut microbiota on 
inflammatory diseases [73]. On the other hand, the gut microbiome, by participating in metabolism, 
modulates innate and adaptive immunity and mediates human interactions with pathogens [74]. 
Evidence shows that specific probiotic strains induce expression of transforming growth factor (TGF)-
β and IL-10 cytokines with anti-inflammatory action thus counteracting inflammatory response and 
affecting immune cells [75]. Molecules of microbial origin such as short chain fatty acids (SCFAs, 
butyric acid, acetic acid, propionic acid) can induce MC activation [76]. Recent studies have 
demonstrated that probiotic strains, such as Bifidobacterium longum or L. casei, are able to counteract 
the inflammatory response and act on immune cells to reduce allergy-associated MC activation by 
downregulating IgE and histamine receptor gene expression or by controlling the amount of MC in the 
lamina propria [76,77]. Thus, the gut microbiota may influence the severity of inflammatory diseases 
through the release of cytokines and the activation of MC. 
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4.3. Mast cells involvement in influenza and non-influenza respiratory viral infections 

It has recently been shown that MCs can be directly activated in response to influenza infection, 
releasing histamine, inflаmmatory cytokines and antiviral chеmokines, which are involved in the 
excessive inflammatory and pаthological responses during the course of the disease [78–81]. It has 
been shown in mice that MCs can contribute to the pathological changes during infections cаused by 
highly pathogenic influenza viruses [78]. MCs can become infected with influenza viruses in vitro, 
and signаling pаthways can differ depending on the subtype of the virus [43,81]. In vitro MC 
stimulation by influenza viruses A/H1N1 and A/H3N2 produced different expression profiles of 
cytokines, chemokines and аntiviral genes [82]. 

Degranulation of MC in influenza infection may not be associated with direct exposure to dsRNA, 
as shown in the model of its synthetic analog: polyinosinic-polycytidylic acid (Poly I:C) [83], but is 
associated with a cytokine storm. 

In addition to influenza infection, MCs are also of great importance in other respiratory seasonal 
infections of non-influenza etiology. For multiple paramyxoviruses (including RSV) as well as for 
rhinoviruses, the risk of developing allergic diseases increases after severe viral infections [84]. 
Despite low levels of infection, human MCs produce multiple chemokines in response to RSV through 
mechanisms that include responses to type I interferons. Such MC responses might enhance effector 
cell recruitment during RSV-induced disease [85]. It was shown that RSV infection of human lung 
fibroblasts contributes to inflammation via hyaluronan-dependent mechanisms that enhance MC 
binding as well as MC protease expression via direct interactions with the extracellular matrix [86]. 

Rhinovirus (RV) infection is strongly associated with asthma exacerbations, and induction of 
histamine release and IL-8 or granulocyte macrophage-colony stimulating factor production were the 
first observations regarding the rhinovirus-induced MC response [87]. The RV14 and RV16 infection 
of human mast cell-1 (HMC-1) cells in vitro lead to increased histamine and early cytokine response, 
as well as elevated caspase 3 activity and apoptotic responses [87,88]. 

4.4. Mast cells and COVID-19 

The COVID-19 pandemic represents one of the hardest challenges of the 21st century. All CoV 
infections are primarily recognized by immune cells, including MCs, which are located near the body’s 
physical barriers. SARS CoV-2 through TLRs can activate MCs [89–91] that secrete preformed 
inflammatory compounds, whereas late activation provokes the generation of members of the pro-
inflammatory IL-1 family, including IL-1 and IL-33 [89]. In COVID-19, MC activation in the 
respiratory tract can contribute to the cytokine storm which exacerbates lung failure [92]. 

It was noted that COVID-19 patients had increased perivascular and septal MC density in the 
lungs, which was even more than in A/H1N1 pandemic influenza patients [93]. A study of pulmonary 
fibrosis biopsy specimens obtained from patients with COVID-19 showed a higher density of CD117+ 
cells, suggesting MCs proliferation/differentiation in the alveolar septa. In addition to proinflammatory 
cytokines, activated mast cells can release matrix metalloproteinase 9 and transforming growth factor 
beta, which can promote pulmonary fibrosis, as well as thromboxanes (thromboxane B2) and platelet-
activating factor, which lead to the formation of microthrombosis in lungs as was identified in the 
lungs of deceased COVID-19 patients. Long-term multisystem lesions noted in many patients, even 
those who have undergone a mild form of COVID-19, are also potentially associated with idiopathic 
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MC activation [93]. It is hypothesized that the activation and degranulation of MCs, leading to Mast 
Cell Activation Syndrome (MCAS), is associated with antibodies to SARS-CoV-2 interacting with the 
Fc receptor [94]. It is known that hyperactivated MCs play a role in the development of fibrotic 
diseases. Therefore, people with these conditions may be at increased risk of developing chronic 
respiratory, neurological, or other complications following an acute COVID-19 infection [95,96]. 

5. The fundamental role of vaccination against SARS-CoV-2 in prevention of severe 
respiratory disease in patients with immune-mediated diseases 

SARS-CoV-2 infection can become a great threat for people affected by comorbidities, causing 
increasingly severe clinical manifestations and death [97]. Data confirmed that about half of the 
rheumatologic patients (46%) who contracted the infection needed hospitalization, and 10% required 
invasive ventilation. Received data induced regulatory organizations and scientific societies 
worldwide to recommend vaccination to immunocompromised patients and patients affected by 
rheumatologic diseases [98–101]. 

The prevalence of systemic sclerosis (SSc) ranges from 7 to 700 cases per million worldwide [102]. 
Even if SSc pathogenesis is not completely clear [103] the excessive collagen production and the 
constant inflammatory state can lead to multi-organ involvement and several different and serious 
disease presentations [104]. Strong immunosuppressants are often used to reduce the chronic 
autoimmune insult, leading to a higher risk of communicable diseases. In fact, SSc mortality is the 
highest among rheumatic diseases [97], and infections are one of the leading causes of both hospital 
admission and mortality [105]. 

In patients with SSc at risk of severe COVID-19 because of organ involvement or use of specific 
immunosuppressive drugs, including rituximab and mycophenolate mofetil, early treatment with 
monoclonal antibodies (when available) should be considered, independent of vaccination status, to 
prevent hospitalization or death [106]. It is important to note that several of the monoclonal antibody 
therapies have been shown to be ineffective against the omicron variant [107,108]. 

The effectiveness of vaccines might be reduced in patients taking immunosuppressive therapy, 
because antibody responses might be blunted. New data on the use of the COVID-19 vaccines in 
patients with SSc continue to be collected [109,110] and will provide evidence for the most appropriate 
timing of vaccination as a preventive measure. Several studies have shown that in patients with 
rheumatic diseases a third dose of the COVID-19 vaccine is associated with an increased humoral 
response; as such, a third (and fourth) vaccination is advised for patients treated with 
immunosuppression, especially B-cell depleting agents [111]. 

A prospective observational study in 478 patients with systemic autoimmune diseases, including 
265 patients with systemic sclerosis, evaluated seroconversion after COVID-19 vaccination compared 
with 502 healthy people (i.e., people with no systemic autoimmune diseases) [112]. In SSc patients, 
antibody concentrations were significantly lower than in the control group, and patients were more 
likely than controls to have no detectable anti-spike antibodies (13% vs 3%). In another study including 
264 patients with a stable inflammatory rheumatic disease, of whom 50 had SSc, non-response was 
reported in 14%. Furthermore, a significantly lower percentage of patients with rheumatic diseases 
who were taking rituximab seroconverted in both studies [113]. 

Thus, the risk of SARS-CoV-2 infection and having a far worse outcome in patients suffering 
from immune-mediated diseases outweighs the risk of a wasted vaccine dose or the risk of a lower 
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response rate. For such patients, a third or fourth revaccination may be recommended, although, no 
specific recommendations are available regarding the different vaccine platforms. Perhaps, oral 
immunization using probiotics as live vectors for mucosal delivery of viral antigens may provide a 
safe and effective way to induce mucosal immunity to SARS-CoV-2 in frail patients [114,115]. 

6. Antibody-dependent enhancement in recurrent viral infections and possible involvement of 
mast cells 

For some viral infections, antibody-dependent enhancement (ADE) has been described, which is 
manifested by a severe course of recurrent infection. ADE is used by various viruses as an alternative 
way of infecting host cells after natural primary infections with heterotypic viruses of the same type 
or after infection with antigenic variants in the course of chronic infection or due to immunizations 
that cause incomplete protective immunity [116]. In addition to the interaction between the viral 
protein and host cell receptors, viruses can enter cells (for example, monocytes/macrophages) 
through the binding of virus/antibody immune complexes to Fc receptors (FcRs) or complement 
receptors [117,118]. ADE syndrome is characteristic of dengue fever which first attracted attention 
and was described. Primary DENV infection induces lifelong immunity to the infecting virus serotype. 
It is assumed that serum antibodies after primary infection with DENV are not able to neutralize upon 
reinfection with DENV of a different serotype. Instead, antibodies can potentiate the endocytosis of 
the virus into myeloid cells (monocytes and macrophages), which are the main site of DENV 
replication after entering the [119]. Viruses belonging to the flavivirus family, influenza viruses, RSV, 
coronaviruses and many others use ADE for the infection of cells through Fc receptors [120–125]. 
Especially attention is drawn to such an important cause of bronchial complications, especially for 
children, as RSV infection. In young children, immunopathological pulmonary reactions involving 
Th2-type immunopathological reaction in the lung have been observed, when a formalin-inactivated 
RSV vaccine is administered, and later RSV infection occurs [126]. Most of these children suffered 
from severe infections, which led to a high rate of hospitalizations; two children died from the infection. 
Thus, RSV lung disease has been exacerbated by prior vaccination. A possible reason is the formation 
of high levels of antibodies with weak neutralizing activity, which contribute to increased infection 
of myeloid cells. Subsequent studies in animal models showed that the inactivated RSV vaccine 
causes an increase in the response of Th2 T lymphocytes, primarily CD4+ cells, and the formation 
of immunocomplex pathology in the lungs [127]. In mice, it was shown that virus-specific IgE plays 
a role in airway hyperreactivity through FcεRI in RSV infection [128]. Virus-specific IgE also 
increase in a number of other infections (Dengue, herpesvirus infection, parainfluenza) [129–131]. 
However, the MC activation mechanism through FcR is not a single pathway of MC involvement 
in the immunocomplex process. MC involvement in ADE through IgG is well established in dengue 
fever [132] when life-threatening complications that lead to hemorrhagic manifestations are more 
common after secondary infection than after primary infection. 

There is an assumption that non-neutralizing antibodies to influenza can participate in ADE. 
During the events of the 2009 influenza pandemic, the use of seasonal vaccines and the presence of 
non-neutralizing antibodies against the A/H1N1pdm09 were correlated with an increased risk of more 
severe influenza-like-illness in infected people [133–137]. Whole-virion inactivated influenza 
vaccines (IIV) may provide partial protection against drifted influenza viruses, but have been shown 
to induce vaccine-associated enhanced respiratory disease (VAERD) when challenged with an 
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antigenic variant of the same haemagglutinin (HA) subtype [138,139]. It was demonstrated in a swine 
model that aggravated pneumonia can result from a mismatch between the vaccine strain HA used in 
a IIV and the challenge strain [4]. Previously, it was shown that A/H1N2 IIV may provide only partial 
protection against drift variants of HA subtype in pigs, but also may induce VAERD [139]. It was 
shown that mismatched HA between vaccine and challenge virus was necessary to induce this, 
although vaccines containing a matched NA facilitated severity of infection due to HA mismatch and 
this was correlated with NA-inhibiting (NI) antibodies [140]. 

The problem in developing vaccines against the CoV causing severe respiratory syndrome (SARS) 
is that, after vaccination, eosinophilic reactions in the lungs or allergic reactions are observed—in an 
experiment, an increase in infection is observed [141–144]. Antibodies to the S-protein of the 
coronavirus envelope, produced in response to infection, promote the penetration of SARS-CoV-1 into 
monocytes (CD68+) and macrophages through the FcγRIIA receptor and aggravate the course of the 
disease [144]. 

During the SARS CoV-2 pandemic, severe post-infectious inflammation can be a direct result of 
ADE in infants previously infected with SARS-CoV-2 or in infants who have maternal SARS-CoV-2 
antibodies or antibodies acquired through breast-feeding [94]. 

The involvement of antibody-mediated MCs responses in human CoV infections is poorly 
understood. At the same time, there is evidence of MC involvement in the pathogenesis of peritonitis 
in severe CoV infection in cats [145]. Cases of feline CoV peritonitis have been reported in cats 
immunized with the coronavirus vaccine [146,147]. Improved macrophage infection following 
antibody-mediated entry of feline CoV leads to overcoming the resistance of the gut-associated 
immune barrier, this cause hematogenous infection [147]. It has been shown that mainly IgG2a class 
of anti-feline CoV spike has a leading role in the initiation of ADE.  

Thus, there are enough data indicating the possibility of ADE development in various viral 
infections. But the role of MCs in these reactions is not well studied. If MC involvement in ADE is 
proven, it will open up new perspectives for the use of drugs targeting MCs and their products to 
prevent adverse reactions in the development of new vaccines. 

7. Histamine blockers and mast cells membrane stabilizers in the treatment of viral infections 

Many MС-related components such as proteinases, cell adhesion molecules, chemoattractant 
receptors, and individual components of signaling pathways are potential therapeutic targets [148]. 
However, there is still insufficient clinical data on the use of these substances in viral infections. 

A number of studies have suggested that H2 receptor antagonists may be beneficial among many 
other drugs. Since there is evidence that the pathogenesis of COVID-19 is associated with 
dysfunctional MC degranulation, various medical interventions using commercially available drugs 
useful for treating mast cell disorders can help reduce disease severity and mortality. These data are 
confirmed by the use of histamine receptor blockers in complex COVID-19 therapy [149,150]. 
Famotidine was included in the clinical guidelines for COVID-19 therapy. 
(https://www.evms.edu/media/evms_public/departments/internal_medicine/Marik_Critical_Care_CO
VID-19_ Protocol.pdf). 

From previous studies, the immunomodulatory effects of H2 receptor antagonists are well 
characterized, but further investigations are required to explore their potential implications in 
managing the immune response in COVID-19 [151]. Although, histamine receptor blockers affect only 
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the sensitivity of tissues to the released histamine, but not the quantity and quality of MCs, nor the 
level of released histamine. Administration of MC stabilizing drugs or the leukotriene B4 antagonist 
montelukast leads to a decrease in vascular permeability. Use of MC stabilizing drugs such as sodium 
cromoglycate and ketotifen, which prevent MCs degranulation and release of histamine, and inhibitors 
receptors that bind MC products such as leukotrienes have been shown promising in animal models of 
influenza and dengue virus infection [152]. 

Nevertheless, the therapeutic focus on MCs or their products will require careful scrutiny in order 
not to negate the beneficial effects of MC in both regulation and suppression of inflammation and 
immune response. Blocking anti-inflammatory functions or enhancing pro-inflammatory functions can 
lead to excessive tissue damage through infiltration and activation of cytotoxic cells [153]. Thus, the 
administration of a TNFα inhibitor to mice, which is usually used to treat rheumatoid arthritis, irritable 
bowel syndrome and psoriasis [154], although it increased survival, delayed the resolution of 
pathological changes in the lungs. This raises concerns about the risk of aggravated influenza infection 
in patients who are prescribed drugs that block TNFα. 

8. Discussion 

Thus, it becomes apparent that MCs, being a part of the innate immune system, are involved in 
the reactions of both innate and adaptive immune responses. Together with this, the MCs appear truly 
universal cells involved in complex processes, providing direct effects and indirect regulation of other 
cells and their functioning in various biological processes 

In the respiratory tract, MCs are active participants in a wide range of immunological mechanisms, 
including functions of local immunomodulators, and balancing pro-inflammatory and anti-
inflammatory responses. MCs are involved in the development of lung pathology in a number of viral 
infections. MCs can contribute to the development of asthma and other inflammatory and fibrotic 
diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. 

ADE in severe, often fatal infectious diseases, is believed to be caused by the binding of IgG-
containing immune complexes to cellular Fc or complement receptors, which facilitates the penetration 
of the pathogen into cells and increases the severity of the disease. However, the involvement of MCs 
in antibody-dependent reactions has so far been clearly established only for dengue fever and systemic 
CoV infection in cats. 

Obviously, the role of MC in respiratory infections can be twofold. Surprisingly, as a result of a 
2016–2019 study in the Netherlands, pollen bioaerosols associated with seasonal hay fever have 
been recognized as one of the factors involved in curbing the incidence of influenza and influenza-
like illnesses. One of the reasons is called the initiation of the immune system, in particular MC 
activation [155]. 

9. Conclusions 

If the role of MCs in the pathogenesis of severe viral infections, including ADE in recurrent viral 
infection is clarified, these cells and the products they release may serve as promising targets for such 
therapeutic agents as histamine receptor blockers or membrane stabilizers to prevent possible 
complications. A new pathogenetic link in the development of severe viral and mixed infections will 
be identified, requiring special attention of doctors and health authorities to risk groups, and new 
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targets (in the form of MCs and their activation products) will be discovered for therapeutic and 
prophylactic effects for the prevention and treatment of severe post-infectious or post-vaccination 
complications of viral infections. 
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