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Abstract: Objective: We employed machine learning algorithms to discriminate insulin resistance (IR) in 

middle-aged nondiabetic women. Methods: The data was from the National Health and Nutrition 

Examination Survey (2007–2018). The study subjects were 2084 nondiabetic women aged 45–64. The 

analysis included 48 predictors. We randomly divided the data into training (n = 1667) and testing (n = 417) 

datasets. Four machine learning techniques were employed to discriminate IR: extreme gradient boosting 

(XGBoosting), random forest (RF), gradient boosting machine (GBM), and decision tree (DT). The area 

under the curve (AUC) of receiver operating characteristic (ROC), accuracy, sensitivity, specificity, 

positive predictive value, negative predictive value, and F1 score were compared as performance metrics 

to select the optimal technique. Results: The XGBoosting algorithm achieved a relatively high AUC of 

0.93 in the training dataset and 0.86 in the testing dataset to discriminate IR using 48 predictors and was 

followed by the RF, GBM, and DT models. After selecting the top five predictors to build models, the 

XGBoost algorithm with the AUC of 0.90 (training dataset) and 0.86 (testing dataset) remained the optimal 

prediction model. The SHapley Additive exPlanations (SHAP) values revealed the associations between 

the five predictors and IR, namely BMI (strongly positive impact on IR), fasting glucose (strongly positive), 

HDL-C (medium negative), triglycerides (medium positive), and glycohemoglobin (medium positive). The 

threshold values for identifying IR were 29 kg/m2, 100 mg/dL, 54.5 mg/dL, 89 mg/dL, and 5.6% for BMI, 

glucose, HDL-C, triglycerides, and glycohemoglobin, respectively. Conclusion: The XGBoosting 

algorithm demonstrated superior performance metrics for discriminating IR in middle-aged nondiabetic 

women, with BMI, glucose, HDL-C, glycohemoglobin, and triglycerides as the top five predictors. 
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1. Introduction  

Insulin resistance (IR) is a physiological state characterized by diminished responsiveness to 

insulin signaling in multiple tissues, including skeletal muscles, adipose tissues, and the liver [1]. This 

state necessitates increasing insulin secretion to maintain normal blood glucose levels [2,3]. It is a 

prevalent underlying cause of metabolic syndrome, characterized by abdominal obesity, 

hyperlipidemia, hyperglycemia, and hypertension [4]. IR has been identified as a potential indicator 

for the early identification of metabolic syndrome, type 2 diabetes, and cardiovascular illnesses [5,6]. 

So, identifying IR is important in safeguarding individuals’ long-term health. 

IR can be directly measured using a hyperinsulinemic-euglycemic clamp, but this method has 

drawbacks such as invasiveness, subject discomfort, and technical challenges [7]. The homeostasis 

model assessment of insulin resistance (HOMA-IR) is a widely used indicator for indirectly measuring 

IR [8]. However, fasting insulin is not typically included in routine blood tests, which could impede the 

identification of IR when insulin is employed to calculate HOMA-IR [9]. Straightforward determination 

of IR is still needed for regular screening. In addition, using machine learning techniques for disease 

detection and prediction has experienced a recent surge in popularity [10]. This application holds promise 

in enhancing our understanding of how features are associated with health conditions [11]. Although 

some characteristics contributing to IR have been identified [12–14], there is currently a lack of an 

appropriate model to predict IR accurately, specifically in women. 

Middle-aged women are generally at a higher risk of developing IR due to age-related changes in 

metabolism and hormonal fluctuations [15]. The menopausal transition is associated with hormonal 

changes impacting insulin sensitivity [16]. Identifying and managing IR during the pivotal stage of middle 

age can help mitigate the risk of metabolic disorders and cardiovascular disease in later life [17]. Although 

some researchers attempted to predict IR using machine learning methods, their models did not account 

for reproductive health variables [12,13]. Specifically targeting the female population can allow for the 

addition of reproductive health factors into models. Developing predictive models tailored for middle-aged 

women can improve risk assessment and personalized medicines and address potential disparities [18]. 

Therefore, we aimed to use machine learning algorithms to identify the optimal IR prediction 

model from demographic and behavioral factors, laboratory variables, daily nutrient intake, and 

reproductive health variables in middle-aged, nondiabetic American women based on the National 

Health and Nutrition Examination Survey (NHANES). We hypothesized that the predictors identified 

by machine learning methods would provide a more comprehensive metabolic health evaluation than 

HOMA-IR alone. Additionally, if the IR prediction model is accessible, we can use it to identify 

women with IR despite the absence of HOMA-IR values. By incorporating multiple biomarkers and 

clinical indicators, a more nuanced and holistic understanding of IR can be acquired, resulting in 

focused interventions and preventive strategies. 

2. Materials and methods 

2.1. Data source 

Data was obtained from the NHANES from 2007 to 2018. The NHANES program is a cross-

sectional and periodic health-related initiative in the United States administered by the National Center 

for Health Statistics (NCHS) of the Centers for Disease Control and Prevention. The ongoing survey 
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and exam assess community-dwelling individuals’ health and nutritional status using anthropometric 

measurements, health and nutrition questionnaires, and laboratory tests. The data is freely accessible 

to the public. The NCHS research ethics review board approved the NHANES protocol, and each 

participant signed informed consent forms. To obtain further details regarding the ethical approval of 

this research, please access: https://www.cdc.gov/nchs/nhanes/irba98.htm. 

We analyzed middle-aged female NHANES participants from the 2007–2018 survey cycles that 

included the same variables of interest. This study defines the middle age as 45–64 years old [19]. 

Participants were excluded from analyses if they were male, younger than 45 years old or older than 

64 years old, lacked lab testing data such as glucose, insulin, and triglycerides, or did not have 

information on daily nutrient intake. We also excluded individuals with diabetes mellitus or cancer, as 

previous research has indicated that these two health conditions could affect IR [20]. Consequently, 

the ultimate sample size was 2084. 

2.2. Insulin resistance 

IR was evaluated using the homeostasis model assessment of IR (HOMA-IR), which is widely 

employed as the predominant approach for determining IR using the formula: fasting insulin (μU/mL) × 

fasting glucose (mg/dL)/405 [21]. A HOMA-IR value exceeding 2.73 has previously been shown to 

indicate the presence of IR in nondiabetic American adults [22]. Therefore, we set the IR cutoff value 

for nondiabetic middle-aged women at HOMA-IR values greater than 2.73. 

2.3. Predictors 

The predictors included demographic and behavioral factors, laboratory data, daily nutritional 

intake, and reproductive health variables. Demographic and behavioral factors encompassed age, race 

(non-Hispanic white, non-Hispanic Black, Hispanic, and others), education (high school or below, and 

college or above), marital status (married/living with a partner, widowed/divorced/separated, and never 

married), family monthly poverty level index, smoking (current, former, and never), family history of 

diabetes, body mass index (BMI, kg/m2), physical activity, hypertension, systolic and diastolic blood 

pressure (mmHg). We defined hypertension based on the responses to the questions “Has a physician 

ever informed you that you have high blood pressure?” and “Are you currently taking medication for 

hypertension?”, systolic blood pressure ≥140 mmHg, or diastolic blood pressure ≥90 mmHg. Using 

metabolic equivalent scores, we measured physical activity [23]. 

Laboratory data included fasting glucose (mg/dL), high-density lipoprotein cholesterol (HDL-C) 

(mg/dL), triglyceride (mg/dL), glycohemoglobin (%), total cholesterol (mg/dL), and estimated 

glomerular filtration rate (eGFR, mL/min/1.73m2). The laboratory data-gathering procedures and tests 

have been documented in earlier publications [24]. We used the chronic kidney disease epidemiology 

creatinine equation to estimate eGFR [25]. 

We gathered the following information regarding daily nutritional intake: energy intake (kcal/kg), 

protein intake ratio (%), carbohydrate intake ratio (%), total fat intake ratio (%), total sugars (gm), 

dietary fiber (gm), cholesterol intake (mg), folate intake (mcg), total saturated and monounsaturated 

fatty acid (gm), alcohol (gm), vitamin C (mg), vitamin D (mcg), vitamin B6 (mg), vitamin B12 (mcg), 

caffeine (mg), iron (mg), calcium (mg), zinc (mg), sodium (mg), phosphorus (mg), magnesium (mg), 

copper (mg), selenium (mcg), potassium (mg), and theobromine (mg). 

https://www.cdc.gov/nchs/nhanes/irba98.htm
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Reproductive variables included age at menarche, number of pregnancies, number of 

abortions/miscarriages/stillbirths, birth control pills, hysterectomy, bilateral oophorectomy, and female 

hormones. Birth control pills, hysterectomy, bilateral oophorectomy, and female hormones were 

categorical variables (yes and no), while others were continuous. 

2.4. Model building process 

Regarding the model construction procedure, the study subjects were first randomly separated 

into the training (80%) and testing (20%) datasets [26]. Next, one-hot encoding was used to encode 

categorical variables [27], and min-max scaling was used to standardize continuous variables [28]. 

This allowed the variable values to be compared across dimensions by rescaling them from 0 to 1. We 

utilized the Synthetic Minority Oversampling Technique in the training dataset to overcome the issue 

of unbalanced data. Creating synthetic samples of the minority class is a helpful approach, which 

improves its representation and boosts the model’s ability to learn from data [29] . 

To examine the interrelationships among the predictors, we performed Spearman correlation 

analyses. If the correlation coefficient was greater than 0.75, one of two variables was removed to 

ensure the robustness of the model [30]. Among the 56 predictors, the following pairings of variables 

had correlation coefficients greater than 0.75: magnesium and potassium (0.81), folate and iron (0.76), 

monounsaturated fatty acid and saturated fatty acids (0.81), monounsaturated fatty acids and fat (0.84), 

carbohydrate and energy (0.87), energy and fat (0.86), saturated fatty acids and fat (0.77), total 

cholesterol and low-density lipoprotein cholesterol (0.89), BMI and waist (0.87), and number of 

pregnancies and number of live births (0.87). We eliminated the following variables: magnesium, 

folate, monounsaturated fatty acids, carbohydrate, fat, low-density lipoprotein cholesterol, waist, and 

number of live births, based on previous pertinent studies [12,13]. 

In this study, four machine learning techniques, namely random forest (RF), extreme gradient 

boosting (XGBoosting), gradient boosting machine (GBM), and decision tree (DT), were chosen for 

hyperparameter optimization within the dataset. The RF algorithm is a type of ensemble learning that 

builds many decision trees during training and finds the average prediction (regression) of the 

individual trees or the mode of the classes (classification) [31]. XGBoosting is a distributed gradient 

boosting library optimized for flexible and effective implementation. Due to its speed and performance, 

it is scalable, highly efficient, and extensively utilized in machine learning competitions  and industry 

applications [32]. Sequentially constructing an ensemble of weak learners (typically decision trees), 

GBM is renowned for its exceptional predictive accuracy and resistance to overfitting [33]. DT is a 

nonparametric algorithm for supervised learning in classification and regression tasks. The algorithm 

divides the data into subsets according to the feature values and builds a tree-like structure for making 

predictions [34]. 

Additionally, a 5-fold cross-validation method was employed. The training dataset was divided 

into five groups for the 5-fold cross-validation, with one group as the internal validation set and four 

as the internal training dataset. The average performance was computed using a grid search, and the 

hyperparameters were optimized to maximize the AUC of receiver operating characteristic (ROC) for 

the internal validation set [35]. Following the completion of model training, we utilized the testing 

dataset for validation. 

We compared the performance metrics of different models using the AUC of ROC, accuracy, 

sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and F1 score [36]. 
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The F1 score is a metric to quantify accuracy by precision and sensitivity [37]. Finally, we used the SHapley 

Additive exPlanations (SHAP) framework to illustrate the predictors’ contributions and identify the 

threshold values of the predictors [38]. 

2.5. Statistical analysis 

Since NHANES is a multistage, complicated probability sampling design, we used weighted 

mean (95% confidence interval) to describe continuous predictors and frequency (weighted percentage) 

to characterize categorical ones. We compared predictor differences between IR statuses using the Rao-

Scott chi-square test for categorical variables and the t-test for continuous variables. 

As participants lacking lab testing or daily nutrient intake data were excluded, other variables, 

except for family monthly poverty level index and physical activity, had no missing values. We used 

mean values to deal with the missing values of the two variables. All p-values presented in this study 

were two-sided and deemed statistically significant at a significance level of p < 0.05. The statistical 

analyses were conducted using SAS (version 9.4; SAS, Cary, NC, USA). The machine learning 

algorithms were implemented using R (version 4.3.0) and Python (version 3.10.11). 

3. Results 

3.1. Baseline characteristics 

The study initially included a total of 56 predictors. After excluding variables that exhibited a 

high correlation with another one, 48 predictors were finally included in this analysis (Supplemental 

Figures 1 and 2). 

In Table 1, data (n = 2084) were divided into the IR group (HOMA-IR > 2.73, n = 848) and the 

non-IR group (HOMA-IR ≤ 2.73, n = 1236). The IR group exhibited a higher likelihood of including 

Black or Hispanic women, possessing a lower family monthly poverty level index, having a higher 

BMI, engaging in lower levels of physical activity, and being diagnosed with hypertension. Regarding 

the laboratory data, the IR group had significantly higher mean values of glucose, HDL-C, triglycerides, 

glycohemoglobin, and total cholesterol than the non-IR group. 

The mean values of energy, sugar, cholesterol, saturated fatty acid, alcohol, sodium, and 

phosphorus intake were significantly different between the IR and non-IR groups. The two groups had 

no significant differences in the mean values of other daily nutrients. 

Women in the IR group had a lower mean age at menarche and more pregnancies than those in 

the non-IR group. A higher proportion of women in the IR group had histories of hysterectomy or 

bilateral oophorectomy. However, no significant differences were observed in the number of 

abortions/miscarriages/stillbirths, oral contraceptive use, and hormone therapy treatment between the 

two groups. 
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Table 1. Baseline characteristics of 2084 middle-aged nondiabetic women by HOMA-IR. 

Characteristics HOMA-IR > 2.73  

IR group (n = 848) 

HOMA-IR ≤ 2.73 

Non-IR group (n = 1236) 

p-value 

Demographic and behavioral variables    

Age (years) 54.4 (54.0–54.8) 54.1 (53.7–54.4) 0.1723 

Race*   <0.0001 

Non-Hispanic White 276 (66.6) 521 (74.9)  

Non-Hispanic Black 207 (12.1) 252 (9.0)  

Hispanic 283 (14.7) 302 (8.8)  

Others 82 (6.5) 161 (7.4)  

Education*   0.0985 

High school or below 389 (40.3) 517 (34.4)  

College or above 459 (59.7) 719 (65.6)  

Marital status*   0.1553 

Married/living with a partner 512 (65.0) 753 (70.0)  

Widowed/divorced/separated 239 (25.4) 353 (22.7)  

Never married 97 (9.6) 130 (7.3)  

Family monthly poverty level index 2.6 (2.5–2.7) 2.8 (2.7–2.9) 0.0066 

Smoking*   0.3337 

Current 391 (42.9) 576 (47.6)  

Former 185 (25.5) 266 (23.7)  

Never 272 (31.5) 394 (28.7)  

Family history of diabetes* 383 (43.2) 497 (37.8) 0.1260 

BMI, kg/m2 33.3 (32.9–33.8) 26.8 (26.5–27.1) <0.0001 

Physical activity 14.1 (12.2–16.0) 18.1 (16.3–19.8) 0.0029 

Hypertension* 470 (54.4) 480 (33.4) <0.0001 

Systolic BP (mmHg) 126 (125–127) 122 (121–123) <0.0001 

Diastolic BP (mmHg) 72.6 (71.9–73.3) 71.2 (70.7–71.8) 0.0032 

Laboratory variables    

Glucose (mg/dL) 104.3 (103.7–104.9) 96.1 (95.7–96.6) <0.0001 

HDL-c (mg/dL) 53.4 (52.4–54.3) 64.1 (63.1–65.0) <0.0001 

Triglycerides (mg/dL) 135 (130–140) 105 (100–110) <0.0001 

Glycohemoglobin (%) 5.70 (5.68–5.73) 5.48 (5.47–5.50) <0.0001 

Total cholesterol (mg/dL) 205 (203–208) 209 (207–211) 0.0413 

eGFR(mL/min/1.73m2) 90.6 (89.4–91.8) 90.8 (89.8–91.7) 0.8456 

Daily intake of nutrients    

Energy intake (kcal/kg) 22.7 (22.0–23.3) 26.7 (26.0–27.4) <0.0001 

Protein intake ratio (%) 0.16 (0.15–0.16) 0.16 (0.15–0.16) 0.3799 

Carbohydrate intake ratio (%) 0.50 (0.49–0.51) 0.49 (0.48–0.50) 0.0741 

Total fat intake ratio (%) 0.34 (0.34-0.35) 0.34 (0.33–0.34) 0.1623 

Total sugars (gm) 106.9 (102.0–111.9) 96.3 (92.9–99.7) 0.0003 

Dietary fiber (gm) 15.9 (15.3–16.6) 16.1 (15.6–16.7) 0.7188 

Cholesterol intake (mg) 276 (262–290) 249 (238–261) 0.0029 

Continued on next page  
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Characteristics HOMA-IR > 2.73  

IR group (n = 848) 

HOMA-IR ≤ 2.73 

Non-IR group (n = 1236) 

p-value 

Daily intake of nutrients    

Saturated fatty acid (gm) 23.7 (22.8–24.6) 22.0 (21.2–22.7) 0.0032 

Alcohol (gm) 5.4 (4.2–6.6) 8.9 (7.7–10.1) <0.0001 

Vitamin C (mg) 77.1 (71.0–83.2) 81.9 (77.1–86.7) 0.2209 

Vitamin D (mcg) 4.4 (4.0–4.8) 4.2 (3.9–4.6) 0.4684 

Vitamin B6 (mg) 1.74 (1.67–1.82) 1.77 (1.71–1.84) 0.5562 

Vitamin B12 (mcg) 4.2 (4.0–4.5) 4.3 (4.0–4.7) 0.5827 

Iron (mg) 12.9 (12.5–13.4) 12.9 (12.5–13.3) 0.8268 

Calcium (mg) 849 (816–881) 814 (788–841) 0.1116 

Zinc (mg) 9.7 (9.4–10.0) 9.6 (9.2–10.1) 0.8370 

Sodium (mg) 3117 (3025–3210) 2971 (2888–3054) 0.0229 

Phosphorus (mg) 1224 (1188–1260) 1176 (1147–1206) 0.0434 

Copper (mg) 1.15 (1.11–1.19) 1.21 (1.15–1.26) 0.1176 

Selenium (mcg) 101.9 (98.5–105.3) 99.1 (95.8–102.5) 0.2761 

Potassium (mg) 2427 (2356–2498) 2449 (2389–2509) 0.6365 

Theobromine (mg) 30.5 (26.0–35.1) 34.9 (31.1–38.8) 0.1504 

Caffeine (mg) 160 (145–175) 162 (151–173) 0.8144 

Reproductive health    

Age at menarche (years) 12.5 (12.1–12.9) 12.9 (12.7–13.1) 0.0437 

Number of pregnancies 2.7 (2.5–2.8) 2.5 (2.3–2.6) 0.0211 

Number of abortions/miscarriage/stillbirths 0.71 (0.64–0.79) 0.66 (0.60–0.72) 0.2561 

Birth control pills* 531 (64.1) 766 (67.6) 0.1872 

Hysterectomy* 215 (25.7) 218 (17.1) 0.0286 

Bilateral oophorectomy* 118 (14.3) 102 (8.1) 0.0453 

Female hormones* 161 (18.9) 229 (21.6) 0.3432 

Note: *represents frequency (weighted proportion, %); other variables were characterized by weighted mean (95% confidence interval). 

The t-test or the Rao-Scott chi-square test determined the p-value to compare the two IR groups. 

3.2. Comparing IR prediction models with 48 predictors 

We randomly assigned 1667 of 2084 nondiabetic women to the training dataset and 417 to the 

testing dataset. Table 2 summarizes the performance metrics results of training and testing datasets for 

XGBoosting, RF, GBM, and DT with 48 predictors. In the training dataset, the AUC of ROC for all 

models exceeded 0.85, with the maximum AUC value of 0.93 achieved by the XGBoosting model. The 

XGBoosting algorithm also exhibited superior performance in terms of accuracy (0.86), specificity 

(0.80), PPV (0.87), NPV (0.85), and F1 score (0.88), followed by the RF, GBM, and DT models. 

 

 

 



674 

AIMS Public Health  Volume 11, Issue 2, 667–687. 

Table 2. The performance metrics of different models with 48 predictors. 

 XGBoost RF GBM DT 

Training dataset 

AUC of ROC 0.93 0.91 0.90 0.87 

Accuracy 0.86 0.82 0.82 0.79 

Sensitivity 0.90 0.91 0.87 0.87 

Specificity 0.80 0.68 0.75 0.68 

PPV 0.87 0.80 0.84 0.80 

NPV 0.85 0.84 0.80 0.79 

F1 score 0.88 0.85 0.85 0.83 

Testing dataset     

AUC of ROC 0.86 0.85 0.85 0.80 

Accuracy 0.79 0.77 0.78 0.73 

Sensitivity 0.86 0.90 0.85 0.84 

Specificity 0.69 0.58 0.68 0.56 

PPV 0.80 0.76 0.80 0.74 

NPV 0.77 0.80 0.76 0.71 

F1 score 0.83 0.82 0.82 0.79 

Note: XGBoost = Extreme gradient boosting, RF = Random forest, GBM = Gradient boosting machine, DT = Decision tree, AUC of 

ROC = Area under receiver operating characteristic curve, PPV = Positive predictive value, NPV = Negative predictive value. 

 

Figure 1. ROC curves for predicting insulin resistance from four different models with 48 

predictors. In the training and testing datasets with 48 predictors, the area under curve 

(AUC) of receiver operating characteristic (ROC) for all four models was higher in 

XGBoosting, followed by random forest, gradient boosting, and decision tree. 
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In the testing dataset, all AUCs of ROC were equal to or greater than 0.80, the maximum being 0.86 

for XGBoosting. In addition, XGBoosting possessed greater accuracy (0.79), specificity (0.69), PPV 

(0.80), and F1 score (0.83). The RF, GBM, and DT models had the subsequent performance metrics. 

Figure 1 also illustrates the ROC curves for predicting IR from the four models with 48 predictors.  

3.3. Relative importance of 48 predictors in the XGBoosting model 

Figure 2 depicts the relatively important features of the XGBoosting model, with relative 

importance values of 0.3007, 0.2082, 0.3884, and 0.1022 for demographic and behavioral factors, 

laboratory variables, daily intake of nutrients, and reproductive health variables, respectively. Among 

the 48 variables, BMI (0.1235) had the greatest influence on IR, followed by glucose (0.0775), HDL-

C (0.0384), glycohemoglobin (0.0347), and triglycerides (0.0273). 

 

Figure 2. Feature importance of XGBoosting model with 48 predictors. In the XGBoosting 

model with 48 predictors, the relative importance values of demographic and behavioral 
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factors, laboratory variables, daily intake of nutrients, and reproductive health variables 

were 0.3007, 0.2082, 0.3884, and 0.1022, respectively. 

3.4. Comparing IR prediction models with five predictors 

Based on the above feature importance analysis of the 48 predictors, we attempted to use the top 

five predictors to develop models. Table 3 presents the performance metrics for the four machine 

learning algorithms in the training and testing datasets with five predictors. With the top five predictors, 

the AUC of ROC for all four models stayed at or above 0.87 in the training dataset. The XGBoosting 

model got a relatively high AUC value of 0.90. In terms of accuracy (0.82), sensitivity (0.87), 

specificity (0.75), PPV (0.83), NPV (0.79), and F1 score (0.85), the XGBoosting algorithm 

outperformed the other three algorithms. In the testing dataset, all AUCs of ROC were equal to or 

greater than 0.83, with the AUC of XGBoosting being the greatest at 0.86. Figure 3 illustrates the ROC 

curves for predicting IR from the four models with the five predictors. Similar results are shown by 

the sensitivity analysis for the models’ performance metrics using the first five predictors without using 

the synthetic minority oversampling technique (Supplemental Table 1). 

Table 3. Performance metrics of different models with the first five predictors. 

 XGBoost RF GBM DT 

Training dataset 

AUC of ROC 0.90 0.89 0.88 0.87 

Accuracy 0.82 0.81 0.79 0.80 

Sensitivity 0.87 0.86 0.86 0.85 

Specificity 0.75 0.73 0.70 0.72 

PPV 0.83 0.82 0.81 0.82 

NPV 0.79 0.78 0.77 0.76 

F1-score 0.85 0.84 0.83 0.83 

Testing dataset     

AUC of ROC 0.86 0.85 0.85 0.83 

Accuracy 0.78 0.76 0.77 0.76 

Sensitivity 0.85 0.84 0.86 0.83 

Specificity 0.68 0.66 0.65 0.65 

PPV 0.79 0.78 0.78 0.77 

NPV 0.75 0.74 0.76 0.73 

F1-score 0.82 0.81 0.82 0.80 

Note: XGBoost = Extreme gradient boosting, RF = Random forest, GBM = Gradient boosting machine, DT = Decision tree, AUC of 

ROC = Area under receiver operating characteristic curve, PPV = Positive predictive value, NPV = Negative predictive value. 
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Figure 3. ROC curves for predicting insulin resistance from four models with the top five 

predictors. In the training and testing datasets with the top five predictors, the area under 

curve (AUC) of receiver operating characteristic (ROC) for all four models decreased from 

XGBoosting to random forest, gradient boosting, and decision tree, in descending order. 

3.5. Relative importance of the five predictors in four models  

The top five predictors in the XGBoosting, RF, and GBM models were BMI, glucose, HDL-C, 

glycohemoglobin, and triglycerides. However, the DT model included the variable of daily sugar 

intake instead of glycohemoglobin. Of the five predictors, BMI, glucose, and HDL-C were the top 

three predictors in all four models. BMI’s relative importance was 0.42, 0.47, 0.54, and 0.54 in the 

XGBoosting, RF, GBM, and DT models, respectively. In the four models, the corresponding relative 

importance of glucose was 0.26, 0.26, 0.28, and 0.32, while the corresponding relative value of HDL-

C was 0.12, 0.12, 0.08, and 0.06 (Figure 4). The sensitivity analysis for the models’ feature importance 

with the first five predictors produces similar results without using the synthetic minority oversampling 

technique (Supplemental Figure 3). 
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Figure 4. Feature importance of four machine learning models with five predictors. The 

top five predictors of the XGBoosting, RF, and GBM models were all BMI, glucose, HDL-

C, glycohemoglobin, and triglycerides, whereas one of the DT model’s predictors was 

daily sugar intake instead of glycohemoglobin. All four models identified BMI, glucose, 

and HDL-C as the top three predictors. 

3.6. SHAP value of the five predictors in the XGBoosting model  

Figure 5 indicates the relationship between the XGBoosting model’s five predictors and their 

SHAP values. The SHAP values of BMI, glucose, glycohemoglobin, and triglycerides increase as their 

levels rise. However, as HDL-C increases, its SHAP value decreases. The threshold values for 

predicting IR were identified to be 29 kg/m2, 100 mg/dL, 54.5 mg/dL, 89 mg/dL, and 5.6% for BMI, 

glucose, HDL-C, triglycerides, and glycohemoglobin, respectively. 
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Figure 5. The dependence plot of the five predictors in the XGBoosting model. When the 

SHAP value is equal to 0, it signifies that the corresponding feature’s value does not exert 

a statistically significant influence on the predictive outcome of the model. The cutoff 

values for BMI, glucose, HDL-C, triglycerides, and glycohemoglobin are 29 kg/m2, 100 

mg/dL, 54.5 mg/dL, 89 mg/dL, and 5.6%, respectively. 

In Figure 6, the SHAP values for the XGBoosting algorithm reveal the associations between the 

five predictors and IR, including BMI (strongly positive impact on IR prediction), fasting glucose 

(strongly positive), HDL-C (medium negative), triglycerides (medium positive), and glycohemoglobin 

(medium positive). Additionally, the SHAP decision plot further enhances the visualization of the 

importance and direction of these predictors’ contribution, as depicted in Supplemental Figure 4. 
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Figure 6. SHAP value of the five predictors in the XGBoosting model. The SHAP values 

for the XGBoosting model indicate a positive or negative relationship with IR. Specifically, 

BMI has a strong positive effect on IR. Glucose, triglycerides, and glycohemoglobin all 

have moderately positive impacts on IR, whereas HDL-C has a medium negative impact. 

4. Discussion 

We found that the XGBoosting model was the best of the four machine learning algorithms for 

predicting IR in middle-aged nondiabetic women. The AUC of the ROC curve was 0.90 in the training 

dataset and 0.86 in the testing dataset using the five predictors of BMI, glucose, HDL-C, 

glycohemoglobin, and triglycerides. Using the SHAP framework, we also determined the threshold 

values of the five predictors to predict IR. 

The findings of our investigation align with those of prior studies [12–14], demonstrating that the 

XGBoosting algorithm was the optimal model for IR prediction. A study based on the NHANES from 

1999 to 2012 reported that the XGBoosting model had a higher AUC of ROC than other machine 

learning algorithms (RF, logistic regression, and deep neural networks) for predicting IR in 1229 adults 

with chronic kidney disease [13]. Similarly, another Chinese study recognized XGBoosting as the 

optimal model with a relatively high AUC value (0.85) out of five machine-learning techniques for 

predicting IR in 503 children aged 6–12 [14]. 

XGBoosting is frequently recognized as the optimal model for predicting health conditions due 

to its ability to capture complex, non-linear relationships between features and the presence of a disease. 

This makes it well-suited for modeling intricate biological and clinical interactions [39]. Moreover, 

XGBoosting performs outstanding tasks requiring high accuracy [40]. It provides a range of 

hyperparameters that can be adjusted to suit the individual attributes of disease datasets. By adjusting 

the parameters, researchers can refine the model to improve its predictive performance [41]. 

Previous studies used different numbers of top features, ranging from 5 to 20, to predict diseases 

of interest [12,35]. However, we observed that when employing the top five predictors to discriminate 
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IR, the models’ performance metrics did not significantly decline compared to the 48 predictors. As an 

illustration, the AUC for the XGBoosting model in the training dataset decreased from 0.93 to 0.90 

when the number of predictors was reduced from 48 to 5. 

In addition, the three models XGBoosting, RF, and GBM all identified BMI, glucose, HDL-C, 

glycohemoglobin, and triglycerides as the top five predictors, and all four models consistently 

recognized BMI, glucose, and HDL-C as the three most influential predictors. These results exhibited 

both congruence and divergence in comparison to prior research findings. Multiple prior research has 

demonstrated significant associations of BMI, glucose, HDL-C, and triglyceride with IR and their 

potential utility in the IR prediction models [42,43]. Notably, some studies reported the critical role of 

blood pressure in predicting IR [44,45], but neither diastolic nor systolic blood pressure appeared in 

the first five predictors of our four models. Based on the results depicted in Figure 2, hypertension 

ranked eighth among the 48 predictors in terms of significance in predicting IR, whereas diastolic and 

systolic blood ranked outside of the top twenty. 

The top three features of the five predictors explained approximately 80% in XGBoosting, 85% 

in RF, 90% in GBM, and 92% in DT, implying substantial effects of BMI, glucose, and HDL-C on IR 

(Figure 4). BMI scored unexpectedly highly, despite not being one of the parameters used in 

calculating HOMA-IR. In alignment with the present study, prior research has documented a robust 

association between BMI and IR or metabolic syndrome [46,47]. As BMI increases, the body 

accumulates more fat, particularly in the abdominal region, which increases the likelihood of insulin 

resistance [48]. Besides, high BMI may induce a state of chronic low-grade inflammation. 

Inflammatory signals emitted by adipose tissue can interfere with insulin signaling, decreasing insulin 

sensitivity in cells [49]. Additionally, high BMI may disrupt the balance of adipokines, which can 

contribute to IR [50]. 

The dependent plot shows that the threshold values for predicting IR in the XGBoosting model 

were 29 kg/m2, 100 mg/dL, 54.5 mg/dL, 89 mg/dL, and 5.6% for BMI, glucose, HDL-C, triglycerides, 

and glycohemoglobin, respectively. These findings are both consistent with and distinct from those of 

previous research. It is well-known that a glucose level of 100 mg/dL serves as a diagnostic criterion 

for metabolic syndrome [51], while glucose levels ranging from 100 to 125 mg/dL and/or 

glycohemoglobin levels of 5.7%–6.4% can be utilized for the diagnosis of pre-diabetes [52]. However, 

the BMI threshold for IR can vary depending on the study and the population under consideration. A 

study indicated that a BMI ≥ 25 kg/m2 is a risk factor for IR [53], whereas another study found that a 

BMI ≥ 27 kg/m2 is optimal for identifying metabolic syndrome in adult populations [47]. In addition, 

a noteworthy disparity is that the cutoff level for triglycerides in diagnosing metabolic syndromes is 

150 mg/dL [54]. In comparison, our results present the threshold value of 89 mg/dL for IR. These 

variations may be attributable to differences in the study design and the characteristics of populations, 

but additional research is necessary to validate our findings. 

The SHAP framework provides additional insight into how individual features contribute to the 

model’s predictions, with BMI (strongly), glucose (strongly), glycohemoglobin (moderately), and 

triglycerides (moderately) having positive impacts on IR, and HDL-C indicating a medium negative 

impact. The decision plot depicting correct classification and misclassification provides additional 

evidence of these predictors’ significant influence on IR (Supplemental Figure 4). Furthermore, our 

predictive model broadly agrees with earlier findings [12,13,55]. As per the findings from the National 

Health and Nutrition Examination Survey (2007–09) conducted in South Korea, the XGBoosting 

model in 8842 individuals aged 40–74 years old indicated that glucose had robust positive effects on 
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IR, and glycohemoglobin (positive) and HDL-C (negative) had moderate effects on IR [12]. Moreover, 

these predictors are clinically commonplace and simple to measure, suggesting significant promise for 

middle-aged women’s IR screening and prediction. 

Despite the excellent accuracy and precision achieved by the XGBoosting model with the top five 

predictors in predicting IR, it is imperative to acknowledge that the influence of other factors, such as 

behavioral, nutritional, and reproductive health variables, cannot be disregarded. For instance, energy 

intake was not chosen as one of the top five predictors for the prediction models. Still, it had the highest 

feature importance among the variables of daily nutrient consumption. These characteristics  can affect 

BMI, glucose levels, and other laboratory indicators [56–58]. Consequently, these anthropometric and 

laboratory indicators can be employed more directly to identify IR. 

This study’s strength was its novelty, specifically the inaugural investigation into utilizing 

machine learning to develop IR predictive models in middle-aged nondiabetic women. Furthermore, 

the machine learning models utilized in this work incorporated an extensive range of variables, 

encompassing demographic factors, behavioral lifestyles, laboratory data, and daily intake of 

macronutrients and micronutrients and reproductive profiles. Besides, the SHAP framework can better 

explain the impact of feature importance on IR. The clinical significance of our study was that our 

machine learning–based predictive model could potentially provide women with warnings using 

routine clinical measurements. 

Some limitations existed in our investigation. The data was from a cross-sectional survey, so the 

findings cannot be interpreted as a cause-and-effect relationship. Demographic, behavioral lifestyle, 

and reproductive health variables were acquired by self-reported questionnaires, which could 

potentially be influenced by recall bias. In addition, the lab test was not administered to all NHANES 

participants, resulting in a sample size of 2084. Increasing the sample size could improve the model’s 

performance [59]. An increased volume of data may enable the model to identify latent patterns more 

precisely, thereby enhancing its capacity to extrapolate to unobserved data [60]. The presence of IR 

was evaluated using HOMA-IR rather than hyperinsulinemic-euglycemic clamps. Nevertheless, we 

posit that our predictive model in middle-aged nondiabetic women can explain IR based on these 

characteristics in the current dataset. 

5. Conclusions 

In this study, we used four machine learning algorithms, namely XGBoosting, random forest, 

gradient boosting, and decision tree, to identify IR in 2084 middle-aged women who do not have 

diabetes. Our analysis involved 48 variables encompassing demographic and behavioral factors, 

laboratory variables, daily nutrient intake, and reproductive health variables. The XGBoost algorithm 

demonstrated a relatively high AUC of ROC, followed by the RF, GBM, and DT models. When 

modeled with the top five predictors, the XGBoosting model’s performance metrics remain optimal, 

with BMI (strongly positive impact), fasting glucose (strongly positive impact), HDL-C (medium 

negative impact), triglycerides (medium positive impact), and glycohemoglobin (medium positive 

impact) being associated with IR. 
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