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Abstract: Alzheimer’s disease stands as one of the most widespread neurodegenerative conditions
associated with aging, giving rise to dementia and posing significant public health challenges. Math-
ematical models are considered as valuable tools to gain insights into the mechanisms underlying the
onset, progression, and potential therapeutic approaches for AD. In this paper, we introduce a mathe-
matical model for AD that employs the fractal fractional operator in the Caputo sense to characterize
the temporal dynamics of key cell populations. This model encompasses essential elements, includ-
ing amyloid-β (Aβ), neurons, astroglia and microglia. Using the fractal fractional operator, we have
established the existence and uniqueness of solutions for the model under consideration, employing
Leray-Schaefer’s theorem and the Banach fixed-point methods. Utilizing functional techniques, we
have analyzed the proposed model stability under the Ulam-Hyers condition. The suggested model
has been numerically simulated by using a fractional Adams-Bashforth approach, which involves a
two-step Lagrange polynomial. For numerical simulations, different ranges of fractional order values
and fractal dimensions are considered. This new fractal fractional operator in the form of the Caputo
derivative was determined to yield better results than an ordinary integer order. Various outcomes are
shown graphically by for different fractal dimensions and arbitrary orders.

Keywords: Alzheimer’s disease; fractional Adams-Bashforth method; Ulam-Hyers stability;
fractal-fractional derivatives

1. Introduction

The World Alzheimer Report (2018) [1] projected that the number of individuals affected by
Alzheimer’s disease (AD) in 2018 was approximately 50 million, and this figure is anticipated to triple
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by 2050. AD, a prominent neurodegenerative condition linked to aging, results in dementia, raising
significant public health issues [2]. As of now, there remains no known cure for this ailment. Age,
gender, and the presence of the e4-allele within the apolipoprotein (APOE4) gene stand as prominent
risk factors for AD [3, 4]. Notably, post-menopausal females, especially those carrying the APOE4
gene, exhibit a heightened susceptibility to AD compared to males. Furthermore, AD progression in
females appears to manifest at an accelerated pace compared to male counterparts of a similar age.
While considerable progress has been made in understanding the roles of age and APOE4 in AD
over the past few decades, there remains a notable knowledge gap regarding how gender disparities
influence both the onset and course of this debilitating disease.

As females progress from pre-menopause to post-menopause, estradiol levels, the primary estro-
gen in females, experience a significant decline from 30–400 pg/mL to 0–30 pg/mL. In comparison,
normal estradiol levels in males range from 10–50 pg/mL [5]. This research indicates an elevated risk
of AD in post-menopausal females compared to males. Growing evidence from genetic, pathological,
and functional investigations suggests that an imbalance in the brain’s production and clearance of
Aβ peptides leads to the accumulation and aggregation of Aβ. In addition to the APOE4 gene, other
factors influencing the gender bias in AD include hormonal status and glial cell activation (astrocytes
and microglia). In their resting state, these cells maintain brain health and in pathological conditions,
they transition to an active state. In their resting state, astrocytes regulate synaptic functions and more,
while microglia monitor synaptic health. When activated, both cells engage in immune responses to
brain pathologies, including AD progression [6, 7].

While the deposition of Aβ peptides and the creation of senile plaques in the brain are primary
indicators of AD’s clinical phenotype [8, 9], an expanding body of clinical and fundamental research
suggests that the inflammatory activation of microglia may hold a comparably significant role in the
disease’s onset and progression [10]. Microglia, the brain’s resident innate immune macrophages,
possess the capacity to produce pro-inflammatory substances and reactive oxygen species when trig-
gered by inflammatory signals, including Aβ [11]. In healthy brains, quiescent astroglia (Q), along
with resting microglia, can assume an anti-inflammatory state (Ia). This state promotes neuron survival
(S) while curbing astroglia proliferation (R) [12]. As inflammatory signals (e.g., Aβ) accumulate, mi-
croglia may shift to an activated pro-inflammatory state (Ip), leading to increasedAβ and neuronal death
(D) [13]. Moreover, the Ia phenotype, influenced by estrogen in females [4], undergoes an age-related
transition to an Ip-skewed state, which intensifies during the progression of AD [15]. These multiple
positive and negative feedback loops among these cell types play a crucial role in the neurodegener-
ative processes that ultimately impact the structure and function of neurons during AD pathogenesis
(see Figure 1).

Mathematical models serve as valuable tools for comprehending the mechanisms underlying AD,
encompassing the corresponding onset, progression, and potential therapeutic approaches. While ex-
isting mathematical models of AD predominantly address various known features of the disease, in-
cluding (1) the development of potential AD treatments [16, 17]; (2) the dysrhythmic behavior of
inhibitory neurons triggered by AD [18]; (3) the influence of the APOE4 gene on AD onset [19, 20];
(4) the temporal evolution of AD biomarkers [21, 22]; (5) interactions among brain cells and these
plaques [23–26]; and (6) the formation of Aβ fibrils and plaques [27].

The application of fractional calculus, encompassing both integration and fractional differentia-
tion, offers a more comprehensive insight into real-world challenges than the conventional integer-order

AIMS Public Health Volume 11, Issue 2, 399–419.



401

calculus. Additionally, it excels at representing and modeling real-world phenomena, primarily owing
to its capacity to account for the memory and inherent properties, as substantiated in [28–30]. The
concept of fractional derivatives lacks a universally accepted definition; instead, it encompasses sev-
eral distinct formulations, including the Riemann–Liouville, Liouville–Caputo, Grunwald–Letnikov,
and other variations. The distinctiveness of fractional derivatives lies in their non-local characteris-
tics, often characterized by exponential decay, power-law behavior, or the presence of Mittag–Leffler
kernels. The complexity of mathematical differentiation operators has evolved in conjuction with the
increasing complexity of physical problems. Recently, there has been a growing interest in the field
of fractal calculus, with several researchers exploring its applications in various scientific and engi-
neering domains [31, 32]. Fractal calculus has introduced a novel approach by combining fractional
differentiation with fractal derivatives [38,39]. It is a powerful technique that allows for a more refined
understanding of intricate mathematical models when dealing with real-world data. The fractal frac-
tional derivation is suitable for describing systems with temporal memory and a wide range of spatial
influences. Several significant findings have emerged from the application of fractal-fractional opera-
tors to solve diverse models in the fields of biology [40, 42] and physics [41, 43]. This emerging field
of study has demonstrated its efficacy in tackling complex problems and is poised to make significant
contributions to various scientific disciplines [32–35].

The objective of this study is to present a mathematical model for AD that extends the framework
initially proposed by Puri and Li [23]. We have chosen the model developed by Puri and Li as our
foundation due to its ability to capture pathwalks among various cerebral cell populations and the
formation of aggregation-prone Aβ fibrils. This model relies on a system of coupled first-order linear
ordinary differential equations, with the assumption of a set of constant parameters. In the present
work, we have replaced the first order derivative with the fractal-fractional derivative in the Caputo
sense. We have examined the model from a different prespective. First, the model is newly constructed,
we used the fixed point theory approach to establish existence and uniqueness via the Banach and
Leray–Schauder theorems. Second, we employed nonlinear functional analysis to determine conditions
for Ulam stability in the system (2.1). We have applied the fractal-fractional operator’s basics to
achieve intriguing numerical results.

The rest of the article is structured as follows. Section 2, presents the mathematical model of the
AD. In Section 3, we establish the existence and uniqueness of the solution through the application
of fixed-point theory. Additionally, we also explore the Ulam-Hyers stability within the same section.
Moving on to Section 4, we employ the Adams-Bashforth technique to perform numerical simulations
and present the graphical results for the analyzed system. Finally, in Section 5, we provide a
comprehensive summary of our research findings.

1.1. Preliminaries

Definition 1.1. [31] On interval (a, b), let us take ϑ(t) to be a continuous and differentiable function
with q order, then the function ϑ(t) with order p of the fractal-fractional derivative in sense of the
Riemann-Liouville (R-L) derivative is given by

FFP
D

p,qϑ(t) =
1

Γ(n − p)
d

dtq

∫ t

0
(t − s)n−p−1ϑ(s)ds, (1.1)

dϑ(s)
dsq = limt→s

ϑ(t)−ϑ(s)
tq−sq , where n ∈ N, with n − 1 < p, q 6 n .
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Definition 1.2. [31] On interval (a, b), take ϑ(t) as continuous function; then, the function ϑ(t) with
order p of the fractal-fractional integral is expressed as:

FFPIpϑ(t) =
q

Γ(p)

∫ t

0
s

q−1(t − s)p−1ϑ(s)ds. (1.2)

2. Mathematical model

In [23], the sixteen crosstalks AD mechanism involving seven populations, as shown in Figure 1
are as:

• Aβ Aggregation-prone amyloid-β fibrils
• R Proliferative reactive astrocytes
• Q Quiescent (resting) astrocytes
• Ia Activated microglia in anti-inflammatory state
• D Dead neurons
• S Surviving neurons
• Ip Activated microglia in pro-inflammatory state

The model operates under the assumption of a consistent risk of neuronal degeneration while over-
looking the dispersion of both brain cells and Aβ fibrils, as previously mentioned. This study presents
innovative approache for addressing fractal-fractional problems that have not previously received sub-
stantial attention in the literature. The model considered here extends the previous work in [23] in the
fractal fractional form:



FFPDp,qR(t) = λ5Ip − λ4Ia
FFPDp,qQ(t) = −λ5Ip + λ4Ia
FFPDp,qAβ(t) = −λrAβ − λ16Ia + λ15S
FFPDp,qIp(t) = −(λ7 + λ12)Q + (λ8 + λ13)Aβ + λ9Ip − λ14Ia − (λ6 + λ11)S + λ10D
FFPDp,qIa(t) = (λ7 + λ12)Q − (λ8 + λ13)Aβ − λ9Ip + λ14Ia + (λ6 + λ11)S − λ10D
FFPDp,qS(t) = −λ2R + λ1Q − λ3Ip
FFPDp,qD(t) == λ2R − λ1Q + λ3Ip

, (2.1)

where, the fractal dimension (F-D) q ∈ [0, 1] and the fractional order (F-O) p ∈ [0, 1]. As in [23],
the model discussed the parameters values and has provided the sensitivity analysis. The system (2.1)
represent multiple signaling pathways detailed in [23]. These pathways which are involve activation
(→) and suppression (⊥). For AD inhibition the pathways involved are Q→ Ia, Q ⊥ Ip, Ip ⊥ Ia and for
AD progression the involved pathways are Ia → D, Aβ ⊥ Ia, Aβ → Ip. Table 1 presents the parameters
values of system (2.1).
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Figure 1. Flowchart of the model.

Table 1. Parameters values of system (2.1).

Rate Pathway Value (1/year) Rate Pathway Value (1/year)
λ1 Q→ S 10−5 λ10 D→ Ip 10−2

λ2 R→ D 10−3 λ11 S ⊥ Ip 10−2

λ3 Ip → D 10−2 λ12 Q ⊥ Ip 10−4

λ4 Ia → Q 10−4 λ13 Aβ → Ia 10−2

λ5 Ip → R 10−2 λ14 Ia ⊥ Ip 10−4

λ6 S→ Ia 10−2 λ15 S→ Aβ 1
λ7 Q→ Ia 10−4 λ16 Ia ⊥ Aβ 10−2

λ8 Aβ ⊥ Ia 10−2 λr Ia ⊥ Aβ 1
λ9 Ip ⊥ Ia 10−2

3. Existence and uniqueness analysis of the model

Before we start investigating the biological model, it is important to check if such a dynamic
problem really exists in the real world. To check the existence and uniqueness of system (2.1), we can
use a theory called the fixed point theory. In this study, we chose to apply this theory to our proposed
model (2.1). Consider the Banach space V = W ×W ×W × W ×W ×W ×W , where W = C(I );
‖Z ‖ = ‖R,Q,Aβ, Ip, Ia,S,D‖ = maxt∈W [|R(t)|+ |Q(t)| + |Aβ(t)| + |Ip(t)| + |Ia(t)| + |S(t)| + |D(t)|].
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As the integral can be differentiated, we can express the initial problem (model (2.1)) as follows:

RLDpR(t) = qtq−1h1(t,R,Q,Aβ, Ip, Ia,S,D)
RLDpQ(t) = qtq−1h2(t,R,Q,Aβ, Ip, Ia,S,D)
RLDpAβ(t) = qtq−1h3(t,R,Q,Aβ, Ip, Ia,S,D)
RLDpIp(t) = qtq−1h4(t,R,Q,Aβ, Ip, Ia,S,D)
RLDpIa(t) = qtq−1h5(t,R,Q,Aβ, Ip, Ia,S,D)
RLDpS(t) = qtq−1h6(t,R,Q,Aβ, Ip, Ia,S,D)
RLDpD(t) = qtq−1h7(t,R,Q,Aβ, Ip, Ia,S,D)

, (3.1)

where

h1(t,R,Q,Aβ, Ip, Ia,S,D) = λ5Ip − λ4Ia
h2(t,R,Q,Aβ, Ip, Ia,S,D) = −λ5Ip + λ4Ia
h3(t,R,Q,Aβ, Ip, Ia,S,D) = −λrAβ − λ16Ia + λ15S

h4(t,R,Q,Aβ, Ip, Ia,S,D) = −(λ7 + λ12)Q + (λ8 + λ13)Aβ + λ9Ip − λ14Ia − (λ6 + λ11)S + λ10D

h5(t,R,Q,Aβ, Ip, Ia,S,D) = (λ7 + λ12)Q − (λ8 + λ13)Aβ − λ9Ip + λ14Ia + (λ6 + λ11)S − λ10D

h6(t,R,Q,Aβ, Ip, Ia,S,D) = −λ2R + λ1Q − λ3Ip

h7(t,R,Q,Aβ, Ip, Ia,S,D) = λ2R − λ1Q + λ3Ip

.

(3.2)
Utilizing equation (3.1) and considering the domain of t within the set I , we can represent the devel-
oped system as follows:

RL
D

pY (t) = qtq−1Θ(t,Y (t)), 0 < p, q ≤ 1,
Y (0) = Y0.

(3.3)

By substituting RLDp,q with CDp,q and employing the R-L type integral, we can derive the solution for
equation (3.3) as follows:

Y (t) = Y0(t) +
q

Γ(p)

∫ t

0
s

q−1(t − s)p−1Θ(s,Y (s))ds, (3.4)

where Y (t) =



R(t)
Q(t)
Aβ(t)
Ip(t)
Ia(t)
S(t)
D(t)

Y0(t) =



R0

Q0

Aβ0
Ip0

Ia0

S0

D0

, �(t,Y (t)) =



h1(t,R,Q,Aβ, Ip, Ia,S,D)
h2(t,R,Q,Aβ, Ip, Ia,S,D)
h3(t,R,Q,Aβ, Ip, Ia,S,D)
h4(t,R,Q,Aβ, Ip, Ia,S,D)
h5(t,R,Q,Aβ, Ip, Ia,S,D)
h6(t,R,Q,Aβ, Ip, Ia,S,D)
h7(t,R,Q,Aβ, Ip, Ia,S,D)

Now, transform the problem (2.1) into the fixed point problem. Consider the operator Z : V → V
defined by:

Z(Y )(t) = Y0(t) +
q

Γ(p)

∫ t

0
s

q−1(t − s)p−1Θ(s,Y (s))ds. (3.5)

For the existence of the considered model, the following theorem is used [14].

Theorem 3.1. Let us take a completely continuouse operator Z : V → V and consider the set defined
by:

A (Z) = {Y ∈ V : V = θZ(Y ), θ ∈ [0, 1]}

be bounded. Then Z has a fixed point in V .
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Theorem 3.2. Consider a continuous function Θ : I × V → R. Then the Z operator is compact.

Proof. Take a bounded set A in V . So, there exists CΘ > 0 with |Θ(t,Y (t))| 6 CΘ,∀Y ∈ A. For any
Y ∈ A, we get

‖Z(Y )‖ 6
qCΘ

Γ(p)
max
1→I

∫ t

0
s

q−1(t − s)q−1ds,

qCΘ

Γ(p)
max
1→I

∫ 1

0
s

p−1(1 − s)q−1tp+q−1ds,

6
qCΘZp+q−1

Γ(p)
B(p, q),

(3.6)

where B(p, q) is the beta function. Thus, (3.6) implies that Z is uniformly bounded.
Subsequently, to establish the equicontinuity property of the operator Z, considering any two

points t1 and t2 within the interval I , where I belongs to the set A, we observe the following:

‖Z(Y )(t1) − Z(Y )(t2)‖ 6
qC

Γ(p)
max
t→I
|

∫ t1

0
(t1 − s)p−1

s
q−1ds −

∫ t2

0
(t2 − s)p−1

s
q−1ds|,

6
qCΘB(p, q)

Γ(p)
(tp−1+q

1 − tp−1+q
2 )→ 0 (t1 → t2).

So, Z is equicontinuous. Therefore, Z is both a continuous operator and bounded, hence, by the
Arzelá-Ascoli theorem Z is completely continuous and relatively compact. �

Theorem 3.3. Suppose that ∀ t ∈ I and Y ∈ R, there exists a positive real number CΘ > 0 such that
|Θ(t,Y (t))| 6 CΘ. Under these conditions, the model (2.1) has at least one solution within the specified
space V .

Proof. Let, a set A = {Y ∈ V : Y = θZ(Y ), θ ∈ [0, 1]} and show that A is bounded. Consider
Y ∈ A , then, Y = θZ(Y ). For t ∈ I , we get

‖Y ‖ 6
qCΘZp+q−1

Γ(p)
B(p, q).

Therefore, A is bounded. Z has at least one fixed point given by Theorem 3.1,3.2. Hence, model (2.1)
has at least one solution.
For a more in-depth analysis, let us consider the following hypothesis:
(H) There exists a constant XΘ > 0 such that for any Y ,Y ∈ V , the following inequality holds:

|Θ(t,Y ) − Θ(t,Y )| 6XΘ|Y − Y |.

To establish uniqueness, we will employ Banach’s contraction Theorem [14]. �

Theorem 3.4. Assuming that condition (H) holds true and if Ξ < 1, then the solution to the given model
(2.1) is unique.

Ξ =
qXΘZp+q−1

Γ(q)
B(p, q). (3.7)
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Proof. Define maxt∈I |Θ(t, 0)| = GΘ < ∞, such that

h >
qZp+q−1B(p, q)GΘ

Γ(p) − qZp+q−1B(p, q)XΘ

We prove that Z (Ah) ⊂ Ah, where Ah = {Y ∈ V : ‖Y ‖ 6 h}. For Y ∈ Ah, we obtain

‖Z(Y )‖ 6
q

Γ(p)
max
t→I

∫ t

0
(t − s)p−1

s
q−1(|Θ(t, 0)| + |Θ(t,Y (t)) − Θ(t, 0)|)ds,

6
qZp+q−1B(p, q)(YΘ)‖Y ‖ + GΘ

Γ(p)
.

6
qZp+q−1B(p, q)(YΘ)r + GΘ

Γ(p)
.

h.

Consider the operator Z : V → V defined by (3.5). Using (H), for Y ,Y ∈ V and for all t ∈ I , we
therefore have

‖Z(Y ) − Z(Ȳ )‖ 6
q

Γ(p)
max
t→I
|

∫ t

0
(t − s)p−1

s
q−1Θ(s,Y (s))ds −

∫ t

0
(t − s)p−1

s
q−1Θ(s, Ȳ (s))ds|,

6 Ξ‖Y − Ȳ ‖

(3.8)

Therefore, we can conclude that Z satisfies the contraction condition as in (3.8). Consequently, the
integral equation (3.4) possesses a unique solution. Hence, we conclude that it holds true for model
(2.1). �

4. Ulam stability

Here, we will study the model (2.1) stability by taking Φ ∈ C(I ) (small perturbation). This
change depends only on Φ(0) = 0 and the solution. Next, considering the following:

• for ε > 0, |Φ(t)| 6 ε
• FFPDp,qY (t) = Φ(t) + Θ(t,Y (t)).

Lemma 4.1. The perturbed problem solution will be

FFP
D

p,qY (t) = Θ(t,Y (t)) + Φ(t)
Y (0) = Y0

satisfying

|Y (t) − (
q

Γ(p)

∫ t

0
(t − s)p−1

s
q−1Θ(s,Y (s))ds + Y0(t))| 6

(
qZp+q−1

Γ(p)
B(p, q)

)
ε = Cp,qε. (4.1)

Theorem 4.2. Considering the assumptions H and (4.1) in Lemma 4.1, we find that the solution to
integral equation (3.4) exhibits Ulam-Hyers stability. As a result, we can conclude that the entire
system under consideration attains Ulam-Hyers stability when Ξ (as defined in (3.7)) < 1.
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Proof. Consider a unique solution L ∈ V and Y ∈ V to be any solution of (3.4), so

|Y (t) −L (t)| = |Y (t) − (L0(t) +
q

Γ(p)

∫ t

0
(t − s)p−1

s
q−1Θ(s,L (s))ds)|

6 |Y (t) − (Y0(t) +
q

Γ(p)

∫ t

0
(t − s)p−1

s
q−1Θ(s,Y (s))ds)|

+ |(Y0(t) +
q

Γ(p)

∫ t

0
(t − s)p−1

s
q−1Θ(s,Y (s))ds)

− (L0(t) +
q

Γ(p)

∫ t

0
(t − s)p−1

s
q−1Θ(s,L (s))ds)|

6 Cp,qε +
qX Zp+q−1B(p, q)

Γ(p)
‖Y −L ‖.

From this we obtain

‖Y −L ‖ 6 Cp,qε + Ξ‖Y −L ‖. (4.2)

From (4.2), we get

‖Y −L ‖ 6

(
Cp,q

1 − Ξ

)
ε. (4.3)

Therefore, the outcome derived from equation (4.3) implies that the solution to equation (3.4) exhibits
Ulam-Hyers stability. As a result, we can conclude that the solution to the given problem also demon-
strates Ulam-Hyers stability. �

5. Numerical scheme

A numerical algorithm is presented here for the model (2.1) for subsequent implementation in
numerical simulations. Specifically, for our numerical approach, we will outline the formulation of
(3.4) of the model under consideration in the following manner:



R = R0 +
q

Γ(p)

∫ t

0
sq−1 (t − s)p−1 h1(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

Q = Q0 +
q

Γ(p)

∫ t

0
sq−1 (t − s)p−1 h2(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

Aβ = Aβ0 +
q

Γ(p)

∫ t

0
sq−1 (t − s)p−1 h3(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

Ip = Ip0 +
q

Γ(p)

∫ t

0
sq−1 (t − s)p−1 h4(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

Ia = Ia0 +
q

Γ(p)

∫ t

0
sq−1 (t − s)p−1 h5(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

S = S0 +
q

Γ(p)

∫ t

0
sq−1 (t − s)p−1 h6(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

D = D0 +
q

Γ(p)

∫ t

0
sq−1 (t − s)p−1 h7(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds, .

(5.1)
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By using a new approach at tm+1, we present the numerical solution to (5.1). So, we obtain



Rm+1 = R0 +
q

Γ(p)

∫ tm+1

0
sq−1 (tm+1 − s)p−1 h1(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

Qm+1 = Q0 +
q

Γ(p)

∫ tm+1

0
sq−1 (tm+1 − s)p−1 h2(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

Aβm+1 = Aβ0 +
q

Γ(p)

∫ tm+1

0
sq−1 (tm+1 − s)p−1 h3(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

Ipm+1 = Ip0 +
q

Γ(p)

∫ tm+1

0
sq−1 (tm+1 − s)p−1 h4(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

Iam+1 = Ia0 +
q

Γ(p)

∫ tm+1

0
sq−1 (tm+1 − s)p−1 h5(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

Sm+1 = S0 +
q

Γ(p)

∫ tm+1

0
sq−1 (tm+1 − s)p−1 h6(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

Dm+1 = D0 +
q

Γ(p)

∫ tm+1

0
sq−1 (tm+1 − s)p−1 h7(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

Next, the above obtained integrals are approximated as follows:



Rm+1 = R0 +
q

Γ(p)

m∑
n=0

∫ tn+1

tn
sq−1 (tm+1 − s)p−1 h1(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

Qm+1 = Q0 +
q

Γ(p)

m∑
n=0

∫ tn+1

tn
sq−1 (tm+1 − s)p−1 h2(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

Aβm+1 = Aβ0 +
q

Γ(p)

m∑
n=0

∫ tn+1

tn
sq−1 (tm+1 − s)p−1 h3(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

Ipm+1 = Ip0 +
q

Γ(p)

m∑
n=0

∫ tn+1

tn
sq−1 (tm+1 − s)p−1 h4(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

Iam+1 = Ia0 +
q

Γ(p)

m∑
n=0

∫ tn+1

tn
sq−1 (tm+1 − s)p−1 h5(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

Sm+1 = S0 +
q

Γ(p)

m∑
n=0

∫ tn+1

tn
sq−1 (tm+1 − s)p−1 h6(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

Dm+1 = D0 +
q

Γ(p)

m∑
n=0

∫ tn+1

tn
sq−1 (tm+1 − s)p−1 h7(s,R(s),Q(s),Aβ(s), Ip(s), Ia(s),S(s),D(s))ds,

(5.2)
By Lagrangian piece-wise interpolation and by applying l = tn− tn−1, within [tm, tm+1], we approximate
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the function sq−1h j(s,R,Q,Aβ, Ip, Ia,S,D) where j = 1, 2, . . . , 7 ,as follows

R?n ≈
1
l

[
(t − tn−1) tq−1

n h1

(
tn,Rn,Qn,Aβn, Ipn , Ian ,Sn,Dn

)
− (t − tn) tq−1

n−1h1

(
tn−1,Rn−1,Qn−1,Aβn−1, Ipn−1 , Iam−1 ,Sn−1,Dn−1

)]
,

Q?
n ≈

1
l

[
(t − tn−1) tq−1

n h2

(
tn,Rn,Qn,Aβn, Ipn , Ian ,Sn,Dn

)
− (t − tn) tq−1

n−1h2

(
tn−1,Rn−1,Qn−1,Aβn−1, Ipn−1 , Iam−1 ,Sn−1,Dn−1

)]
,

Aβ
?
n ≈

1
l

[
(t − tn−1) tq−1

n h3

(
tn,Rn,Qn,Aβn, Ipn , Ian ,Sn,Dn

)
− (t − tn) tq−1

n−1h3

(
tn−1,Rn−1,Qn−1,Aβn−1, Ipn−1 , Iam−1 ,Sn−1,Dn−1

)]
,

I?pn
≈

1
l

[
(t − tn−1) tq−1

n h4

(
tn,Rn,Qn,Aβn, Ipn , Ian ,Sn,Dn

)
− (t − tn) tq−1

n−1h4

(
tn−1,Rn−1,Qn−1,Aβn−1, Ipn−1 , Iam−1 ,Sn−1,Dn−1

)]
,

I?an
≈

1
l

[
(t − tn−1) tq−1

n h5

(
tn,Rn,Qn,Aβn, Ipn , Ian ,Sn,Dn

)
− (t − tn) tq−1

n−1h5

(
tn−1,Rn−1,Qn−1,Aβn−1, Ipn−1 , Iam−1 ,Sn−1,Dn−1

)]
,

S?n ≈
1
l

[
(t − tn−1) tq−1

n h6

(
tn,Rn,Qn,Aβn, Ipn , Ian ,Sn,Dn

)
− (t − tn) tq−1

n−1h6

(
tn−1,Rn−1,Qn−1,Aβn−1, Ipn−1 , Iam−1 ,Sn−1,Dn−1

)]
,

D?
n ≈

1
l

[
(t − tn−1) tq−1

n h7

(
tn,Rn,Qn,Aβn, Ipn , Ian ,Sn,Dn

)
− (t − tn) tq−1

n−1h7

(
tn−1,Rn−1,Qn−1,Aβn−1, Ipn−1 , Iam−1 ,Sn−1,Dn−1

)]
,

(5.3)

Using equation (5.3) into (5.2), we obtain

Rm+1 = R0 +
q

Γ(p)

m∑
n=0

∫ tn+1

tn
sq−1 (tm+1 − s)p−1 R?n (s)ds,

Qm+1 = Q0 +
q

Γ(p)

m∑
n=0

∫ tn+1

tn
sq−1 (tm+1 − s)p−1 Q?

n (s)ds,

Aβm+1 = Aβ0 +
q

Γ(p)

m∑
n=0

∫ tn+1

tn
sq−1 (tm+1 − s)p−1 Aβ

?
n (s)ds,

Ipm+1 = Ip0 +
q

Γ(p)

m∑
n=0

∫ tn+1

tn
sq−1 (tm+1 − s)p−1 I?pn

(s)ds,

Iam+1 = Ia0 +
q

Γ(p)

m∑
n=0

∫ tn+1

tn
sq−1 (tm+1 − s)p−1 I?an

(s)ds,

Sm+1 = S0 +
q

Γ(p)

m∑
n=0

∫ tn+1

tn
sq−1 (tm+1 − s)p−1 S?n (s)ds,

Dm+1 = D0 +
q

Γ(p)

m∑
n=0

∫ tn+1

tn
sq−1 (tm+1 − s)p−1 D?

n (s)ds.

(5.4)

By simplifying the integrals of (5.4), the numerical method of system (2.1) can be determined by using
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fractal-fractional derivatives in the Caputo form ,as follows

Rm+1 = R0 +
qlp

Γ(p + 2)

m∑
n=0

[
tq−1
n h1(tn,Rn,Qn,Aβn, Ipn , Ian ,Sn,Dn)

(
(m + p + 2 − n)(1 + m − n)p

−(m + 2p + 2 − n)(m − n)p) − tq−1
n−1h1

(
tn−1,Rn−1,Qn−1,Aβn−1, Ipm−1 , Iam−1 ,Sn−1,Dn−1

)
×

(
(m + 1 − n)p+1 − (m + 1 + p − n)(m − n)p

)]
,

Qm+1 = Q0 +
qlp

Γ(p + 2)

m∑
n=0

[
tq−1
n h2(tn,Rn,Qn,Aβn, Ipn , Ian ,Sn,Dn)

(
(m + p + 2 − n)(1 + m − n)p

−(m + 2p + 2 − n)(m − n)p) − tq−1
n−1h2

(
tn−1,Rn−1,Qn−1,Aβn−1, Ipm−1 , Iam−1 ,Sn−1,Dn−1

)
×

(
(m + 1 − n)p+1 − (m + 1 + p − n)(m − n)p

)]
,

Aβm+1 = Aβ0 +
qlp

Γ(p + 2)

m∑
n=0

[
tq−1
n h3(tn,Rn,Qn,Aβn, Ipn , Ian ,Sn,Dn)

(
(m + p + 2 − n)(1 + m − n)p

−(m + 2p + 2 − n)(m − n)p) − tq−1
n−1h3

(
tn−1,Rn−1,Qn−1,Aβn−1, Ipm−1 , Iam−1 ,Sn−1,Dn−1

)
×

(
(m + 1 − n)p+1 − (m + 1 + p − n)(m − n)p

)]
,

Ipm+1 = Ip0 +
qlp

Γ(p + 2)

m∑
n=0

[
tq−1
n h4(tn,Rn,Qn,Aβn, Ipn , Ian ,Sn,Dn)

(
(m + p + 2 − n)(1 + m − n)p

−(m + 2p + 2 − n)(m − n)p) − tq−1
n−1h4

(
tn−1,Rn−1,Qn−1,Aβn−1, Ipm−1 , Iam−1 ,Sn−1,Dn−1

)
×

(
(m + 1 − n)p+1 − (m + 1 + p − n)(m − n)p

)]
,

Iam+1 = Ia0 +
qlp

Γ(p + 2)

m∑
n=0

[
tq−1
n h5(tn,Rn,Qn,Aβn, Ipn , Ian ,Sn,Dn)

(
(m + p + 2 − n)(1 + m − n)p

−(m + 2p + 2 − n)(m − n)p) − tq−1
n−1h5

(
tn−1,Rn−1,Qn−1,Aβn−1, Ipm−1 , Iam−1 ,Sn−1,Dn−1

)
×

(
(m + 1 − n)p+1 − (m + 1 + p − n)(m − n)p

)]
,

Sm+1 = S0 +
qlp

Γ(p + 2)

m∑
n=0

[
tq−1
n h6(tn,Rn,Qn,Aβn, Ipn , Ian ,Sn,Dn)

(
(m + p + 2 − n)(1 + m − n)p

−(m + 2p + 2 − n)(m − n)p) − tq−1
n−1h6

(
tn−1,Rn−1,Qn−1,Aβn−1, Ipm−1 , Iam−1 ,Sn−1,Dn−1

)
×

(
(m + 1 − n)p+1 − (m + 1 + p − n)(m − n)p

)]
,

Dm+1 = D0 +
qlp

Γ(p + 2)

m∑
n=0

[
tq−1
n h7(tn,Rn,Qn,Aβn, Ipn , Ian ,Sn,Dn)

(
(m + p + 2 − n)(1 + m − n)p

−(m + 2p + 2 − n)(m − n)p) − tq−1
n−1h7

(
tn−1,Rn−1,Qn−1,Aβn−1, Ipm−1 , Iam−1 ,Sn−1,Dn−1

)
×

(
(m + 1 − n)p+1 − (m + 1 + p − n)(m − n)p

)]
,
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6. Numerical simulation and discussion

This study examined a fractal-fractional type model by employing the Caputo derivative frame-
work to obtain graphical and numerical outcomes. Our approach involved making assumptions about
certain parameter values based on the data provided in Table 1 for the model under investigation. Sub-
sequently, we conducted simulations for the relevant compartments of the system (2.1), as depicted in
Figures 2-15. These simulations maintained consistent F-O p and F-D q values, while also varying the
fractal-fractional orders. The period of time applied for this simulation was 20 years. The following
intial conditions were considered from [23]:
R(0) = 103; Q(0) = 105; Aβ(0) = 103; Ip(0) = 103; Ia(0) = 105; S(0) = 104; D(0) = 102.

Parameters play a crucial role in the investigation of diseases when employing numerical solu-
tions, and the F-O p and F-D q constitute a key indicator of the optimal memory effect. The population
of Aβ fibrils decreases as the F-D q and F-O p values approaches to unity, as depicted in Figures 6
and 7. This reduction correlates with the smallest decrease in the population of surviving neurons S,
as shown in Figures 12 and 13. Additionally, there are only slight increments in the populations of Ia
and Q cells, as shown in Figures 10 and 11 and Figures 4 and 5, respectively. The observation that
elevated populations of Ia and Q cells are unable to reduce Aβ fibril levels or cease the progression, and
may even aggravate the decline in neuronal populations, suggests a potential association between the
interplay of brain cells and Aβ fibrils that leads to anomalous behavior in response to pro-inflammatory
mutations associated with age and AD-related chronic inflammation [4, 37]. In accordance with the
findings presented in [23], the dynamics of the Aβ fibril population have been mathematically charac-
terized, demonstrating a tendency to reach a saturation point approximately five years after initiation
(refer to Figure 6). This phenomenon exerts a moderating influence on the subsequent decline (or
increase) in the populations of deceased and survival neurons, during later time intervals (as depicted
in Figures 12 and 14). It is worth noting that the temporal fluctuations in the populations of survival
neurons bear a resemblance to the observed trends in the Mini-Mental State examination (MMSE)
outcomes. These MMSE assessments were administered to individuals afflicted with late-stage mild
cognitive impairment, a cerebral degenerative condition that, in certain instances, precedes the onset
of AD. This comparative analysis spans a period of ten years (as illustrated in Figure 3c in [36]). Until
a definitive remedy for AD becomes available, the integration of anti-inflammatory treatments with a
wholesome lifestyle could offer an effective means of enhancing neuroprotection, potentially staving
off the initiation of AD or slowing down its advancement. Figures 2, 4, 6, 8, 10, 12 and 14 shows the
dynamical variations of the seven populations of the model (2.1) for the same F-D q and the F-O p
values for q, p ∈ [0, 1]. Similarly, Figures 3, 5, 7, 9, 11, reffig13 and 15 shows the dynamical variations
of the seven populations of the model (2.1) for the different F-D q and the F-O p values for q, p ∈ [0,
1]. The F-D q and the F-O p assumes a critical role in the simulation experiments for the AD model
conducted in this study. In contrast, our study incorporates the fractal fractional order derivative in
the Caputo sense to capture the behavior of the AD model. The simulation outcomes demonstrate that
even slight adjustments in the F-D q and the F-O p can significantly influence the numerical results.
Therefore, when working with experimental studies, it becomes crucial to accurately determine the
precise values of the F-D q and the F-O p to attain enhanced precision in the outcomes.
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Figure 2. Dynamical variation of
proliferative reactive astrocytes of
model (2.1) when F-D q and F-O
p are equal (p, q ∈ [0, 1]).
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Figure 3. Dynamical variation of
proliferative reactive astrocytes of
model (2.1) for different F-D q and F-O
p (p, q ∈ [0, 1]).
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Figure 4. Dynamical variation of
quiescent (resting) astrocytes of
model (2.1) when F-D q and F-O
p are equal (p, q ∈ [0, 1]).
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Figure 5. Dynamical variation of
quiescent (resting) astrocytes of
model (2.1) for different F-D q and F-O
p (p, q ∈ [0, 1]).
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Figure 6. Dynamical variation of
aggregation-prone amyloid-β fibrils
of model (2.1) when F-D q and F-O
p are equal (p, q ∈ [0, 1]).
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Figure 7. Dynamical variation of
aggregation-prone amyloid-β fibrils
of model (2.1) for different F-D q and
F-O p (p, q ∈ [0, 1]).
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Figure 8. Dynamical variation of
activated microglia in anti-
inflammatory state of model (2.1) when
F-D q and F-O p are equal (p, q ∈ [0, 1]).
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Figure 9. Dynamical variation of
activated microglia in anti-
inflammatory state of model (2.1) for
different F-D q and F-O p (p, q ∈ [0, 1]).
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Figure 10. Dynamical variation of
activated microglia in pro-
inflammatory state of model (2.1) when
F-D q and F-O p are equal (p, q ∈ [0, 1]).
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Figure 11. Dynamical variation of
activated microglia in pro-
inflammatory state of model (2.1) for
different F-D q and F-O p (p, q ∈ [0, 1]).
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Figure 12. Dynamical variation of
surviving neurons of model (2.1) when
F-D q and F-O p are equal (p, q ∈ [0, 1]).
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Figure 13. Dynamical variation of
surviving neurons of model (2.1) for
different F-D q and F-O p (p, q ∈ [0, 1]).
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Figure 14. Dynamical variation of
dead neurons of model (2.1) when
F-D q and F-O p are equal (p, q ∈ [0, 1]).
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Figure 15. Dynamical variation of
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7. Conclusion

In this article, the dynamics of AD have been derived by using an arbitrary order differential equa-
tion system. A mathematical model of AD has been presented that involves Aβ, normal and reactive
glial cells and neurons. A new fractal-fractional Caputo derivative approach has been developed and
applied to the model (2.1) with F-D q and F-O p. In our research, we have achieved significant progress
in advancing the theoretical foundations of the proposed model. Using innovative techniques inspired
by the Banach and Schaefer’s fixed-point theorems, we have rigorously demonstrated the existence
of a unique solution for the model. Furthermore, we have employed nonlinear functional analysis to
establish the requisite conditions for Ulam-Hyers stability, thereby confirming the stability of the ob-
tained solution. To validate our findings, we conducted simulations with varying values of p and q by
using the fractional type Adams-Bashforth method. All the computational simulations were performed
in MATLAB (R2023) and are shown graphically. The model employs fractal fractional derivatives
as a means to characterize the temporal dynamics of specific cell populations and the formation of
amyloid-β fibrils that are prone to aggregation. In the numerical discussion section, we provide two
simulation cases to discuss. The first case involves the same F-O and F-D scheme, which we have
compared to integer order. The second case features different F-D and F-O, which we also compared
to integer-order. This paper opens up avenues for future research and one can explore alternative types
of fractal-fractional operators by using real-world data. Further, introducing nonlinearity into the con-
sidered system could impact the dynamics of the complex system. We anticipate that this will lead to
a more thorough understanding of AD and may reveal fresh insights into its progression and treatment
options.
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