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Abstract: Parkinson’s disease (PD) is associated with a selective loss of the neurons in the midbrain 
area called the substantia nigra pars compacta and the loss of projecting nerve fibers in the striatum. 
Predominant pathological hallmarks of PD are the degeneration of discrete neuronal populations and 
progressive accumulation of α-synuclein–containing intracytoplasmic inclusions called Lewy bodies 
and dystrophic Lewy neuritis. There is currently no therapy to terminate or delay the 
neurodegenerative process as the exact mechanisms underlying the pathogenesis of PD require 
further investigation. The identification and validation of novel biomarkers for the diagnosis of PD is 
a great challenge using contemporary approaches and optimizing sampling handling as well as 
interpretation using bioinformatics analysis. In this review, recent evidences associated with multi-
omic data-sets and molecular mechanisms underlying PD are examined. A combined mapping of 
several transcriptional evidences could establish a patient-specific signature for early diagnose of PD 
though eligible systems biology tools, which can also help develop effective drug-based  
therapeutic approaches. 
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1. Introduction 

Parkinson’s disease (PD) is a progressive age-dependent neurodegenerative disorder that affects 
an estimated 1% of the population over 50. It is clinically manifested by resting tremor, cogwheel 
rigidity, bradykinesia, and postural instability, while the motor syndrome of PD is highly associated 
with the loss of dopaminergic (DAergic) neurons [1]. On the other hand, non-motor symptoms are 



334 

AIMS Neuroscience  Volume 6, Issue 4, 333–345. 

highly presented, including cognitive deficits, depression, and emotional abnormalities. 
Intraneuronal inclusions called Lewy bodies characterize the pathology of the disorder and contain 
abnormal aggregates of the presynaptic protein alpha-synuclein as their main component additionally 
to ubiquitin and neurofilaments. One of the main factors associated with PD is the aging and 
deregulation of cellular processes related to highly vulnerability of dopaminergic neurons [2]. 
Degeneration of various neuronal types is a well-known feature in PD while DAergic neuronal loss 
in the substantia nigra pars compacta plays an essential role in the characteristic expression of motor 
symptoms and driven-symptomatic therapies [3]. Oxidative stress is highly involved in the 
degeneration of dopaminergic neurons in PD. Among ROS-generating enzymes, tyrosine 
hydroxylase and monoamine oxidase affect neurons and prone to oxidative stress, while in the brains 
of PD patients increased levels of proinflammatory cytokines have been observed [4]. Metabolism of 
dopamine itself as well as neuroinflammatory cells and mitochondrial dysfunction are implicated in 
ROS production [5]. The causes of neuro-inflammation are widely known in the pathology of PD 
and concurrent clinical results further support the incidence of systemic inflammation and related 
oxidative stress although molecular pathways for attenuation of the disease have not yet been 
accomplished [6,7]. This review presents the availability of high-throughput technologies and 
bioinformatics dedicated to clinical applications in PD with emphasis on identifying the molecular 
key factors associated with the pathogenesis of the disease. 

2. Genetics of Parkinson’s disease 

Providing an established definition, a biomarker is a measured indicator of normal biological 
processes or pathogenic condition. Specificity, selectivity, reproducibility and easy-collection are 
important factors that ultimately determine the diagnostic utility of a biological marker. Focusing on 
PD diagnosis, the baseline evidence is the type of biomarker requested while ideal molecular 
markers may be premotor, prodromal or motor stage biomarkers. Appropriate biomarkers could also 
be classified as clinical, genetic, proteomic or biochemical along with imaging evidences. On the 
other hand, the identification of applicable biomarkers is fairly difficult since clinical recognition 
occurs after degeneration of a variety of SN neurons [8]. The majority of our knowledge of the 
molecular mechanisms of PD has emerged from the identification of key genes involved in the 
etiology and pathology of the disease (Figure 1). The expansion of the α-synuclein pathology, as well 
as disturbances of lysosomal and mitochondrial activities, seem to play critical roles in  
pathogenesis [9,10]. 

As it is widely known that upon a significantly increased level of substantia nigra neuronal 
degeneration the clinical diagnosis of PD can be performed, it is necessary to reveal characteristic 
diagnostic criteria for the disease as an important basis before clinical symptoms occur. Among these, 
premotor stage molecular evidences, susceptibility markers and undoubtedly motor stage indicators 
in an entire diagnostic panel or potential clinical and imaging biomarkers should be included [11]. 
These incidents should also follow the determination of the efficacy of individual therapies. A 
comprehensive overview of the expression profiles of particular cells and the topological 
composition of cell types has the potential to shed light on the differences in brain deterioration and 
spread of neuropathology observed among PD patients. Genome-wide research may clarify to the 
mechanism of PD while disagreements about gene regulation and related pathways have been 
implicated in the etiology of the disease [12]. Even though PD is mainly due to sporadic disorders, a 
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variety of genes have been linked to rare monogenic forms of the disease such as α-synuclein, 
leucine-rich repeat kinase 2 (LRRK2), parkin, PTEN-induced kinase 1 (PINK1) and DJ-1. 
Accumulated data show that Parkin (PARK2) and PNK1 are suspected of an autosomal-recessive 
trait of the disorder [13–15]. 

 

Figure 1. Genetic causes of Parkinsonism and pathways related to Parkinson disease. 

Exon-deletion mutations in PINK1a are associated with Parkinsonism that slowly progresses 
associated with limited doses of L-DOPA [16]. Similarly, exonic deletion or duplication mutations in 
PARK2 (the gene that encodes parkin) are linked with Parkinsonism with daily variations whereas 
genomic duplications in SNCA (the gene that encodes α-synuclein) or prevalent Ala30Pro and 
Ala53Thr substitutions cause nigral neuronal loss [17,18]. Sporadic PD has been linked with 
pathogenic missense mutations on LRRK2 (Arg1441Cys/His, Ile2012Thr or Gly2019Ser substitution) 
leading to neurofibrillary tangles and predominant Lewy body abnormalities [19]. Important 
mutations in DJ1 and UCHL1 (ubiquitin carboxyl-terminal esterase L1) associated with either 
delayed progressive Parkinsonism or sporadic symptoms expression, respectively, should be 
emphasized here. Leu166Pro substitution related to DJ1 may lead to Parkinsonism with dementia or 
amyotrophy [18]. Furthermore, mutations in GCH1 (GTP cyclohydrolase 1) and DNAJC6 have been 
assessed as risk factors for PD [20,21]. 

3. Gene expression studies approached for PD biomarkers identification 

A plethora of gene expression studied has been conducted to unravel key genes in PD. In a 
recent study by Jiang et al., microarray datasets of patients with PD from the Gene Expression 
Omnibus database were downloaded and alterations between PD and normal groups were compared. 
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From 1229 differential expressed genes nine of them were determined that may serve as potential 
biomarkers of PD, among them PTGDS, SLC25A20 and LRRN3 [22]. In order to investigate the key 
regulators of the PD transcriptional networks in the substantia nigra, a meta-analysis of 8 different 
studies was carried out including a comparison of 83 postmortem brain samples from patients with 
PD with 70 normal controls without PD [23]. After applying multiscale gene network analysis to the 
combined data set, 946 differentially expressed genes were observed that had never been previously 
associated with the disease. These new evidences are involved in synaptic function, spinal cord 
development, dopamine metabolism and embryonic digit morphogenesis while STMN2 was 
identified as a significant factor contributing to synaptic trafficking and the regulation of α-synuclein 
modification cascade [23].  

Associations between PD and alterations in pathways that regulate lipid metabolism and 
mitochondrial dysregulation have been identified in an outstanding work by Chi et al. Upon meta-
analysis of multiple datasets obtained from the Gene Expression Omnibus database, including 
substantia nigra and peripheral blood samples, the levels of MAPK8, CDC42, NDUFS1, COX4I1, 
and SDHC were found to be downregulated [24]. Six candidate genes, SNCA, COX17, COX4I1, 
COX7B, COX6A1 and ATP5J, were selected from 276 differentially expressed transcripts in 
association with ATP production and oxidative phoshorylation regulation by using Metascape, GO 
enrichment analysis and KEGG pathway enrichment analysis [25]. DNA methylation data and gene 
expression data were utilized by 205 PD patients and 233 healthy controls to identify connections 
between transcriptomic alterations and epigenetic modification in PD as a potential biological blood 
marker, and unexpectedly, eighty-five significantly hypo-methylated and upregulated molecules 
were determined in PD patients [26]. eEF1A1, CASK and PSMD6 that are linked to PARK2 activity 
in the cell were identified as important genes with an increased function role in PD after analysis of 
microarray data from samples of induced pluripotent stem cells (iPSCs) derived from PD patients 
and mature neuronal cells differentiated from these iPSCs [27].  

Multiple miRNAs have been associated with PD and could be potential therapeutic targets, as 
miRNAs are able to specifically regulate the expression of known PD genes and gene products [12]. 
Among them, miR-133b targets pituitary homeobox 3 (Pitx3), being involved in DNa neurons 
differentiation and activity, miR-7 as a well know target of a-synuclein with important role on 
oxidative stress medicated cell death and let-7 and miR-184 with catalytic E2F1 and DP activity 
against neurons survival [28,29]. Similarly, five downregulated genes were identified as key 
molecular markers, among them MAPK8 and SDHC and three miRNAs (miR-126-5p, miR-19-3p 
and miR-29a-3p), in a meta-analysis study through bioinformatic analysis of multiple datasets 
obtained from Gene Expression Omnibus datasets [24]. Mitochondrial ATP synthesis-couples 
electron transport, branched-chain amino acid catabolic process, organelle envelope lumen and 
oxidoreductase activity acting on NAD(P)H can be highlighted among the main GO categories. Most 
potential biomarkers, including NDUFS1 (NADH: Ubiquinone oxidoreductase core subunit S1) and 
COX4I1 (Cytochrome C oxidase subunit 4I1), have been extracted while cross-platform datasets are 
described suggesting significant monitoring among prognostic predictors and novel therapeutics 
challenges related to PD [24]. Two microRNAs, miR-7 and miR-153, have been found to regulate 
endogenous a-synuclein levels and could be included as potential therapeutic strategies for 
modulating protein levels in PD, as miR-7 may inhibit protein expression and therefore to play a role 
against mediated cell death via oxidative stress [30–32]. Moreover, genetic polymorphisms of 
miRNA related sequences are highly associated with PD risk. FGF20 polymorphism in two 3’UTR 
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single nucleotide polymorphism (SNPs) and one intronic SNP have been described as significant risk 
factors in a USA family study [33]. Furthermore, elevated levels of FGF20 led to upregulation of α-
synuclein and predispose to PD [29]. A meta-analysis of published miRNA expression studies in 
brain, blood and CSF including idiopathic PD versus normal subjects and extracted data was 
performed to dissect differentially expressed miRNAs. miRBase was used for quality control and 
160 meta-analyses resulted in 13 miRNAs with levels determined significantly modifying at least 
three independent studies. Among them, hsa-miR-221-3p, hsa-miR-214-3p and hsa-miR-29c-3p 
were found in blood and hsa-miR-132-3p, hsa-miR-497-5p and hsa-miR-133b in brain [34]. 
Moreover, plasma hsa-miR-671-5p, hsa-miR-19b-3p and hsa-miR-24-3p were reported differentially 
expressed in a study including PD patients, multiple system atrophy (MDA) patients and healthy 
controls using the 3D-Gene Human miRNA oligo chip and gene ontology process was performed 
using MetaCore [35]. Elevated levels of miR-27a were identified in the plasma of 25 patients 
diagnosed with PD while miR-142-3p and miR-222 were found downregulated as well as miR-30, 
miR-29, let-7, miR-485 and miR-26 [36,37]. 

Genome wide association studies (GWAS) were performed to determine the association 
between sporadic PD with variety of genes with emphasis on SNCA encoding a-synuclein, leucine- 
rich repeat kinase 2 and MAPT appropriate of tau [38]. In a different study, integrative analysis of 
whole-blood gene expression for idiopathic PD patients was conducted and the identification of 
familial PD patients with the LRRK2 G2019S mutation was revealed among a panel of 113 
candidate marker genes [39]. Lastly, it is widely known the integral purpose of microbiota in 
inflammation and immunity and the active role which implicates in PD. On this basis, analysis of 
microbiota in the blood of PD patients compared with healthy individuals using 16S ribosomal RNA 
gene sequencing determining a total of 29 taxa with distinct multitude between healthy and PD 
groups while higher magnitude of bacteria was determined in the PD patients [40]. Moreover, 
confirmation between the microbiota and PD clinical parameters was carried out, revealing specific 
taxa passively associated with disorder duration. Taking out certain limitations, including the 
widespread population or the huge pool of samples, association between taxonomic and non-motor 
symptoms (NMS) showed negatively correlations for Helicobacter and Mucispirillum with NMS 
scopes while no genus in blood was referred to Mini Mental State Examination and Montreal 
Cognitive Assessment scores. In the light the observation of significant alterations of the microbial 
16S rRNA gene in PD patients, this study clearly links the fundamental role of the microbial motif to 
the pathogenesis of PD [40]. A transcriptome-wide association study (TWAS) approach was 
designed to prioritize candidate PD genes and to better elucidate the primary key molecules that 
underlie PD genetic risk players. Using large-scale transcriptomic datasets, sixty-six genes were 
prioritize whose predicted expression or splicing levels in peripheral monocytes cells and in 
dorsolateral prefrontal cortex are significantly associated with PD manifestation [41]. This study 
comes as a continuation of a 2017 GWAS which highlighted over 41 genetic susceptibility loci and 
their association with late-onset PD [42]. According to these evidences, any connection between PD 
susceptibility and LRRK2 arise unlike to previous studies [43]. According to Sekiyama et al. it is 
expected that the knowledge gained from these genomic analyses will be applied to early diagnosis 
based on genetic testing in the future; however, GWAS have some limitations which should be 
overcome such as the heterogeneity of SNPs across the patients and healthy controls, possible 
variants in diseases and epigenetic modifications [44].  
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4. Bioinformatics-driven search for network and pathway analyses 

Bioinformatics deals with the development and validation of computational methodologies for 
the analysis, clustering and validation of molecular and clinical indications, with the aim of 
diagnostic predictors identification and treatment. The availability of high-throughput technologies 
indented for clinical applications substantially helps to establish bioinformatic platforms for data pre-
processing that could be applied to the storage and integration of homogenous data, the extraction of 
updated clinical knowledge with analysis pipelines as well as developing therapeutic approaches to 
consulting patients when interpreting results [45]. According to these pathways, differentially 
expressed genes, proteins and metabolites can be determined in combination with the identification 
of dysregulated networks associated with the candidate biomarker (Figure 2). 

 

Figure 2. Analysis workflow including bioinformatics pipeline and data integration system. 

Many studies present extensive bioinformatics analysis either at gene level or miRNA 
expression to reveal important molecular markers associated with potential therapeutics for PD. In a 
recent study by Dong et al., the identification of global miRNA and mRNA expression profiles of 
normal individuals and patients with PD was carried out using Gene Expression Omnibus  
database [46]. The levels of 88 differentially expressed miRNAs were observed using well know 
processes like starBase database while the Cytoscape software was utilize to execute the miRNA-
gene network associated with PD evidences. Among the potent expression profile datasets miR-590 
and its target SPRY2, miR-142-3p linked to methylenetetrahydrofolate dehydrogenase and miR-338 
associated with the expression of cytochrome c oxidase IV were found differentiated while GO 
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analysis indicated that synapse and dopamine metabolic process along with biogenic amine 
biosynthetic pathways were implicated [46]. 

A web portal which can visualize mouse transcriptomic data associated with neurological 
disorders has been designed, supporting also selection of the ideal mouse model for follow-up 
investigation. It summarizes data into a centralized pool including annotations to each study for 
comprehensive exploration [47]. An innovative bioinformatic process called “Expression Data Up-
Stream Analysis” (EDUSA) was developed for the necessity of analysis and categorization of 
genomic events to obtain a coherent explanation of the mechanism of the disease, showing the 
different stages of disease development by collecting a single-point data [48]. A brief overview of 
disease-oriented genomic expression profiling data analysis using EDUSA begins with sample 
collection, the analysis of differentially expressed genes, the categorization of over-represented 
biological families using Expression Analysis Systematic Explorer (EASE) software, the elimination 
of similar groups applied to conjugated gene clusters and is completed by inter-process interaction as 
well as upstream and downstream analysis and hierarchy identification. Among the advantages of 
this highly promising process is the rapid identification of genes and pathways affected by disorder 
through tissue samples obtain from both patient and healthy groups. GEO2R software was used to 
highlight disease-affected genes and EASE software for disease-pertinent approaches [48]. 
Furthermore, the upstream versus downstream hierarchy of the method was performed and the 
current misfolded protein theory associated with PD molecular pathways was confirmed by the 
extracted results. According to this process, it was suggested that the pathway of ribonucleic acid 
metabolism is involved in PD, which is particularly demonstrated in neurodegenerative disorders. In 
addition, malfunction of the transport system could be implicated in the initial phase of 
neurodegeneration unlike the mitochondrial dysfunction that occurred at a later stage.  

In a recent study, a software called TRAM (Transcriptome Mapper) was used and meta-
analyses was conducted on brain PD and healthy controls microarray data to ascertain DA neuronal 
transcription alterations by combining multiple data sets from independent studies [49]. This 
approach indicated the deregulation of specific genomic regions and loci implicated in functional 
pathways related to neurodegeneration along with genes and non-coding RNA transcripts not yet 
associated with the disorder such as GPNMB gene which encodes a transmembrane protein and was 
found overexpressed in substantia nigra of PD samples as well as NPTX2, DEFA3 and DEFA1. In a 
recent review by Glaab, it is proposed that modifications of known cellular pathways and molecular 
processes unraveling could explain systems-level variations in omics datasets. To answer this 
question, distinct pathways and methodologies can be extracted from well-known databases such as 
Kyoto Encyclopedia of Genes and Genomes, Gene Ontology database, BioCarta and Reactome [50]. 
In this work, the author proposes to categorize omics-based pathways and geneset enrichment into 
distinct four families. Specifically, over-representation analysis (ORA) corresponds to abundance 
data found in an omics dataset, whereas geneset enrichment analysis (GSEA) helps eliminate the 
need to describe a significant threshold. The last two are the Network Module-based Pathway 
Analysis (NMPA) and the Network Topology-based Pathway Analysis (NTPA). The former uses 
algorithms to investigate prior knowledge of intracellular networks, while NTPA approach exploits 
molecular network profiles to establish robust and pathway association scores. For each of these four 
pathway analysis groups, a variety of software tools is available, providing meaningful and visible 
results. These include the DAVID and GOToolBox over-representation analysis tools and the GSEA, 
GLOBALTEST and PADOG geneset enrichment analysis tools, as well as the FunMOD for network 
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module-based pathway analysis and PWEA, PathNet and ToPASeq which are oriented towards the 
network topology-based pathway analysis. It should be noted here that the selection of the 
appropriate pathway process is strongly associated with prior computation of altered expression for 
the individual molecular marker in each omics set, while for pathway analysis of genome wide 
association studies and sequencing results biases linked to the connection disequilibrium and geneset 
amount must be reported. Trying to determine PD-associated molecular network changed, specific 
software tools are presented for either network perturbation analyses or causal reasoning analyses. 
These approaches are able to reveal the regulatory network involved in a related biological state, 
regulatory relationships among genes or protein cascades. BioNet/HEINZ, ClustEx and GenePEN 
are used for network disturbances analyses while Whistle, CausaIr and SigNet can be utilized for 
causal reasoning analysis. Moreover, machine learning prediction models and high-dimensional data 
are really important in this direction for categorizing of diagnostic samples and clustering for 
diseased sub-group layering [51]. A number of essential software tools for machine learning analyses 
of omics data for clustering categorization and visualization is also mentioned. mixOmicsm MLSeq 
abd ArrayMining may be used for multi-purpose machine-learning analysis, Limma and RankProd 
focuses on feature ranking and selection while GGobi and PlotViz are oriented to low-dimensional 
data display. 

Lastly, immunological system and neurodevelopment were enriched in PD-related genes gene 
set (PDgset) in a study by Hu et al., including 242 genes associated with PD through assimilating 
data from GO, pathway and pathway crosstalk process. WebGestalt and ToppGene were used to 
examine the functional characteristics of the PD-related genes [52]. Undoubtedly, these network 
models not only elucidate the mapping of the global landscape of molecular interactions and 
regulations in PD but may also determine detailed networks and potential key molecules with 
regulatory role in PD for further experimental investigation. 

5. Bioinformatics analysis and therapeutic strategies in PD 

PD treatment begins at the onset of the disease, with more than 50% of dopaminergic neurons 
destroyed. An ideal therapeutic protocol would have already targeted the pre-clinical phase for 
reserving neurodegenerative effects [53]. Prosavin, a promising therapeutic approach that targets 
three key enzymes necessary for dopamine synthesis (tyrosine hydroxylase, GTP cyclohydrolase and 
aromatic acid decarboxylase), has reached a phase I//II clinical trial, however it could not alleviate 
progressive neurodegeneration [54]. Computational bioinformatics analysis of gene expression was 
utilized to determine potent molecular markers of the disorder. Two groups of PD patients and non-
PD-controls were included and 1004 differentially coexpressed genes were observed, revealing upon 
network building and impact factor process characteristic transcription factors like HLF, STAT4, 
E2F1, EGF3, and TAL1 as potent key players of the initial point [55]. Among them, the first three 
molecules were indentified elevated in PD patients. It should be highlighted that gene expression 
profile of PD derived from Gene Expression Omnibus, postmortem human brains were received and 
the average delay between PD and control was 26.2 and 19.8 hours, respectively. While metabolic 
profiling provides an important insight into AD mechanisms, the findings may be conflicting and 
inconsistent between studies. Data mining and bioinformatics were also utilizing in an attempt to 
unravel novel therapeutics drugs for PD. Dopamine metabolism and cholinergic metabolic are 
mainly used as traditional pharmacological targets of anti-Parkinson’s disease. According to this 
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study, the ideal drug for either preventing or treating PD may be metformin hydrochloride or melbine. 
250 differential genes were discovered during data analysis of PD brain tissues while 31 distinct 
“key” genes were proposed during gene enrichment and protein interaction processes [56]. It should 
be noted here that metabolic pathways, carbon metabolisms and methionine metabolism were 
determined through KEGG pathway analysis providing new potential PD treatment strategies. On the 
contrary, gene clusters that encode significant risk factors, such as members of the PARK family, can 
be identified together with PARK1/4 which maintains a synaptic vesicles supply PARK11 associated 
with cooperation with GBR10 and insulin receptors signaling and PARK19 which is important for 
regulating the molecular chaperone activity [14]. 

Neuroprotection focuses on the inhibition of primary neurodegenerative events, providing 
significant improvements in many PD patients, despite the clinical, etiological, and genetic 
heterogeneity of the disease. Given that there is an initial loss of phenotype for midbrain dopamine 
neurons in Parkinson’s disease (PD) rather than neuronal death, neurorestoration could also be a 
promising category of potential treatment presenting placement of new cells including fetal nigral 
neurons into the striatum of patient [57,58]. In these two directions, specific brain-derived 
neuroptrophic factors, muscarinic acetylcholine receptor antagonists and inhibitors of monoamine 
oxidase (MAO)-B such as rasagiline have been developed [59,60]. Rasagiline is a second-generation 
type-B monoamine oxidase inhibitor for the treatment of patients with idiopathic PD and motor 
fluctuation through blocking dopamine metabolism [61,62]. Two other MAO-B inhibitors are 
selegiline and safinamide; the first such as rasagiline acts as an irreversible inhibitor though a 
covalent bond formation with the active site of MAO-B as well a voltage- sensitive sodium channels 
blocker and glutamate release. The mechanism of safinamide comprises reversible selective MAO-B 
inhibition and modulation of glutamate release [63,64]. Others strategies for PD treatment included 
inhibitors of dopamine-metabolizing enzymes such as catechol-O-methyl transferase (COMT) with 
or without MAO-B [65]. As the first PD treatment strategy was based on the use of dopamine 
precursors, such as levodopa (L-dopa) which is able to cross the blood–brain barrier (BBB), 
combination therapies were applied to reduce symptoms. Rasagiline in combination with levodopa 
has been used to improve the efficacy of treatment in patients with PD without significant events 
compared with levodopa monotherapy [66]. In another study, rasagiline and safinamide were studied 
in an attempt to minimize the effects without reducing the equivalent dose of levodopa [67]. 
However, safinamide reduces the annual mean equivalent dose of levodopa and may be associated 
with a reduction in dose-dependent side effects in the long term. New molecular pathways can be 
explored through high-throughput approaches and bioinformatics analysis and new genes can be 
identified which may be considered as potential targets for drug development for Parkinson cases. 

6. Conclusions 

The topological complexity of neuropathological vulnerability and transcriptional regulation in 
PD suggests the need to characterize in more detail the molecular mechanisms underlying disease 
susceptibility and progression. Gene and pathway analyses provide an effective tool for cross-disease 
connections and for the molecular effects of factors involved in disease risk. It is increasingly 
important to discover novel biomarkers at the onset of PD along with the necessity to establish new 
therapies to prevent increased neurodegeneration and disease progression. The availability of high-
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throughput technologies intended for clinical applications in combination with computational 
systems biology approaches and bioinformatics analyses support this valuable purpose. 
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