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Abstract: The functional role of synapse elimination has been debated since its discovery nearly 

three decades ago. Its widely perceived function in the removal of unnecessary and malfunctioning 

synapses in early life for the improvement of neural circuit performance has justified the term 

―synaptic pruning‖. Yet, while recent experimental findings suggest the persistence of synaptic 

elimination into maturity and beyond, its cause and functionality have remained a mystery. Here we 

show that synapse elimination, caused by asynchronous neural firing, segregates individual neurons 

and neural circuits into interference-free synchronous isolation. Such segregation is shown to 

determine not only the circuit sizes, but also the circuit firing rate modes, fundamental to a large 

variety of cortical functions throughout life.  
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1. Introduction 

The role of synapse elimination, observed in humans [1–3] and in animals [4–10], has been 

generally perceived as the removal, or ―pruning‖, of redundant or weak synapses for the 

improvement of neural circuit performance. Although structural circuit modification has been 

suggested in general terms as means for long term memory [11], the specific function and 
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mechanization of synapse elimination have remained essentially unclear. Reports that focal blockade 

of neurotransmission is more effective in synapse elimination than a whole junction blockade [11], 

and that synapse elimination precedes axon dismantling [12], have been challenged by claims that 

synapse elimination is a consequence of whole axon removal [13]. Dynamic firing effects of neural 

interaction under synapse elimination have been experimentally observed, noting that ―active 

synaptic sites can destabilize inactive synapses in their vicinity‖ [11], although such effects may 

involve synapse silencing and reactivation [14] rather than synapse elimination. While early studies 

have associated synapse elimination with early development [12,15] and childhood [16], others have 

extended it to puberty [17], and, depending on brain regions, to age 12 for frontal and parietal lobes, 

to age 16 for the temporal lobe, and to age 20 for the occipital lobe [18]. Yet, grey matter [19] and 

cognition [20] studies, and persistent evidence of molecular processes involved in synaptic 

elimination throughout life [21], have suggested its relevance all the way to senescence.  

Here, we study the mechanism and the implications of synapse elimination on neural circuit 

formation, modification and function in a model-based context. Noting that, albeit certain age-related 

differences in the time constants associated with membrane and synapse plasticity, the firing rate 

model produces essentially the same dynamic modes [22], we suggest that the model corresponding 

to maturity and aging represents a viable platform for analyzing the effects of synapse elimination 

throughout life. We further suggest that synapse weakening and eventual elimination is a 

consequence of asynchrony in the firing of interacting neurons and circuits. We proceed to show that 

while whole axon elimination removes asynchronous firing altogether, synapse elimination 

facilitates interference-free asynchrony between individual neurons and between neural circuit firing, 

maintaining internal circuit synchrony. This allows for cortical segregation into neurons and circuits 

having different characteristic firing rate modes corresponding to different cortical functions.  

2. Developmental Maps and Global attractors of Neuronal Firing Rate 

Both the mathematical analysis and the simulation of synapse elimination effects will require 

some specification of the models involved in order to demonstrate the functional implications. For a 

single isolated neuron, the firing rate model, evolving from the integrate-and-fire [23] and the 

conductance-based membrane current
 
[24] paradigms, through cortical averaging [25], neuronal 

decoding [26] and spiking rate [27] models, is captured, in essence, by the discrete iteration  

map [28,22]. 

 ( ) ( 1) ( ) ( 1) (1)k k f k k u          

where (k) is the firing rate, exp( 1/ )and 1m       , with m the membrane time constant, 

( )k is the self-feedback synaptic weight, u  is the external membrane activation and  
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is the conductance-based rectification kernel [29–31]. 

The Bienenstock-Cooper-Munro plasticity rule [32], enhanced by stabilizing  

modifications [33,34], is a widely recognized, biologically plausible, mathematical representation of 

the Hebbian learning paradigm [35], taking the discrete form 

  2
( 1) ( 1)( ) ( 1) ( 1) (3)k kk k k           

where 

2

0

( ) exp( / ) ( ) (4)
N

i

k i k i   


    

with exp( 1/ ), 1 and 1/           , where and    are the synaptic and the threshold time 

constants, respectively. 

Different ranges of the time constants, m ,   and  , hypothesized to correspond to different 

developmental stages (smaller values corresponding to early development), have been shown to 

produce somewhat different maps of firing rate, possessing, however, essentially similar global 

attractors [22]. In critical period, immediately following birth and extending into early childhood, the 

plasticity time constants  and   are assumed to have near-zero values, while the membrane time 

constant, m  is assume to be higher, producing, by Eq. 1, the map depicted in Figure 1a. The 

inhibition onset and termination thresholds are h and g , respectively, where the slopes of the map 

change sign. The dynamic behavior induced by the map depends on the slope at the point p , where 

the map intersects the diagonal ( ) ( 1)k k   .  

For our present purposes, we continue with the case corresponding to synaptic maturity and 

rigidity (Figure 1b), so as to stress the relevance of circuit segregation beyond early development. 

For this case, ( )k converges to a fixed value   [34], yielding the model [22] 

 
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1 (6)   

and 

2 (7)     

and the inhibition onset and offset points become  

(8)h u  

and 

1 2

(9)
u

g


 



 

while the fixed point representing the intersection of 2f  with the diagonal ( ) ( 1)k k   is 

2

(10)
1

u
p







 

The parameters  

2

1 1 2 12 1 1 4 (11)c        

and 

2 1 2 1 (12)c    

define transition points from one global attractor type of the map to another [28].  

 

Figure 1. Developmental maps of neuronal firing: (a) critical period, (b) synaptic maturity  

and rigidity. 



 91 

AIMS Neuroscience Volume 4, Issue 2, 87–101. 

Scalar global attractors are graphically described by cobweb diagrams [36–39], which are 

initiated at some value, (0) , on the map, then connected horizontally to the diagonal 

( ) ( 1)k k   , then connected vertically to the map, and so on. The cobweb diagrams depicted by 

the corresponding subplots of Figure 2 represent different global attractor types, which satisfy the 

following characteristic conditions: 

(a) Chaotic attractor. For 0u  , 2 1   , 
1 0c  , and 

2 0c  , yielding p q  (where q  is the point 

obtained from the bend point g  by a 4-step cobweb sequence, and where p  and q  are the 

vertical coordinates of the corresponding points on the map in Figure 2a), the attractor is 

represented in Figure 2a by the interval ab  on the diagonal ( ) ( 1)k k   , with anda bcreated 

by a cobweb sequence initiating at the bend point g , which defines the boundaries of the 

attractor, as shown in the figure. An orbit of period three 1 2 3 1a a a a   , rendering Li-Yorke 

chaos [40], is defined by 3

1 1( )a f a , 1 1( )a f a , where f is the map Eq. 5, and 

3( ) ( ( ( )))f x f f f x . Starting with 1a g , we obtain 2 1 1a a , 2

3 1 1a a , 2

1 2 1 1a a u    , 

yielding 2

1 2 1/ (1 )a u    . 

(b) Largely-oscillatory attractor. For 0u  , 2 1   , 
1 0c  , and 

2 0c  , yielding q p  , the 

attractor, represented in Figure 2b by the two intervals ab and cd , separated by the repelling 

intervalbc , is largely oscillatory. Within the attractor domain, defined by a cobweb initiating at 

the bend-point g , trajectories alternate between the two intervals ab and cd . As implied by the 

cobweb diagram, depending on the circuit parameters, this alternation may, but need not 

necessarily, repeat precisely the same points, which may then represent oscillatory or cyclically 

multiplexed dynamics (the two intervals ab and cd then reduce into two or four points, 

respectively [22,28]). 

(c)  Fixed-point (constant) attractor. For 0u  and 21 1   , we have a fixed-point attractor at p . 

For 21 0   , the fixed point will be approached by alternate convergence (increasing ( )k  

step followed by decreasing ( 1)k  step and vice versa). For 2 10    , convergence will be 

monotone, bimodal (according to 1f far from p and according to 2f near p , as illustrated by Figure 

2c for 2 10    , and unimodal (according to 2f ) for 1 2 1   . 
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(d) Silent attractor. For 0  , the attractor is at the origin, as depicted in Figure 2d. 

 

Figure 2. The neuronal global attractor code of firing-rate dynamics: (a) Chaotic,  

(b) largely-oscillatory, (c) fixed-point and (d) silent. Global attractor types. Cobweb 

trajectories are represented by black dashed lines and converge to global attractors 

represented by red line segments or red X. The model is specified by Eq. 5, and the 

parameter values for each of the global attractors are specified in the text. 

Specifically, the cobweb diagrams depicted in Figure 2 correspond to the following  

parameter values: 
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(a) 10, 2, 10000, 0.1,mu       
 
yielding 

1 2 1 20.6055, -4.7336, -3.1701, -1.8711,  -13.5720c c        

(b) 10, 2, 10000, 1,mu       
 
yielding 

1 2 1 20.6055, -1.8160, 0.3692, -0.1015, -6.1569c c        

(c) 1, 2, 5, 1,mu         yielding 1 20.6065, 0.5308, = -0.1925     

(d) 1, 2, 5, 1,mu        
 
yielding 1 20.6065, 0.6065, 0      

For each of the cases, the steady-state value of the synaptic weight,  , was calculated by 

driving Eqs. 3 and 4, with (0) 0  and (0) 1  , to convergence (practically, this was achieved for

100N  ), and the corresponding values of 1 2 1, ,c  and 2c were calculated by Eqs. 6, 7, 11 and 12 

respectively. As can be verified, the conditions stated above for the attractor types (a) chaotic, (b) 

largely-oscillatory, (c) fixed-point and (d) silent, are satisfied, respectively, by the parameter  

values obtained. 

3. Neural Circuit Segregation by Synapse Elimination 

For a circuit of n  neurons, firing rate and plasticity would be governed by the equations 

 ( ) ( 1) ( ) ( 1) (13)T

i i i i i ik k f k k u       ω υ  

  2
( 1) ( 1)( ) ( 1) ( 1) (14)i i i i i ik kk k k        ω ω υ  

2

0

( ) exp( / ) ( ) (15)
i

N

i i i

i

k i k i   


    

where 1,2,...,i n , ( )kυ is the vector of neuronal firing rates, ( )i kω is the vector of input synaptic 

weights (including self-feedback) corresponding to the i th neuron and 
2

υ is the vector whose 

components are the squares of the components of υ . We have used 100N  , yielding convergence 

of , , , 1,2, ,n,i j i j  K  to constant values. 
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Consider first two neurons, one having the parameters of case (c) of the previous section, hence, 

a fixed-point global attractor of firing rate, and the other having the parameters of case (b) of the 

previous section, hence, a largely oscillatory global attractor of firing rate. Figure 3a shows the firing 

rate sequences of the two neurons, fully connected into a circuit. Eliminating the axon of the first 

neuron (Figure 3b) reveals the characteristic firing mode of the second neuron alone. Eliminating the 

axon of the second neuron (Figure 3c) reveals the characteristic firing mode of the first neuron alone. 

It can be clearly seen by comparison that full connectivity, resulting in the firing sequences displayed 

by Figure 3a, causes mutual interference between the two neurons. Inter-neuron asynchrony is 

assumed to imply, by the Hebbian paradigm, weakening of the corresponding synapses [35].  

Eventual elimination of the receiving synapses of both neurons, represented by zero values of the 

corresponding synaptic weights, allows each of the neurons to display its own characteristic  

firing-rate mode without interference, as depicted in Figure 3d. 

Next consider a fully connected circuit of n  identical neurons receiving identical activation. 

The neurons will fire in synchrony. However, for 1n  , the neuronal firing mode will not be the 

same as that of an individual isolated neuron with the same property. This can be seen by noting that, 

for each of the synchronous circuit neurons, Eq. 13 will yield the firing rate model 

 ( ) ( 1) ( ) ( 1) (16)k k f n k k u          

which is different from Eq. 1. As N  , Eqs. 14 and 15 will take ( )k  to its constant limit value

f  [34], yielding 

 ( ) ( 1) ( 1) (17)k k f n k u         

which is the firing rate model of an isolated individual neuron with feedback synaptic weight n . 

This synchrony equivalence principle allows us to extend our results obtained for the neuronal firing 

rate modes and for asynchronous neuron segregation to synchronous circuits. Clearly, Eq. 17 will 

produce a different mode of firing rate dynamics for every circuit size n . This is illustrated by Figure 

4, where the four subfigures depict attractors of fully connected circuits having identical neurons, but 

different circuit sizes. It can be seen that different circuit sizes result in different firing rate modes. 

Specifically, the circuits represented in Figure 4 obey the model of Eqs.13–15, with 100N   (taking 

( )k  to its constant limit  ). For circuits of fully connected identical neurons, having the parameter 

values 4, 2, 300, 0.1mu        and circuit size values 10, 5, 2 and 1, we obtain the modal 

parameter and condition values specified below: 

(a) 10n  , yielding 1 2 1 2= 0.7870, 0.6065, 2.4901, 0.4485, c 0.5103c           
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(b) 5n  , yielding 1 2 1 2=-1.3128, 0.6065, -1.9762, 0.1748, c 0.1987c        

(c) 2n  , yielding 1 2 1 2= 2.5628,  0.6065, 1.4103, 0.8614, c 0.1446c         

(d) 1n  , yielding 1 2 1 2= 3.8993, 0.6065, 0.9277, 1.4467, c  0.4373c         

 

Figure 3. Segregation and interference elimination in a 2-neuron circuit by axon elimination 

and by synapse elimination. (a) Mutual interference, (b) Second neuron isolation and interference 

elimination by eliminating the axon of the first neuron, (c) First neuron isolation and interference 

elimination by eliminating the axon of the second neuron, (d) Reciprocal interference elimination by 

reciprocal synapse elimination, allowing each of the neurons interference-free firing at its 

characteristic firing rate mode. 
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Figure 4. Global attractor types corresponding to fully connected synchronous circuits of 

(a) ten neurons (chaotic), (b) five neurons (largely-oscillatory), (c) two neurons 

(oscillatory), and (d) one neuron (fixed point). 

An examination of the conditions for the global attractor types specified in Section 2 shows that 

the above cases represent (a) chaotic, (b) largely-oscillatory, (c) oscillatory and (d) fixed-point global 

attractors, as ratified by Figure 4. As, except for the circuit size (i.e., the number of neurons) the 

neuronal parameters , , ,mu     are identical for all neurons, the increasing number of neurons in 

cases (a–d) above may be viewed as representing synchronous circuit segregation into smaller 

synchronous sub-circuits.  



 97 

AIMS Neuroscience Volume 4, Issue 2, 87–101. 

 

Figure 5. Three-neuron circuit modification and segregation by synapse 

elimination. (a) Fully connected circuit. (b) modification by synapse elimination. (c) 

Circuit segregation into a 2-neuron circuit and a single neuron by synapse elimination (d) 

Circuit segregation into 3 single neurons by synapse elimination. 

 

Finally, in order to illustrate the effects of synchronous circuit segregation into synchronous 

sub-circuits, consider a circuit of three identical neurons with the parameters (identical to those 

employed in Figure 4) 4, 2, 300, 0.1mu        , starting with full connectivity and undergoing 

modification and segregation by synapse elimination (manifested by setting the corresponding 

synaptic weight at zero). The changes in circuit connectivity are illustrated in Figure 5, while the 

resulting changes in the neuronal firing modes, simulated by Eqs. 13–15, are displayed in Figure 6. 

It can be seen in Figure 6 that the fully connected circuit (a) fires synchronously in a largely 

oscillatory multiplexed mode, whereas the transition to partial connectivity in the modified circuit (b) 

produces a change of the neuronal firing rate modes, which, while being similarly oscillatory, are 

unequal in amplitude. The circuit segregation into a two-neuron circuit and one individual neuron (c) 

results in synchronous oscillation and constant (fixed point) firing modes, respectively, while the 

segregation into three isolated neurons (d) results in each producing a constant firing rate. The firing 

modes are in agreement with those predicted by Figure 4 (the transition from a fully connected  

two-neuron circuit in case 4 (c) to a fully connected three-neuron circuit in case 5 (a) has resulted in 

the mode changing from oscillatory to largely oscillatory, multiplexing two oscillatory modes). 
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Figure 6. Firing rate sequences corresponding to circuit modification and segregation 

cases depicted in Figure 5. Modification of circuit structure from full connectivity (a) to 

partial connectivity (b) results in loss of full synchrony and a change of firing rate mode, 

while segregation into two circuits (c) results in two different modes, corresponding to a 

two-neuron circuit and one neuron, and full segregation into three neurons results in each 

firing in the one-neuron characteristic fixed-point mode, all in agreement with Figure 4. 

4. Conclusion 

We have shown that, given internal neuronal property, the circuit connectivity structure defines 

the circuit firing mode as well. It is therefore justified to view circuit connectivity not only as means 

for information representation, but also as a manifestation of the function to be performed. The 

permanence of synapse elimination, as opposed to synapse silencing, makes it particularly relevant to 

long-term memory and to life-long functional proficiency. Synapse elimination results in circuit 

modification. It can segregate a synchronous circuit into smaller synchronous sub-circuits, isolated 

against mutual asynchronous interference. Conversely, the weakening of synapses, eventually 

resulting in their elimination, may be caused by asynchronous interference between neurons and 

synapses, as suggested by the Hebbian paradigm. Circuits of identical neurons, but different sizes, 
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fire in different firing rate modes. While we have focused on the firing rate and plasticity dynamics 

corresponding to maturity, the essential persistence of the map and the corresponding global attractor 

code of firing rate through different developmental stages suggest the life-long relevance of synapse 

elimination to circuit formation, modification and function. 
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