
AIMS Neuroscience, 3 (4): 474–486. 

DOI: 10.3934/Neuroscience.2016.4.474 

Received 21 September 2016, 

Accepted 30 November 2016, 

Published 7 December 2016 
http://www.aimspress.com/journal/neuroscience 
 

Research article 

Simulation of Spike Wave Propagation and Two-to-one 
Communication with Dynamic Time Warping 

Shun Sakuma 1, *, Yuko Mizuno-Matsumoto 1, Yoshi Nishitani 2, and Shinichi Tamura 3 

1 Graduate School of Applied Informatics, University of Hyogo, Kobe 650-0047, Japan; 
2 Dept. of Radiology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; 
3 

* Correspondence: Email: y09024@gmail.com; Tel: +81-80-3834-7268 

NBL Technovator Co., Ltd., 631 Shindachimakino, Sennan 590-0522, Japan 

Abstract: Although intercommunication among the different areas of the brain is well known, the 
rules of communication in the brain are not clear. Many previous studies have examined the firing 
patterns of neural networks in general, while we have examined the involvement of the firing 
patterns of neural networks in communication. In order to understand information processing in the 
brain, we simulated the interactions of the firing activities of a large number of neural networks in a 
25 × 25 two-dimensional array for analyzing spike behavior. We stimulated the transmitting neurons 
at 0.1 msec. Then we observed the generated spike propagation for 120 msec. In addition, the 
positions of the firing neurons were determined with spike waves for different variances in the 
temporal fluctuations of the neuronal characteristics. These results suggested that for the changes 
(diversity) in the propagation routes of neuronal transmission resulted from variance in synaptic 
propagation delays and refractory periods. The simulation was used to examine differences in the 
percentages of neurons with significantly larger test statistics and the variances in the synaptic delay 
and refractory period. These results suggested that multiplex communication was more stable if the 
synaptic delay and refractory period varied. 
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1. Introduction 

The brain is a large network system that transmits information through spikes, which are short 
electrical signals in neurons. An action potential is transmitted to neurons with a time delay 
compared with the action potential in the preceding neuron. Over 0.5 msec passes before change 
occurs in the potential in the neuron receiving the input, and this is called synaptic propagation delay [1]. 
When a neuron fires, it is not able to fire for a certain length of time, and this is called a refractory 
period [2]. Synaptic propagation delays and refractory periods vary in different neurons. In addition, 
these times can fluctuate and are considered as a kind of noise. Information processing in brain 
activity might be conducted with spike propagation. In actuality information processing in the brain 
is rather stable despite the possible variabilities. Spike propagation and information transmission 
mechanisms are important research targets. 

The first theory of information architecture was the cell-assembly theory proposed by Hebb in 
1949 [3,4]. This theory was based on previous findings in associative memory and cell assembly. 
Okada et al. examined the relationship between associative memory and sparse coding [5]. The 
second theory involves the synfire chain model proposed by Abel [6]. This theory states that 
neuronal groups fire in a synchronous time pattern. However, the transfer of information between 
neurons and the function of the communication have not been fully elucidated. A question that 
remains is how neural activity propagates through cortical networks that are connected through 
synapses. Tanaka et al. showed that cortical networks use recurrent circuits in which a large number 
of neurons are bound to each other [7]. We developed a time-shift diagramming method that can be 
used to visualize the propagation of brain waves that communicate information [8–10]. 

 

Figure 1. Time-shift diagram of 10.2 Hz MEG for a number-counting 
task [8]. We can see that Red arrow with lag time < 5 msec runs within 
each hemisphere, and Blue > 10 msec across the callosum. 
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The questions of how information communication is controlled, what constructs the information, 
and how the controlled information communication is constructed are unanswered. The answers to 
these questions are essential in investigations of the mechanisms underlying information 
communication. In order to resolve this question, we need to decode the sequence pattern of spike 
activity (analyses of the time-series patterns of firing) rather than examining the rate of spikes or 
action potential waveforms. In this study, we conducted a physiological experiment in cultured 
neurons from the rat hippocampus and recorded the spike trains. A significantly increased percentage 
of M-sequences spikes were recorded in the spike trains [11]. The raster plot analyses showed that 
linear-feedback shift-register circuits generated pseudo-random sequences including M-sequences [12]. 
However, we were unable to elucidate the meaning of the codes. In addition, we have shown that 
spikes propagate in neural networks because spike waves can be observed as code flow [13]. We then 
showed that cultured neuronal networks can be used in simulations with mesh-type two-dimensional 
neural network models composed of neurons that are modeled by integration and firing without 
leakage. In order to understand information processing in the brain, we simulated the firing activity 
of a large number of neurons in a neural network [14]. In our study, we found that stimulations at 
different sites were associated with the detection of different waves. In our previous study, we 
observed the generation of a number of spatiotemporal forms of spike wave propagations by various 
stimulated neurons in a cultural neuronal network [15]. We stimulated one of the two transmission 
neuron groups, and used the Dynamic Time Warping (DTW) method [16] to determine whether 
remote neurons receiving inputs can be used to identify the transmission neuronal group that was 
stimulated. We then confirmed the existence of two types of neurons: one that can identify the 
stimulated neuron and one that cannot. However, in that study, we were unable to elucidate the 
mechanisms underlying the results. With culture, parameters such as connection weights and 
synaptic delays are fixed and cannot be manipulated. In contrast, we can change the parameters in 
simulations. By changing the parameters and analyzing the different results obtained with different 
conditions, we can elucidate the mechanisms underlying the identification of the stimulated 
group of neurons. 

In this study, we simulated spike responses to stimulations with various synaptic propagation 
delays and refractory periods. The simulation was conducted under the condition that the weights of 
the synapses were all fixed because we were only interested in examining the effects of fluctuations 
in the synaptic propagation delays and refractory periods without any confounding influence of 
variations in the synaptic weights. In order to focus on communication, we analyzed the 
information-flow of the network.  

2. Methods 

2.1. Specification of the simulated neural network 
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A 25 × 25 two-dimensional neural network was implemented (Figure 2). We used an 
integrate-and-fire model without any leakage as the neuronal model [17–19]. As well known, 
neurons have the property of all-or-none. Therefore, we implement an accepting period which is 
more stringent than the leak in the model. Accepting periods randomly accept input spikes or ignore. 
We will verify that neurons can communicate under such condition. The leak was ignored for 
simplicity. Each neuron had connection weights to and from eight neighboring neurons. We 
generated random weights of the synapses in the beginning of the experiment, and these weights 
were fixed through the experiment because we were only interested in examining the effects of 
fluctuations in the synaptic propagation delays and refractory periods. Therefore, any potential 
effects of synaptic weight variations were excluded. Three neurons were simultaneously stimulated 
at 0.1 msec, as shown in Figure 2, because we found in a number of preliminary simulations that the 
stimulation of three or more neurons stabilizes information propagation. We characterized the three 
neurons as being in the stimulated neuron group or transmitting neuron group. Spike waves were 
propagated from the stimulated neuron group to the other neurons. In our previous wet-lab 
experiments, we applied a time sampling rate of 0.1 msec, which was considered a bin. Thus, the 
time unit of a bin was 0.1 msec. The instantaneous variances in the synaptic propagation delays and 
refractory periods were both set to 0.167, 0.333, 0.500, 0.667, 1.000, or 2.000 [bin2

 

] (bin = 0.1 
msec) [17,18]. The stimulations (T, L, and D) were applied, as shown in Figure 2. 

Figure 2. The 25 × 25 two-dimensional neural network and stimulation neuron groups. 
Stimulation T (Top): blue. Stimulation L (Left): green. Stimulation D (Diagonal): yellow. 

We calculated the spike-interval sequences of one neuron between 0–120 msec for 10 trials 
(Figure 3).  
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26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
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Figure 3. Calculation of the spike interval times from neuronal raster 
plots. The vertical axis represents the number of attempts, and the horizontal 
axis represents time (msec). The circles indicate the firing times. 

2.2. Analysis procedure 

We obtained the spike-interval sequences for 625 neurons (total, 6,250 sequences) with 
stimulation T (Figure 4) and stimulation L. 

 

Figure 4. Spike-interval sequences for 625 neurons 
(total, 6,250 sequences) with stimulation T or L. 

 

2.3. Local DTW 

We calculated DTW in a combination of 10 trials (total, 45 sets) to calculate the spike-interval 
time differences between the trial sets of stimulation T (Figure 5). DTW was calculated among 10 
trials for each neuron. In addition, we conducted DTW in a combination of 10 trials (total, 45 sets) to 
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calculate the spike-interval time differences between the trial sets of stimulation L. DTW is an 
algorithm that is used to measure the differences between two signal sequences with different time 
scales or expansions. When the difference is large, the value approaches 1, while the value 
approaches 0 when the difference is small. We measured the DTW values in a combination of 10 
trials with the same stimulated groups (T or L) and calculated the average of the 90 sets (two trials of 
45 sets). We refer to these calculations as Local DTW (See Figure 5). 

 

Figure 5. Illustration of Local DTW distances. We computed the 
DTW distances for combinations of spike-interval in the trials of the 
stimulation T (Trial T1 vs Trail T2, Trial T1 vs Trail T3 …; totally 45 
combinations). For trail L, it is calculated in the same way. 

2.4. Inter DTW 

We calculated DTW for the combination of the 10 trials (total, 100 sets) in stimulations L and T 
in order to calculate the spike-interval time differences between the trial sets (Figure 6). We 
calculated the average of the 100 sets. We refer to these calculations as Inter DTW. 

 

Figure 6. Illustration of Inter DTW distances. We computed the Inter DTW 
distances for combinations of spike-interval temporal in the different stimulation 
(Trial T1 vs Trail L1, Trial T1 vs Trail L2 …; totally 100 combinations). 
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2.5. T-test 

We used two-sided t-tests at the 5% significance level to compare the Local DTW and Inter 
DTW results. We determined the number of neurons in which the Inter DTW was significantly larger 
than the Local DTW. The neurons with significantly larger test statistics were considered able to 
identify stimulations T or L.  

3. Results 

3.1. Spike propagation  

Figure 7 shows the results of a simulation of spike propagation in 10 msec. The transmitting 
neurons were stimulated at 0.0 msec. In all of the stimulations (T, L, and D), the spike waves spread 
in all directions. The propagation route was changed in each trial.  

  

Figure 7. The spike wave of each simulation group. Upper panels: 
Stimulation T. Middle panels: Stimulation L. Lower panels: Stimulation D. 

3.2. Positions of the firing neurons with different variances 

Figure 8 shows the results of the positions of the firing neurons with different variances. We set 
the variances of the synaptic delay and refractory period as 0.167 (yellow in Figure 8) and 2.0 (red in 
Figure 8), respectively. The blue in Figure 8 indicates the results with both 0.167 and 2.0 variances. 
Figure 8 shows the positions 0.0–6.0 msec after the stimulation. The propagation speed for a 
variance of 2.0 (red) was faster than the speed for a variance of 0.167 (yellow). Thus, when the 
synaptic delays and refractory periods were changed, the propagation speeds increased as the 
variances increased.  

Stimulation T 

Stimulation L 

Stimulation D 
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Figure 8. Spike waves in response to stimulation T and different variances. 
Red: variance 2.0. Yellow: variance 0.167. Blue: variances 2.0 and 0.167.  

3.3. Classification of the stimulated neuron groups 

In order to ascertain whether the difference between the mean value of Local DTW (90 set of 
trial combination) and the mean value of Inter DTW (100 set of trial combination) is statistically 
significant or not, a two-tailed t-test was conducted with a significance level of 5% at each cell. 
Among them, we picked up and showed the value of Local DTW and Inter DTW (mean ± SD) at cell 
number 98, 132, 313, 504 and 590 in Table 1. As results, the mean value of Inter DTW was 
significantly greater than that of Local DTW (p = 0.03) at cell number 590, while no significant 
difference was observed (p = 0.79) at cell number 313. 

Table 1. The value of Local DTW and Inter DTW (mean ± SD) and Significance between them 

(at cell No. 98, 132, 313, 504 and 590). S indicates Significance and NS indicates No Significance 

Cell No.  Inter DTW Local DTW Significance 

98 0.029 ± 0.026 0.020 ± 0.020 S 

132 0.037 ± 0.023 0.039 ± 0.023 NS 

313 0.022 ± 0.018 0.023 ± 0.018 NS 

504 0.029 ± 0.025 0.021 ± 0.016 S 

590 0.020 ± 0.018 0.014 ± 0.014 S 

 
As described in Section 2.5, the neurons with significantly larger test statistics were considered 

able to identify stimulations T or L (Identifiable neurons). 
Figure 9 shows the percentages of neurons that could identify the stimulated neurons for 

neurons with significantly larger test statistics vs. neurons with variances in the synaptic delay and 
refractory period. The vertical axis shows the percentage of identifying neurons among the 625. The 



482 

AIMS Neuroscience Volume 3, Issue 4, 474–486. 

horizontal axis shows the variances of the synaptic delay and refractory period in bin2

 

. When the 
variances of the synaptic delay and refractory period increased from 0.167 to 0.667, the percentage 
of identifiable neurons with different firing time profiles for stimulations T and L increased. 
However, when the variance was over 0.667, the percentage of neurons that could identify the 
stimulated neurons decreased. In the case of the variances of the synaptic delay and refractory 
being 0, the t-test can’t be performed because the variance is 0. Therefore, the result is not 
described. Since when variance is around 0.6, there was no special difference in the spike waves, 
we didn’t show them in figure 8.  

Figure 9. The percentage of neurons that could identify the 
stimulated neurons and that could communicate. The vertical axis 
shows the percentage of identifying neurons of the 625. The horizontal 
axis shows the variances of the synaptic delay and refractory period in 
bin2

 

. When the variances of the synaptic delay and refractory period 
increased from 0.167 to 0.667, the percentage of identifying neurons 
with different firing time profiles for stimulations T and L increased. 

We examined whether it is possible to discriminate between stimulus T and stimulus L 
individually for each neuron. We should have multiply compared at the stage of raw data. However, 
for the sake of simplicity, we only t-tested the difference between the mean values of Local DTW and 
Inter DTW for stimulus T and stimulus L, respectively. In order to integrate them, we evaluated the 
rate of Identifiable neurons as Figure 9.  

4. Discussion 

The spike propagation results showed that the propagation route and velocity changed in 
response to alterations in the variances of the synaptic propagation delay and refractory period. This 
occurred because the synaptic delays and refractory periods with larger variances resulted in faster 
propagation of the spikes. As a result, the stimulus arrived earlier. The DTW results showed many 
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signaling routes that were spatially different compared with the route for the transmitting neurons to 
the receiving neurons. They were transmitted in parallel (Figure 10). 

 

Figure 10. Examples of representative routes from the transmitting 
neuron to the receiving neuron. The green circle indicates the 
transmitting neuron. The red circle indicates the receiving neuron. Two 
thick routes were present when the fluctuations in the variances were small. 
When the variances were large, four routes with spread were present. 

The spikes that reach a neuron first result in firing of the neuron. Thus, the approximate flow of 
information is through this spatially representative route. When the variances in the synaptic 
propagation delays and refractory periods were small, the information passed through the thick route 
in each trial of Figure 10.  

The routes to each transmission neuron from the receiving neuron often overlapped from the 
half-way point. In that case, the receiving neuron was difficult to use to identify the transmitting 
neurons (Figure 11). If there is large instantaneous variation in the synaptic propagation delays and 
refractory periods, the information is thought to pass through temporally various representative 
routes (Figure 11). 

 

Figure 11. When the variances are large, many representative routes are 
observed. Therefore, the routes from A and B do not overlap much. 
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Thus, if the variations in the synaptic propagation delays and refractory periods increase, the 
spike wave will pass through the various representative routes. This then increases the probability of 
identification. When the variance is too large with a large bin2

5. Conclusion 

, the receiving neuron will receive 
spike profiles with too much disturbance, which makes identification of the spike wave itself 
difficult. These results suggested that changes in the propagation routes of the firing of neurons 
required a little variance in the synaptic propagation delays and refractory periods. Thus, variation 
may stabilize multiplex communication. In this paper, we simulated the case where the variances in 
synaptic propagation delays and refractory periods are the same. In that case, we explained a reason 
that the curve of figure 9 has a peak, which seems having high possibility. However, it is necessary to 
evaluate it by changing the variances in synaptic propagation delays and refractory periods, 
separately. We like to explain that in another paper.  

Many previous studies have examined neural networks based on their firing patterns from a 
macro point of view, while we studied neural networks from the point of view of communication [3–7]. 
In order to understand information processing in the brain, we conducted simulations that assumed 
interactions of the firing activities of a large number of neural networks in the present study. We used 
an integrate-and-fire neuronal model without leakage and a 25 × 25 two-dimensional neural network. 
We showed how stimulation of the neurons was transmitted to the required neurons in the simulation 
as spike propagation occurred in 10 msec after the transmitting neurons were stimulated at 0.1 msec 
in the simulation. The two neuron groups were also stimulated with synaptic propagation delays and 
refractory periods with different variances. When the fluctuations in the synaptic delays and 
refractory periods were changed, the propagation speed increased as the variance increased. These 
results suggested that to change the propagation route of the firing of the neurons, some variance in 
the synaptic propagation delays and refractory periods is required. We examined the percentages of 
neurons with significantly larger test statistics vs. those with variances in the synaptic delays and 
refractory periods. The results suggested that variations in the synaptic delays and refractory periods 
improved the stability of multiplex communication.  

In future studies, we need to examine whether multi-directional spike waves can be identified in 
more than two directions and the three-dimensional structure of the network. The present culture 
experiment examined not just one stimulated neurons and receiving neuron, but plural. Thus, several 
neurons were simultaneously recorded because an external electrode was used in the culture 
experiment. The simulation in the present study was used to examine neuron identification. It is 
possible to analyze the simulation with more detail. Thus, future studies need to examine the raw 
characteristics of each neuron.  
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