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Abstract: Although intercommunication among the different areas of the brain is well known, the
rules of communication in the brain are not clear. Many previous studies have examined the firing
patterns of neural networks in general, while we have examined the involvement of the firing
patterns of neural networks in communication. In order to understand information processing in the
brain, we simulated the interactions of the firing activities of a large number of neural networks in a
25 x 25 two-dimensional array for analyzing spike behavior. We stimulated the transmitting neurons
at 0.1 msec. Then we observed the generated spike propagation for 120 msec. In addition, the
positions of the firing neurons were determined with spike waves for different variances in the
temporal fluctuations of the neuronal characteristics. These results suggested that for the changes
(diversity) in the propagation routes of neuronal transmission resulted from variance in synaptic
propagation delays and refractory periods. The simulation was used to examine differences in the
percentages of neurons with significantly larger test statistics and the variances in the synaptic delay
and refractory period. These results suggested that multiplex communication was more stable if the
synaptic delay and refractory period varied.
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1. Introduction

The brain is a large network system that transmits information through spikes, which are short
electrical signals in neurons. An action potential is transmitted to neurons with a time delay
compared with the action potential in the preceding neuron. Over 0.5 msec passes before change
occurs in the potential in the neuron receiving the input, and this is called synaptic propagation delay [1].
When a neuron fires, it is not able to fire for a certain length of time, and this is called a refractory
period [2]. Synaptic propagation delays and refractory periods vary in different neurons. In addition,
these times can fluctuate and are considered as a kind of noise. Information processing in brain
activity might be conducted with spike propagation. In actuality information processing in the brain
is rather stable despite the possible variabilities. Spike propagation and information transmission
mechanisms are important research targets.

The first theory of information architecture was the cell-assembly theory proposed by Hebb in
1949 [3,4]. This theory was based on previous findings in associative memory and cell assembly.
Okada et al. examined the relationship between associative memory and sparse coding [5]. The
second theory involves the synfire chain model proposed by Abel [6]. This theory states that
neuronal groups fire in a synchronous time pattern. However, the transfer of information between
neurons and the function of the communication have not been fully elucidated. A question that
remains is how neural activity propagates through cortical networks that are connected through
synapses. Tanaka et al. showed that cortical networks use recurrent circuits in which a large number
of neurons are bound to each other [7]. We developed a time-shift diagramming method that can be
used to visualize the propagation of brain waves that communicate information [8-10].

Red : 0 msec < time < 5 msec
Green : 5 msec < time < 10 msec
Blue : 10 msec < time

Figure 1. Time-shift diagram of 10.2 Hz MEG for a number-counting
task [8]. We can see that Red arrow with lag time < 5 msec runs within
each hemisphere, and Blue > 10 msec across the callosum.
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The questions of how information communication is controlled, what constructs the information,
and how the controlled information communication is constructed are unanswered. The answers to
these questions are essential in investigations of the mechanisms underlying information
communication. In order to resolve this question, we need to decode the sequence pattern of spike
activity (analyses of the time-series patterns of firing) rather than examining the rate of spikes or
action potential waveforms. In this study, we conducted a physiological experiment in cultured
neurons from the rat hippocampus and recorded the spike trains. A significantly increased percentage
of M-sequences spikes were recorded in the spike trains [11]. The raster plot analyses showed that
linear-feedback shift-register circuits generated pseudo-random sequences including M-sequences [12].
However, we were unable to elucidate the meaning of the codes. In addition, we have shown that
spikes propagate in neural networks because spike waves can be observed as code flow [13]. We then
showed that cultured neuronal networks can be used in simulations with mesh-type two-dimensional
neural network models composed of neurons that are modeled by integration and firing without
leakage. In order to understand information processing in the brain, we simulated the firing activity
of a large number of neurons in a neural network [14]. In our study, we found that stimulations at
different sites were associated with the detection of different waves. In our previous study, we
observed the generation of a number of spatiotemporal forms of spike wave propagations by various
stimulated neurons in a cultural neuronal network [15]. We stimulated one of the two transmission
neuron groups, and used the Dynamic Time Warping (DTW) method [16] to determine whether
remote neurons receiving inputs can be used to identify the transmission neuronal group that was
stimulated. We then confirmed the existence of two types of neurons: one that can identify the
stimulated neuron and one that cannot. However, in that study, we were unable to elucidate the
mechanisms underlying the results. With culture, parameters such as connection weights and
synaptic delays are fixed and cannot be manipulated. In contrast, we can change the parameters in
simulations. By changing the parameters and analyzing the different results obtained with different
conditions, we can elucidate the mechanisms underlying the identification of the stimulated
group of neurons.

In this study, we simulated spike responses to stimulations with various synaptic propagation
delays and refractory periods. The simulation was conducted under the condition that the weights of
the synapses were all fixed because we were only interested in examining the effects of fluctuations
in the synaptic propagation delays and refractory periods without any confounding influence of
variations in the synaptic weights. In order to focus on communication, we analyzed the
information-flow of the network.

2. Methods

2.1. Specification of the simulated neural network
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A 25 x 25 two-dimensional neural network was implemented (Figure 2). We used an
integrate-and-fire model without any leakage as the neuronal model [17-19]. As well known,
neurons have the property of all-or-none. Therefore, we implement an accepting period which is
more stringent than the leak in the model. Accepting periods randomly accept input spikes or ignore.
We will verify that neurons can communicate under such condition. The leak was ignored for
simplicity. Each neuron had connection weights to and from eight neighboring neurons. We
generated random weights of the synapses in the beginning of the experiment, and these weights
were fixed through the experiment because we were only interested in examining the effects of
fluctuations in the synaptic propagation delays and refractory periods. Therefore, any potential
effects of synaptic weight variations were excluded. Three neurons were simultaneously stimulated
at 0.1 msec, as shown in Figure 2, because we found in a number of preliminary simulations that the
stimulation of three or more neurons stabilizes information propagation. We characterized the three
neurons as being in the stimulated neuron group or transmitting neuron group. Spike waves were
propagated from the stimulated neuron group to the other neurons. In our previous wet-lab
experiments, we applied a time sampling rate of 0.1 msec, which was considered a bin. Thus, the
time unit of a bin was 0.1 msec. The instantaneous variances in the synaptic propagation delays and
refractory periods were both set to 0.167, 0.333, 0.500, 0.667, 1.000, or 2.000 [bin?] (bin = 0.1
msec) [17,18]. The stimulations (T, L, and D) were applied, as shown in Figure 2.

123456789101112.141516171819202122232425
261271282930 )31[32[33[34[35]36 40 )41 14243 [44[45]46]47]48)49|50
51152153 |54|55)|56|57(58[59[60|61|62|63|64)65|66|67 (68 [69[70]71]72]73|74|75
76|77 178 (79|80 [81)82[83)|84[85|86|87(88]|89[90)91[92|93[94[95]96[97)98 |99 |100
101]102]|103{104(105[106]107]108]109]110[111[112(113[114[115[116]117]118]119]|120]121|122(123|124]125
126]127]128{129(130(131]132]133]134]135|136|137(138[139(140(141]142]|143|144|145|146/147[148|149|150
151]152]153[154[155[156(157]158]159]160|161|162[163[164[165[166]167]|168|169|170|171[172[173|174|175
176(177]178(179(180|181(182]183[184]185(186|187[188(189]190(191]192|193|194[195|196]197[198]199|200
201]202)203|204 /205206 (207 (208(209]210]211]212]213]|214|215(216(217|218|219]220|221)222]223 224|225
2261227]228229|230(231(232(233[2341235]236|237)238|239|240(241(242 1243244 245|246 1247248 [249 [250
251)252253 254 255|256 |257|258 1259260 |261 [262 (263 [264 [265|266 |1267 |268 |269|270 271272273 274|275
276 278(279(280(2811282 1283 1284|285 |286 (287 (288 [289 2902911292 |293 |294 1295|296 297 (298 |299 |300
302|303 [304 305 306|307 (308309 (310|311]312(313314(315|316(317|318[319 (320|321 (322323 |324 [325
326 328 329 (330 (331 (3321333334335 |336 337 (338 [339 [340 (341|342 1343|344 |345 |346 [347 348 |349 |350
351[352 353|354 (355356 [357|358 [359|360 |361 [362 |363 [364 |365 [366 |367 [368 [369 |370 (371|372 (373 [374 375
376 [377[378 1379 1380381382383 [384 [385 [386 [387 [388 |389 390391392 [393 [394 [395 [396 [397 [398 |[399 |400
401]402(403|404]405/406]|407(408|409({410|411]412(413]|414[415|416{417|418(419|420(421[422]423|424|425
426(427(428|429|430]431)|432|433|434|435(436|437|438|439|440]|441]|442|443|444(445(446|447|448]|449)450
451]452(453|454(455|456|457[458|459[460|461(462|463|464[465|466[467|468(469(470(471(472]|473|474|475
476[477[478|479|480]481)|482)|483|484|485(486|487|488]489]490]491]|492|493|494[495[496|497]498]499|500
501[502{503]504]505]506|507)|508|509|510(511]512|513]514]515]|516]|517(518(519(520(521(522]523524|525
526[527(528(529]530]531)532|533|534|535(536|537|538|539]540|541]|542 |543|544(545[546 547|548 549|550
551[552[55315541555]556557)|558|559|560(561(562|563 5641565566567 |568[569(570(571[572|573]|574|575
576/577]578(579]580(581]582]583|584]585(586|587|588|589[590/591]592 (593594 |595|596[597|598 599 [600
601]602]603 /604|605 (606 [607[608[609[610]611]612]|613|614|615[616(617[618(619]620]621]622]623 (624 (625

Figure 2. The 25 x 25 two-dimensional neural network and stimulation neuron groups.
Stimulation T (Top): blue. Stimulation L (Left): green. Stimulation D (Diagonal): yellow.

We calculated the spike-interval sequences of one neuron between 0-120 msec for 10 trials
(Figure 3).

AIMS Neuroscience Volume 3, Issue 4, 474—486.



478

Trial 1
Spike interval 1-1 Spike interval 1-2

Trial 2 e ° °

Spike interval 2-1 Spike interval 2-2
Trial 3

Spike interval 3-1 Spike interval 3-2
Trial 10 ¢ 2 2

Spike interval 10-1 Spike interval 10-2

[msec]

Figure 3. Calculation of the spike interval times from neuronal raster
plots. The vertical axis represents the number of attempts, and the horizontal
axis represents time (msec). The circles indicate the firing times.

2.2. Analysis procedure

We obtained the spike-interval sequences for 625 neurons (total, 6,250 sequences) with
stimulation T (Figure 4) and stimulation L.
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Spike interval 10-1 Spike interval 10-2

Figure 4. Spike-interval sequences for 625 neurons
(total, 6,250 sequences) with stimulation T or L.

2.3. Local DTW

We calculated DTW in a combination of 10 trials (total, 45 sets) to calculate the spike-interval
time differences between the trial sets of stimulation T (Figure 5). DTW was calculated among 10
trials for each neuron. In addition, we conducted DTW in a combination of 10 trials (total, 45 sets) to
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calculate the spike-interval time differences between the trial sets of stimulation L. DTW is an
algorithm that is used to measure the differences between two signal sequences with different time
scales or expansions. When the difference is large, the value approaches 1, while the value
approaches 0 when the difference is small. We measured the DTW values in a combination of 10
trials with the same stimulated groups (T or L) and calculated the average of the 90 sets (two trials of
45 sets). We refer to these calculations as Local DTW (See Figure 5).

Stimulation T (or L)
Spike interval of cell number n(n=1, 2, ..., 625)

Trial 1 — —

_[Local DTW (1)
Ts trial1vs 2
Trial 2 S8,
_ | Local DTW (2) Local DTW (10)
X5 brinl Tiva'd T | Ts trial2vs 3
Trial 3 i
Local DTW @ | ., -
~ | Ta trial1vsd _ [LecalDTWOD |
— T's trial 2 vs 4
Trial 4 & =
* | Local DTW (45)
. ~ T's trial 9 vs 10
Trial 10 i = s

Figure 5. Illustration of Local DTW distances. We computed the
DTW distances for combinations of spike-interval in the trials of the
stimulation T (Trial T1 vs Trail T2, Trial T1 vs Trail T3 ...; totally 45
combinations). For trail L, it is calculated in the same way.

2.4. Inter DTW
We calculated DTW for the combination of the 10 trials (total, 100 sets) in stimulations L and T

in order to calculate the spike-interval time differences between the trial sets (Figure 6). We
calculated the average of the 100 sets. We refer to these calculations as Inter DTW.

Stimulation T Stimulation L
Spike interval of cell number n Spike interval of cell number n
(n=1, 2, ..., 625) (n=1, 2, ..., 625)
Trial 1 s0—— { Tnter DTW (1) e —Trall
S Ts trial 1 vs Us trial 1|
ey Inter DTW (2) R 1
Trial 2 1 s trial 1vs L's rial 2 - Trial 2
x Inter DTW (3} 5
Trial 3 s wial 1 vs Us riel 3| ——— Tl 8
Trial 4~ : . ~Trial4
e Intor DTW (44) [pmpaie®
s trial 4 vs Ls trial 4
Trial 10 ~——_ . ——Trial 10
) Tnter DTW (100}
T’s trial 10 vs L's trial 10

Figure 6. Illustration of Inter DTW distances. We computed the Inter DTW
distances for combinations of spike-interval temporal in the different stimulation
(Trial T2 vs Trail L1, Trial T1 vs Trail L2 ...; totally 100 combinations).
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2.5. T-test

We used two-sided t-tests at the 5% significance level to compare the Local DTW and Inter
DTW results. We determined the number of neurons in which the Inter DTW was significantly larger
than the Local DTW. The neurons with significantly larger test statistics were considered able to
identify stimulations T or L.

3. Results
3.1. Spike propagation

Figure 7 shows the results of a simulation of spike propagation in 10 msec. The transmitting
neurons were stimulated at 0.0 msec. In all of the stimulations (T, L, and D), the spike waves spread
in all directions. The propagation route was changed in each trial.

0.0-0.5ms 0.6-1.0ms 1.1-1.5ms 1.6-2.0ms

0.0-0.5ms 0.6-1.0ms 1.1-1.5ms 1.6-2.0ms

0.0-0.5ms 0.6-1.0ms 1.1-1.5ms 1.6-2.0ms

Figure 7. The spike wave of each simulation group. Upper panels:
Stimulation T. Middle panels: Stimulation L. Lower panels: Stimulation D.

3.2. Positions of the firing neurons with different variances

Figure 8 shows the results of the positions of the firing neurons with different variances. We set
the variances of the synaptic delay and refractory period as 0.167 (yellow in Figure 8) and 2.0 (red in
Figure 8), respectively. The blue in Figure 8 indicates the results with both 0.167 and 2.0 variances.
Figure 8 shows the positions 0.0-6.0 msec after the stimulation. The propagation speed for a
variance of 2.0 (red) was faster than the speed for a variance of 0.167 (yellow). Thus, when the
synaptic delays and refractory periods were changed, the propagation speeds increased as the
variances increased.

AIMS Neuroscience Volume 3, Issue 4, 474—486.
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0.0-0.5ms 0.6-1.0ms 1.1-1.5ms 1.6-2.0ms

Pl il
Mg

Figure 8. Spike waves in response to stimulation T and different variances.
Red: variance 2.0. Yellow: variance 0.167. Blue: variances 2.0 and 0.167.

3.3. Classification of the stimulated neuron groups

In order to ascertain whether the difference between the mean value of Local DTW (90 set of
trial combination) and the mean value of Inter DTW (100 set of trial combination) is statistically
significant or not, a two-tailed t-test was conducted with a significance level of 5% at each cell.
Among them, we picked up and showed the value of Local DTW and Inter DTW (mean + SD) at cell
number 98, 132, 313, 504 and 590 in Table 1. As results, the mean value of Inter DTW was
significantly greater than that of Local DTW (p = 0.03) at cell number 590, while no significant
difference was observed (p = 0.79) at cell number 313.

Table 1. The value of Local DTW and Inter DTW (mean + SD) and Significance between them
(at cell No. 98, 132, 313, 504 and 590). S indicates Significance and NS indicates No Significance

Cell No. Inter DTW Local DTW Significance
98 0.029 £ 0.026 0.020 £ 0.020 S

132 0.037 £0.023 0.039 £ 0.023 NS

313 0.022 £ 0.018 0.023 £0.018 NS

504 0.029 £ 0.025 0.021 +0.016

590 0.020 £ 0.018 0.014 £ 0.014 S

As described in Section 2.5, the neurons with significantly larger test statistics were considered
able to identify stimulations T or L (Identifiable neurons).

Figure 9 shows the percentages of neurons that could identify the stimulated neurons for
neurons with significantly larger test statistics vs. neurons with variances in the synaptic delay and
refractory period. The vertical axis shows the percentage of identifying neurons among the 625. The

AIMS Neuroscience Volume 3, Issue 4, 474—486.



482

horizontal axis shows the variances of the synaptic delay and refractory period in bin?. When the
variances of the synaptic delay and refractory period increased from 0.167 to 0.667, the percentage
of identifiable neurons with different firing time profiles for stimulations T and L increased.
However, when the variance was over 0.667, the percentage of neurons that could identify the
stimulated neurons decreased. In the case of the variances of the synaptic delay and refractory
being 0, the t-test can’t be performed because the variance is 0. Therefore, the result is not
described. Since when variance is around 0.6, there was no special difference in the spike waves,
we didn’t show them in figure 8.

35
30
25
20
15
10

5

Rate of identifiable neurons [%]

0

0 02 04 06 08 1 12 14 46 18 2
Variances of synaptic delay and refractory period in Bin?

Figure 9. The percentage of neurons that could identify the
stimulated neurons and that could communicate. The vertical axis
shows the percentage of identifying neurons of the 625. The horizontal
axis shows the variances of the synaptic delay and refractory period in
bin?. When the variances of the synaptic delay and refractory period
increased from 0.167 to 0.667, the percentage of identifying neurons
with different firing time profiles for stimulations T and L increased.

We examined whether it is possible to discriminate between stimulus T and stimulus L
individually for each neuron. We should have multiply compared at the stage of raw data. However,
for the sake of simplicity, we only t-tested the difference between the mean values of Local DTW and
Inter DTW for stimulus T and stimulus L, respectively. In order to integrate them, we evaluated the
rate of ldentifiable neurons as Figure 9.

4. Discussion

The spike propagation results showed that the propagation route and velocity changed in
response to alterations in the variances of the synaptic propagation delay and refractory period. This
occurred because the synaptic delays and refractory periods with larger variances resulted in faster
propagation of the spikes. As a result, the stimulus arrived earlier. The DTW results showed many
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signaling routes that were spatially different compared with the route for the transmitting neurons to
the receiving neurons. They were transmitted in parallel (Figure 10).

Small fluctuations

Transmitting Receiving
Neuron Neuron

Figure 10. Examples of representative routes from the transmitting
neuron to the receiving neuron. The green circle indicates the
transmitting neuron. The red circle indicates the receiving neuron. Two
thick routes were present when the fluctuations in the variances were small.
When the variances were large, four routes with spread were present.

The spikes that reach a neuron first result in firing of the neuron. Thus, the approximate flow of
information is through this spatially representative route. When the variances in the synaptic
propagation delays and refractory periods were small, the information passed through the thick route
in each trial of Figure 10.

The routes to each transmission neuron from the receiving neuron often overlapped from the
half-way point. In that case, the receiving neuron was difficult to use to identify the transmitting
neurons (Figure 11). If there is large instantaneous variation in the synaptic propagation delays and
refractory periods, the information is thought to pass through temporally various representative
routes (Figure 11).

Identifiable routes

Small Large
fluctuations | fluctuations
Identifiable 2/4 6/8
routes | |
Unidentifiable 2/4 2/8
Unidentifiable | | route | |

route

Transmitting Receiving
Neuron Neuron

Figure 11. When the variances are large, many representative routes are
observed. Therefore, the routes from A and B do not overlap much.
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Thus, if the variations in the synaptic propagation delays and refractory periods increase, the
spike wave will pass through the various representative routes. This then increases the probability of
identification. When the variance is too large with a large bin® the receiving neuron will receive
spike profiles with too much disturbance, which makes identification of the spike wave itself
difficult. These results suggested that changes in the propagation routes of the firing of neurons
required a little variance in the synaptic propagation delays and refractory periods. Thus, variation
may stabilize multiplex communication. In this paper, we simulated the case where the variances in
synaptic propagation delays and refractory periods are the same. In that case, we explained a reason
that the curve of figure 9 has a peak, which seems having high possibility. However, it is necessary to
evaluate it by changing the variances in synaptic propagation delays and refractory periods,
separately. We like to explain that in another paper.

5. Conclusion

Many previous studies have examined neural networks based on their firing patterns from a
macro point of view, while we studied neural networks from the point of view of communication [3-7].
In order to understand information processing in the brain, we conducted simulations that assumed
interactions of the firing activities of a large number of neural networks in the present study. We used
an integrate-and-fire neuronal model without leakage and a 25 x 25 two-dimensional neural network.
We showed how stimulation of the neurons was transmitted to the required neurons in the simulation
as spike propagation occurred in 10 msec after the transmitting neurons were stimulated at 0.1 msec
in the simulation. The two neuron groups were also stimulated with synaptic propagation delays and
refractory periods with different variances. When the fluctuations in the synaptic delays and
refractory periods were changed, the propagation speed increased as the variance increased. These
results suggested that to change the propagation route of the firing of the neurons, some variance in
the synaptic propagation delays and refractory periods is required. We examined the percentages of
neurons with significantly larger test statistics vs. those with variances in the synaptic delays and
refractory periods. The results suggested that variations in the synaptic delays and refractory periods
improved the stability of multiplex communication.

In future studies, we need to examine whether multi-directional spike waves can be identified in
more than two directions and the three-dimensional structure of the network. The present culture
experiment examined not just one stimulated neurons and receiving neuron, but plural. Thus, several
neurons were simultaneously recorded because an external electrode was used in the culture
experiment. The simulation in the present study was used to examine neuron identification. It is
possible to analyze the simulation with more detail. Thus, future studies need to examine the raw
characteristics of each neuron.

AIMS Neuroscience Volume 3, Issue 4, 474—486.
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