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Abstract:
Recent studies support the theory of the brain being composed of modules and certain nodes estab-
lishing connections between the modules [1, 2, 3]. The existence of such connections can only be
identified by conducting a detailed investigation with sophisticated tools. Therefore, in this manuscript
we provide a new mathematical model to indicate the functional dependency, which supports the idea
of information exchange between the neural modules at the highest spatial and hierarchical level of
bottom-up processes using EEG (ElectroEncephaloGraphy) [4]. The developed model is to study the
functional dependencies between different regions of the cortex is based on the Borsuk-Ulam's antipo-
dal symmetry theorem. It is a mathematical model complemented with an innovative algorithm, called
Projection based on Normalized Transformation (PNT), to show the existence of unique neural activity
pattern known as the Antipodal Connectivity. For validating of the model, EEG data collected from
a total of 50 experiments with the participation of 18 different test subjects was used to measure the
effectiveness and accuracy of method. Using the data collected from the subjects in different stages
(active or resting) of the brain, the Antipodal Hub Neurons (AHNs) were captured and compared to
determine the ratio of fluctuation under different conditions and whether or not the stimulus has any
role in antipodal neural connectivity. Although the preliminary results are not conclusive, we have
successfully identified the existence of antipodal behavioral patterns in neural activities.

Keywords: EEG, Antipodal Symmetry, Borsuk-Ulam Theorem, Antipodal Connectivity, PNT,
AHNs, Neural Communities, Antipodal Hub Neurons
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1. Introduction

A neural network, which has the property of a modular/colonial structure and controls the infor-
mation behavior of a human, is governed with a set of organizational principles. The structure in this
modular/colonial environment is hierarchical and connections are established through the mutually ex-
clusive nodes. We hypothesize that the decision mechanism behind a cognitive process takes place
at the highest hierarchical and spatial level. The hierarchy is present between both functional and
structural connections such that the neural signal paths emerges in white matter and concludes at gray
matter. Such understanding is analogous to the wiring principles of the cerebrum that white matter
accommodates the myelinated axons, which carry impulses to the cerebral cortex. (This generalization
is also supported by the widely-accepted convention that the white matter accommodates the myeli-
nated axons, which carry impulses to the cerebral cortex.) In this context, we are trying to unify the
cognitive decision-making mechanism rather than trying to distinguish it between certain regions of
the brain. The complexity of the cognitive decision mechanism can be observed in patients after a brain
surgery. Although removing some portions of the brain may stop the progression of diseases, the brain
loses some of its previous capabilities that were not related to that region, after the surgery. This sug-
gests that there is a higher-level hierarchy in decision-making. Note: The decision-making mentioned
here should not be confused with the decisions related to conscious choices. We assume that storing
or sending information between neural populations is an internal cognitive decision-making process
that starts at the lowest hierarchical structural level and concludes at the highest level in the hierarchy
before any related task is completed. The rationale behind this approach lies at the very foundation
of how the brain operates. Brain is constantly active whether it is in resting or active state because
of the continuous blood-flow even in the deep sleep stage known as N3, which can be observed with
EEG. Therefore, the brain may operate in a much more complicated and unified fashion rather than
depending on single regional interactions for cognitive decision-making. Existing methods in neu-
roscience have made important advances in the last two decades with the introduction of functional
Magnetic Resonance Imaging (fMRI), diffusion-MRI, and arterial spin labeling. Inductive reasoning
constitutes the foundational background for these technologies that the final conclusion depends on
examining the relationship between smaller fragments of a larger implication. The complexity of the
relationship between structural and functional connectivity amongst the neural communities makes
inductive reasoning extremely challenging in providing a solid understanding of the cognitive func-
tionality. Although the methods have been proven to be effective in neural analysis, one fundamental
disadvantage is in the defining of the size of the fragments. This is a tedious task because of the
immense number ( 100 billion) of neurons in the mammalian brain. Moreover, the brain operates
non-linearly, inferring that the size of the communities is dynamic and the contributions of these com-
munities do not have identical effects on the final conclusion. We believe the size, boundary, hierarchy
and assignments/responsibilities of neural communities are dynamic, in opposition to the general con-
cept of predetermined size of modules. Therefore, in spite of the general convention of identifying
the closely coupled neurons as neural modules, we prefer a new term; neural communities because the
word community not only symbolizes the dynamic relationships and associations but also emphasizes
the hierarchical foundation of it. Therefore, a new approach based on deductive reasoning is devel-
oped for neural analysis. Such an approach will represent the activity of the neural populations more
realistically because of the following reasons:
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1. Hemispherical shape of the brain and tendency of the electric current to flow on the surface of a
curved conductor

2. Proven modular connectivity between neural populations

3. Overall decision-making mechanism is at the highest spatial level due to Reason 1.

A schematic diagram showing the differences between inductive and deductive reasoning is pro-
vided in Fig.1.

Figure 1. The flow diagrams of inductive and deductive reasoning

For the reasons explained above, EEG emerges as an excellent candidate for utilizing the deductive
approach because of the data collection method. However, the existing EEG data analysis methods are
not reliable for this task and an enhanced and innovative data analysis models associated with a proper
tool is needed in order to:

1. Contemplate the voltage emerging from neural electrical activity via the limited cross-sectional
area of the electrode in a single dimension, and

2. Collect EEG data from separate electrodes (also called channels or sensors) for simultaneous
correlation in the third-dimensional complex domain.

2. Theoretical Foundation

Understanding physiological process in the brain requires formal system models. Therefore, the
connectivity is a core component of such models. According to a recent study [5], 70% of all infor-
mation within the cortical regions in the brain passed through only 20% of these regions neurons. In
other words, the 20% of this ration are referred to as Hub-neurons. Recent studies conducted at Indiana
University [5] Hub-neurons not only aid in understanding the information processing behavior of the
cortex but also reveals some feedback on the impact of neurogenerative diseases that effects the net-
work. Hub-neurons are known to be information rich and have a direct or indirect link in the process of
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forming the antipodal connections. Although the existence of Hub-neurons, which carry the majority
of information between cortical regions in the brain, have been reported in [6, 7, 8, 9], the first known
mathematical model showing their existence was introduced by [8, 9]. This study, therefore, proposes
the introduction of a potential cognitive biomarker called Antipodal Hub Neurons (AHNs) along with
the associated hypothesis called antipodal connectivity of neural communities, in an effort to provide
a better perspective in cognitive dynamics (Fig.2).

Figure 2. A visual representation of the colonial and collective information bridging
antipodal connectivity detected between the EEG electrodes, FP1 and FP2. Information
is conveyed between the neural communities until reaching the final stage point/area
underneath the electrodes.

The complexity of the brain is complemented with the activities resulting from neural communica-
tion and coordination. Extracting details of the process is inadequate if a simple analysis is conducted.
Therefore, a comprehensive analysis with a solid theoretical foundation should be conducted at differ-
ent levels to capture the details. Hence, a theoretical model, based on the potentials of Gauss’ Law
and Borsuk-Ulam theorem, were adapted to project single dimensional EEG data to third-dimension
by complex analysis thus, the detailed communication and coordination of neural communities at the
highest spatial and hierarchical level can be examined.

2.1. Gauss’ Law

Gauss Law states that “the total electric flux (φ) out of a closed surface is equal to the charge (Q)
enclosed divided by the electrical permittivity (ε)”, i.e. φ=Q/ε [10, 11] (Fig. 3). The electrical charges
inside a solid closed surface (for example; skull) will move freely until the excess charges gather on
the surface of the conductor. The charged particles will continue their motion until the electric field
inside the conductor will be zero, which is known as electrostatic equilibrium.

Generally speaking, Gauss Law [12] states that the positive electrical charge density inside a con-
ductor sphere creates an electrical field pointing outward. A similar assumption can be made for the
brain, which resembles a hemisphere, since a certain amount of electrical current is flowing through
the surface in a given time due to the continuous activity of the neural communities. However, the
electrostatic equilibrium can only be held for a very short period of time as a result of this perpetual
activity. The cerebral cortex and the cerebrospinal fluid are electrically conductive [13]. Therefore,
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Gauss Law is an excellent representation of how the electrical charges gather on the outer surface of
the conductive margin of the brain, creating an electric field (Fig. 3).

Figure 3. A − Visual representation of Gauss Flux Theorem showing the electrical field
(E) generated by a positive point charge (Q) pointing outward, which is perpendicular
to the area in blue. B − Uniform positive charge density (Q) of a conducting sphere
creating an electrical field surrounding the charge density. C − The positive electrical
charges inside the closed surface gathering on the surface of the solid electrical conduc-
tor. These charges create an outward electrical field surrounding the sphere.

2.2. Borsuk-Ulam Theorem

The antipodal connectivity hypothesis is based on the antipodal-points concept of the Borsuk-Ulam
theorem[14]. The theorem describes the existence of a pair of points, which are 180 degree apart on
a spherical surface, having the identical shared value at a given time. Accordingly, we hypothesize
that this principle is also true between the neural communities. Hence, there exists a pair of neural
communities connected through a set of hub-neurons that are apart at the highest spatial level and share
identical information simultaneously. This is credible evidence indicating that a paired connection
based on shared value exists between those communities. These pairs are defined as the AHNs and
the associated sets of communications are defined as antipodal connectivity of neural communities. A
schematic representation of this hypothesis is provided in Fig. 4.

Borsuk-Ulam Theorem is the one most commonly used in complex analysis and algebraic topol-
ogy to extract details [15, 16]. The formal definition of the theorem, which was introduced in 1933,
states, “Every continuous mapping of n-dimensional sphere, S n into n-dimensional Euclidean space,
Rn, identifies a pair of antipodes”. More specifically, for every continuous mapping f : S n → Rn there
exists a point x ∈ S n such that f (x) = f (−x).

The behavior of the neural populations is intricate to understand with raw EEG data. Therefore,
discovering the antipodal points to understand the dynamically cohesive nature of coupled neurons
needs a preprocessing step, which is crucial for neural interactivity analysis and mapping [17, 18]. For
this step, the data needs to be projected into a higher dimension through the use of the Borsuk-Ulam
theorem.

The identification of antipodal structures is a significant part of the dynamically cohesive nature
of coupled neurons. For instance, if there is a change in the number of antipodal pairs for different
activity stages of the brain, it suggests that there exists a pattern of cohesive cooperation between the
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Figure 4. Visual representation of Borsuk-Ulam theorem. Two antipodal points (black
dots) on the complex sphere projected to a single point on the complex punctured plane.

communities. This is calculated by evaluating the existence of antipodal points between the different
EEG channels at a given time (t). Furthermore, the existence of antipodal points is evaluated in the
proceeding discreet-time-step (t + 1) until all the selected window is processed (t ∈ {1, 2, 3, ...,W})
where W is the window length. The analytic signals from multichannel EEG data are compared at
every time-step (t = 1, 2, 3, ...,W) by using a mathematical model called PNT, which is based on
Borsuk-Ulam theorem. The selection of W is based on the given stimulus (i.e. “resting” and “active”).

3. Mathematical foundation of PNT Model

Expanding on the Borsuk-Ulam theorem, the PNT model provides a mathematical formulation for
analyzing the antipodal connectivity at the highest hierarchical level. PNT is designed to extract the
structural patterns in the cognitive decision mechanism using EEG test data recorded with different
stimuli. PNT is a three-step processing algorithm. Order of the steps is as follows; 1- Transforma-
tion, 2- Normalization, and 3- Projection. The phase information is obtained by using transformation,
which is required for assessment of the synchronization between sensors. Additionally, Hilbert trans-
formation yields to an analytic signal (R2), which has only positive frequencies. The analytic signal
is free of negative frequency content which is physically meaningless. Normalization is used to con-
fine the transformed data into a unit disk which enables uniform processing for all data sets. Finally,
the normalized EEG signal is mapped on the unit sphere with the help of Projection. The resulting
mathematical formulation for PNT process is given below.

In Eq. 1, EEG data, which includes the amplitudes, is converted into analytical signal using Hilbert
transformation (H) to extract complex attributes channel by channel, f ∈ R→ f ∈ C(D), i.e. [19].

f (x, t)
H
−→ f (x + iy, t) (1)
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where, x is the original signal and y is Hilbert transform of the original data which are real and imagi-
nary components of the analytic signal on the complex plain respectively.

Driving from the formal definition, the function G, a closed unit disk on the upper hemisphere, can
be defined by the function f in the complex domain as [15]:

f (x + iy, t) = G(x, y,
√

1 − x2 − y2, t) (2)

where,
√

1 − x2 − y2 is the z component in the Cartesian coordinate system. This statement is reversible
if the function f is one-to-one and onto, such that a function f that exists on a complex domain (Rn),
can be projected onto a sphere by the function G [15]. The high level representation of PNT method is
shown in Fig. 5.

Figure 5. The high-level schematic representation of PNT method.

The general formula of the PNT method is given in Eq. (3).

GP{e}t

{−−→
N{e}W

{−−→
U {e}W

{−−→
X{e}W

}}}
(3)

where U : R → C, W is the window size, and t is the discrete time-step, which is between 1 and W.
i.e., 1 ≤ t ≤ W ∈ t = {1, 2, 3, ...,W}. e denotes the electrode number out of total number of electrodes.
i.e., e = {k, l | F p1, F p2,Cz, ...,Oz,O2}.

The data collected with 14-channel EEG system to test the capabilities of PNT method is processed
in a segmented fashion, where each data (signal) segment is composed of data points (p) (in our case
we used 1024 data points, due to the stimulus used in the experimentation). Thus, X is a matrix with
rows (r) (in our case we used 14 rows) and p columns, as shown in Eq. (4).

−−→
X{e}W = {x{e}1 , x

{e}
2 , ..., x

{e}
W } (4)

where
−−→
X{e}

W
, raw EEG data, is transformed vector by vector using Hilbert Transform. Therefore, the

output signal, U, is also a matrix, which has the same dimension as in Eq. (5).
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−−→
U {e}W = {x{e}1 + y{e}1 , x

{e}
2 + y{e}2 , ..., x

{e}
W + y{e}W } (5)

where x{e}t + y{e}t was defined as u{e}t , therefore the general formula of Transformed data as given in Eq.
(6).

−−→
U {e}W = {u{e}1 , u

{e}
2 , ..., u

{e}
W } (6)

According to Eq. (2), one fundamental constraints of projection onto the upper hemisphere is that
the real and imaginary data must be smaller than 1. Therefore, the normalization is performed to
prepare the data for projection. In other words, performing normalization for each vector produces an
output signal, which is a unit circle in complex plane, as shown in Eq. (7).

−−→
N{e}W = {uη

{e}

1 , uη
{e}

2 , ..., uη
{e}

W } (7)

Calculating the third dimension using the real and imaginary parts of data is to monitor the closely
coupled neural activities. Therefore, function G : R2 → S 2 is defined. The main objective is to discover
two electrode pairs having equal PNT values in three-dimensions at time, t. Hence,

Gt(xη
{e}

t , yη
{e}

t ,

√
1 − xη

2

t − yη
2

t ) (8)

where;
x{e}t : The real part of the data collected from sensor e at time t.
xη
{e}

t : The real part of the data collected from sensor e at time t after normalization.
y{e}t : The imaginary part of the data from sensor e at time t.
yη
{e}

t : The imaginary part of the data from sensor e at time t after normalization.
The GPt function is the simplified version of Eq. (8). The function requires two input values, which

are real and imaginary parts of the specific data to calculate the third dimension value, as shown in Eq.
(9).

GPt =

√
1 − xη

2

t − yη
2

t (9)

Once the complex attributes of EEG data is extracted using Hilbert transform, they are projected
onto the upper hemisphere using Eq. (9). This process is repeated for every channel at each time-step.
Thus, the 3-D values are calculated in spatial-temporal domain from 1-D EEG amplitudes. When the
degree of similarity between 3D values for channel-pairs are closely identical (≤ 0.00001) at a time-
step, t, two remote communities at the highest spatial level (right below the electrodes) are assumed
to have bridged a connection at the highest hierarchical level. Such neural communities are defined as
AHNs. Hence, the following formal definition holds.

Definition-1: For all electrodes, there exist two different sensors (k and l), which have approxi-
mately the same 3-D values at time t (Eq. (10)).

∀ e ∃ k, l 3 GPt(u
η{e|k}

t ) � GPt(u
η{e|l}

t ) (10)

With respect to the formal foundation established for PNT model, it is safe to make the following
observation.
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Observation-1: In the spatial-temporal complex domain, there exists a pair of sensors whose projected
3-D values are equal with 5-digit precision in terms of real and imaginary parts.

4. Method

Since the approach and the mathematical model provided in this study have not been tested before,
evaluation of the measurable outcomes is purely based on this experiment. We initially hypothesized
that the amount of Antipodal Hub Neurons (AHN) varies according to the brain’s current stage, which
is active or resting. In order to test this hypothesis, we conducted this comprehensive experiment on
normal subjects with different age groups and sexes. In our study we also hypothesized that the number
and meaning of the AHNs can change with the frequency bands of the EEG data. The best known and
used frequency bands of the EEG data is between 1-60 Hz, dividing the EEG data into five main bands,
i.e., delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (30-60 Hz) [20]. The
waves, delta through beta, are associated with problem solving, memory functions, relaxation, and
creativity [21].

4.1. Materials and Environment

For the experimental setup, a EEG system with 14 channels is used to record the data. It has the
same properties of an international 10-20 system with a channel configuration as follows; AF3, F7, F3,
FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4. The EEGLAB which is an open-source and the
most widely used toolbox in the world to analyze the EEG data [22] was used to filter the data .

The data collection environment is designed in such a way to avoid any noise and artifacts. There-
fore, without causing any distraction a list containing 26 letters were laid out randomly on a cardboard
display that was placed in front of the test subjects at a distance of approximately five feet (see Fig. 6).

4.2. Participants

After obtaining the IRB certification, 18 individuals of different age groups and sexes (11 males and
7 females) were recruited to participate in the data recording. Subjects were given small condiments 45
minutes prior to the experiment. Thus, the subjects are assumed to accomplish the tasks under similar
physiological states. The age range for the male and female participants are 25-56 (average 28.1) and
21-45 (average 27.9), respectively.

4.3. Procedure

As shown in Fig. 6, subjects were asked to follow a certain procedure to complete experiments. The
steps were explained to the subjects before the experimentation in order to unify the testing procedure.

1. Subjects start the procedure with their eyes closed while listening to background music.

2. Data recording starts after a short while ensuring that the subjects were only concentrating on the
music.

3. After 10 seconds, a trigger signal goes off notifying the subjects to open their eyes and start
searching for the letters of a predetermined 5-letter meaningful word in order in the least possible
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time. Up to this point, subjects had not seen the letters on the cardboard hence; the process would
require a certain level of challenge.

4. Upon finding the word on the cardboard subjects snap their fingers as a confirmation of accom-
plishing the task.

Figure 6. EEG data collection with arbitrarily laid out letters after a resting period.
Test subject (right) was trying to find letters on the cardboard while data was analyzed
by the technician (left).

Calm classical music is used as background noise to help subjects relax and to foster an idle state of
the brain as much as possible [23, 24]. The initial 10-second period was determined as the control data
where brain activity was assumed to be minimum/default. In this context, a quiet environment was not
desired since the subjects might indulge in other thought processes. Three unique 5-letter words were
chosen for the test, which consisted dissimilar letters for each word.

4.4. Analysis

In total, 54 experiments were conducted. The participants were asked to find letters in the correct
order under 1 minute. Although, there was no limitation for the duration of experiments, finding each
of the 5-letter words lasted 8 seconds on average. During Experiment-3, participants 1, 3, 5, and 18
completed the task in an amount of time relatively shorter than required (≥ 8secs) therefore extracting
meaningful information from that data set was not possible. Hence, they were excluded from the results
due to the unreliable information they might carry. The collected data were analyzed using a FIR filter
implemented in EEGLab [25] for noise reduction and band selection for the related brain activity.
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5. Results and Discussion

Using PNT method, a total of 50 experiments were analyzed to show the existence of AHN net-
work structure in the brain network. The significant increase in the number of AHNs in active stage for
Experiment-2 with Subject-5, and Experiments 2 and 3 with Subject-6 were detected, these findings
were defined as outliers and excluded from the result. Fig. 7 shows the histogram of PNT results for
47 experiments where significant increase in the number of AHNs were detected in active brain stage
relative to the resting stage. The majority of AHNs are encountered in frontal and parietal cortex. The
total number of AHNs for all the test subjects during the resting stage and active stage are 1564 and
2957, respectively. In other words, the average number of AHNs per experiment during the resting
stage and active stage are 33.277 and 62.915, respectively. These results confirm that the AHNs in-
creased approximately 2 times on average during the active stage. Additionally, the standard deviation
of AHN counts for each experiment during the resting stage is 23.01, while it is 40.786 at active stage.

Considering the results presented in Fig. 8 and in Table 1, we encounter a similar conclusion in that
all of the test subjects (mean) showed an increase in activity and number of AHNs while their brain
was engaged with some tasks. Additionally, a randomly generated (Gaussian distribution) data set was
processed with PNT method. For consistency, each data set was produced to contain an equal number
of data points as the real EEG waveforms collected during the experiments. The AHN counts for the
data set were significantly less than that of the EEG data collected from the subjects which verified
that the occurrence of antipodal connectivity is not random but depends on the level of activity. This
confirms the reliability of the proposed formal methodology. provided in this study.

Due to the non-consistency pattern, i.e.,there were no consistent number of AHNs detected for the
test groups (see Table 1) used in the experimentation, a statistical analysis was conducted to compare
the significance of average numbers of AHNs encountered during the resting stage with active stage and
resting stage with randomly generated data per subject. Since differences between data sets(randomly
generated, active, and resting stages) individually were not normally distributed, the non-parametric
statistical method (Mann-Whitney U test) was used. Firstly, the Mann-Whitney U test was applied to
the resting and active stages data sets to reject the null hypothesis, since it states that two data sets are
not significantly different at p≤0.01(probability).The default critical value of U is 81 when p≤0.01 and
n=19. With respect to the comparative analysis performed on different data (resting-active) sets,the
U-value calculated to be 54.5 which is smaller than the critical value of U at p≤0.01, hence the null
hypothesis was rejected. Similarly, the random generated and resting stage data sets revealed U-value
of 6 which is smaller than the critical value of U at p≤0.01. Nonetheless, the final outcome of the
analysis indicated a significance differences between randomly generated data and resting stage data
and the resting stage data with active stage.

It is worth noting that, an EEG system with more channels may be more efficient to capture more
AHNs during the active stage, since the brain is operating in a non-linear fashion as mentioned the
non-stationarity of the EEG signals can be observed during the change in alertness and wakefulness
[26]. In other words, electrical activity of the brain varies with the level of processing.

Out of hundreds of AHN pairs detected by the PNT algorithm, an AHN pair captured by the Sensors,
F4 and O2 is illustrated in Fig. 9. PNT detected this AHN pair at t = 1.66 seconds. Therefore, in order
to test the validity of the PNT method, the amplitudes of the concurrent EEG values are compared to
detect any similarities for the same sensors as a control measure.
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Figure 7. Antipodal connectivity results in 1-31 Hz band for 47 experiments. Results in-
dicate that approximately 92% of the experiments show increased activity and number
of AHNs while the brain was engaged with the task.

Figure 8. The average number of AHNs in 1-31 Hz band for 18 subjects individually.
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Table 1. The average number of AHNs (random, resting, and active) per subject

Number of Antipodal Hub Neurons
Subject Number Randomly Generated Resting Stage Active Stage

1 8 19 36
2 17 55 77
3 14 33 48
4 11 43 65
5 18 52 84
6 3 96 280
7 6 49 67
8 2 21 36
9 7 13 69

10 3 25 58
11 19 24 86
12 11 68 83
13 19 23 35
14 6 26 43
15 8 23 32
16 3 22 54
17 9 25 51
18 4 31 72

Figure 9. The AHN pair detected by Sensors F4 and 02 at t=1.66 seconds.
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The compared data sets show that the concurrent raw EEG amplitudes are dissimilar while the PNT
values are identical with a precision of ten thousandths. Table 2 shows the comparison between the
values of three AHNs detected with PNT (t=1.66, 12.65, 14.48 seconds) and the amplitudes of the
raw EEG data for the same sensor pair (F4 and O2). These results confirm that raw EEG data is not
sufficient to discover AHNs without using the PNT. Additionally, the increase in AHN counts in the
active stage compared to that of the resting stage strongly suggests that there is a pattern. Although,
such a pattern is not fully understood yet, the increase in the correlated pairs detected by PNT presents
strong evidence for its existence.

Table 2. The comparison between the values of three AHNs detected with PNT and the
amplitudes of the 1-31 Hz EEG data for the sensor pair F4 and O2

1-31 Hz EEG Amplitudes 3-D Values from PNT
time (sec) O2 F4 O2 F4

1.66 -8.029 5.654 0.976607143616050 0.976608882839799
12.65 -2.001 -4.622 0.984382629815184 0.984375119249569
14.48 -0.3727 0.2089 0.999775830582554 0.999781126238373

As another control measure, the raw EEG values from all the channels are cross-correlated at each
time-step to identify the potential similarities. As an example, raw EEG values are displayed for the
concurrent AHN pair (Fig. 10). No correlation was detected between the raw EEG channels, which
verifies that the PNT is capable of detecting the connections established between the remote neural
communities, using complex analysis. These deductions were satisfactory to conclude that connections
are established between the remote communities, which AHNs not only exist but also have significant
importance.

There are a few other deductions worth mentioning. The processed data which was filtered between
1-31 Hz, is the most suitable band for the PNT algorithm, showed the difference in engagement of the
neural communities in resting and active brain stages. The difference in AHN counts are not consistent
with that of the 1-31 Hz band when the 1-60 Hz band is examined (i.e. gamma wave band is included).
Therefore, our results support the idea that not all neuroscientists are convinced of the existence of
gamma waves, which are thought to be the artifact of the electromyographic activity [27, 28, 29].

It was observed and previously mentioned that processing a shorter EEG signal might bias the re-
sults. Since EEG data is non-stationary [26], selection of the Hilbert window plays a crucial role in
calculating the AHN counts. Selecting a shorter Hilbert window results in drastically fewer AHNs
because it fails to accurately detect the changes in the frequency content of the EEG data for a specific
stimulus. Since the method intended to compare the AHN counts during the resting and active stages,
the resting period is characterized as one stimulus while the active period is characterized as another.
Therefore, the Hilbert window size was selected according to the length of these stimuli for the exper-
imentation. For example, doubling the size of the Hilbert window increased the AHN counts by three
to four times in both stages. Therefore, the mathematical model provided in this study to validate the
existence of the antipodal connectivity structure is satisfactory because not only does raw EEG data
show no correlation but also antipodal connectivity structure conforms to the nonlinearity principle
[26] of the brain’s cognitive processing.
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Figure 10. The amplitudes of the 1-31 Hz EEG values are marked with red circles for
the concurrent AHN pair detected by the Sensors F4 and O2 at t=1.66, 12.65, 14.48
seconds

Neural activities are evolving in an organized fashion. In recent studies [6, 8], confirmed this
evolution in focusing on the cortical functional connectivity, known as default network [30, 31, 32,
33, 34, 35, 36] and the interactions in the spatial-temporal domain. While investigating the regional
connectedness by modeling the interactions, we realized a unique set of dynamic coupling reflecting
the existence of antipodal structures among regions.

6. Conclusions

Borsuk-Ulams antipodal symmetry theory was adapted to establish the mathematical foundation for
the PNT model. The PNT was tested on the EEG data collected in 50 experiments. A test procedure
was established to distinguish the AHN counts during resting and active stages of the brain. According
to these results, AHNs increase when brain is engaged with tasks such as problem solving and/or
focused attention. There are no certain number of AHNs for each task due to two immediate factors;

1. the limited number of EEG data sets,

2. unique processing characteristics of each brain.

There are possibly additional factors that play a key role in AHN counts. However; this will require
more testing and more detailed investigation. The precision of the system is also a key factor in
determining the occurrence rate of antipodal connectivity, which was kept at hundred thousandths
(10-5).

The occurrence rate of antipodal connectivity is not random but depends on the stimuli and the
selection of Hilbert transform window size. This is due to the non-stationary behavior of the electrical
activity, which also causes antipodal connectivity to be a nonlinear process. Nonlinearity and lack of
randomness of antipodal connectivity is substantially correlated with the previously proven theories.
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Our results indicated that the AHN counts are more reliable between the 1-31 Hz band. This frequency
band corresponds to the frequency band of the EEG signals, delta through beta, associated with the
different stages, such as mediation through problem solving, respectively, but the upper limit of this
band is usually at 38-40 Hz (beta waves). This suggests that the activity bandwidth may actually be
shorter.
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