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Abstract: In cancer, the production of ATP depends mainly on glycolysis, usually accompanied by the 

dysfunction of the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). 

Nicotinamide adenine dinucleotide (NAD+) is a coenzyme for various biological enzymatic reactions 

such as those involved in the TCA cycle. To investigate the molecular mechanisms involved in 

carcinogenesis, the transcription system of genes associated with mitochondrial function should be 

elucidated. In this study, we isolated several mitochondrial function-associated bidirectional promoters 

and tested whether they responded to NAD+-metabolism regulating compounds, namely, trans-

resveratrol (Rsv), 2-deoxy-D-glucose (2DG), 3-amino benzamide (3AB), and olaparib (OLA), in HeLa 

S3 cells. Transient transfection and luciferase (Luc) reporter assay showed that the IDH1 promoter was 

prominently activated by these compounds. The IDH1 gene, which encodes a nicotinamide adenine 

dinucleotide phosphate (NADP+) dependent isocitrate dehydrogenase, is frequently mutated in glioma 

and leukemia cells. In this study, RT-PCR showed that IDH1 gene and protein expression was induced 

in response to the NAD+-regulating drugs Rsv and 3AB. However, IDH1 protein amount was rather 

stable at control level. The result suggested that a post-transcriptional controlling system works to keep 

IDH1 at a stable level. 
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1. Introduction 

Generally, mitochondrial dysfunctions are observed in cancerous cells [1]. Furthermore, as we 

age, the risk of developing cancer increases. This is in contrast to decreasing levels of cellular NAD+ [2]. 

Previously, it was shown that the cellular NAD+/NADH ratio increases in response to trans-resveratrol 

(Rsv), 2-deoxy-D-glucose (2DG), 3-aminobenzamide (3AB) and olaparib (AZD2281) (OLA), in HeLa 

S3 cells [3]. A natural polyphenol, Rsv, which is contained in the skins of grapes, berries and peanuts, 

not only has an anticancer effect but also extends the life spans of various organisms [4]. Rsv is 

synthesized in plants in response to various environmental stresses such as fungal infection and UV 

irradiation [5,6]. Both cis and trans isomers are known, but biological activities are only reported for 

the trans isomer (3,5,4'-trihydroxy-trans-stilbene). Generally, Rsv is known to be beneficial for health, 

preventing obesity, diabetes and inflammatory and neurodegenerative diseases, affecting the 

cardiovascular system and a cancer-causing signaling pathway [7,8]. 2DG is a glucose derivative that 

limits glycolysis to induce autophagy [8]. The delay in cell proliferation without leading to severe cell 

death has been observed in clinical trials with 2DG [9]. Since 2DG inhibits glycolysis and nucleotide 

production, sensitivity to drugs and radiation could be induced [10]. 3AB resembles NAD+ in structure 

and inhibits poly ADP-ribose (PAR) polymerase (PARP) [11,12], which localizes both in nuclei and 

mitochondria, playing essential roles in DNA repair, maintenance of the chromatin and cell survival. 

In the presence of DNA strand breaks, PARP binds to the breakage sites to synthesize PAR, consuming 

an NAD+ as a substrate [13]. In normal cells, a homologous recombination system will help cells to 

survive. However, in cancerous cells that have BRCA1 or BRCA2 mutations, PARP inhibitors (PARPi) 

effectively induce cell death [14]. The first approved PARP inhibitor, OLA, induces autophagy and 

mitophagy in BRCA mutated ovarian and breast cancers to suppress proliferation [15]. PARPi are 

expected to reduce consumption of NAD+ in PARP-activated cells. 

In this study, the bidirectional promoters of the human mitochondrial function-associated genes 

were amplified by polymerase chain reaction (PCR). They were ligated into the multi-cloning site 

(MCS) of the Luc reporter plasmid pGL4.10[luc2]. Multiple transfection [16] and Luc assays in HeLa 

S3 cells showed that the IDH1 promoter positively responded to all four NAD+-affecting drugs. 

Quantitative RT-PCR and Western blotting showed that both gene and protein expressions of the IDH1 

were induced. Deletion and point mutation experiments narrowed the drug responsive region, 

containing duplicated GGAA and the GC-box. These findings suggested that up-regulation of 

NAD+/NADH induces IDH1 to accelerate conversion of citrate to -ketoglutarate, which could then 

be imported into mitochondria, assisting progression of the TCA cycle. 

2. Materials and methods 

2.1. Materials 

Four compounds were tested if they could affect promoter activities. trans-Resveratrol (Rsv) (Cat. 

No. CAS501-36-0) [17] was purchased from Cayman Chemical (Ann Arbor, MI), and 2-deoxy-D-

glucose (2DG) and 3-aminobenzamide (3AB) were purchased from WAKO Pure Chemical (Tokyo, 

Japan). Olaparib (OLA) was from ChemScene, LLC (Monmouth Junction, NJ). Rsv is known to 

upregulate mitochondrial complex I, which oxidizes NADH to produce NAD+ [18]. 2DG has been also 

reported to increase cellular NAD+/NADH level [19]. 3AB and OLA are well known as PARP 
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inhibitors [15,20]. It has been reported that NAD+/NADH level in HeLa S3 cells could be upregulated 

by 8 h treatment of Rsv (20 M), 2DG (8 mM), 3AB (5 mM), OLA (2.5 M) [3]. 

2.2. Cells and cell culture 

Human cervical carcinoma (HeLa S3) cells [16] were grown in Dulbecco’s modified Eagle’s 

medium (DMEM) (FUJIFILM Wako Pure Chemical, Osaka, Japan), supplemented with 10% fetal 

bovine serum (FBS) (Biosera, East Sussex, UK) and penicillin-streptomycin at 37 ℃ in a humidified 

atmosphere with 5% CO2. 

2.3. Construction of Luciferase (Luc) reporter plasmids 

Various Luc reporter plasmids, carrying approximately 500 bp, which contain both transcription 

start sites (TSSs) of the human bidirectionally transcribed gene pairs (Figure 1), were constructed by 

a slight modification of the procedure that has previously been described [17,21]. 

 

Figure 1. Mitochondrial function-associated gene promoters. The 5'-flanking regions of 

human mitochondrial function-associated genes, which were inserted into the MCS of the 

pGL4.10[luc2] vector, are shown. The TSSs or the 5'-ends of cDNAs are designated +1. 

These genes are head-head linked with bi-directional partner genes, which are transcribed 

from right to left. The JASPAR2018 program (threshold >98%) (http://jaspar.genereg.net/) 

was performed, and putative transcription factor binding elements are shown schematically. 

Briefly, PCR was performed with sense/antisense primer-pair (Table 1) and genomic DNAs, 

which were extracted from HeLa S3 cells. The amplified DNA fragments, containing 466, 494, 306, 

732, 369, 414 374, 425, 596 and 345 bp of the human ACRY/TTC25, ACO2/PHF5A, ATP5C1/KIN, 

CDK2/PMEL, COX15/CUTC, IDH1/IDH-AS1, MRPL32/PMSA2, MRPL37/SYB5RL, 

MRPS327/PTCD2 and MRPS30/MRPS30-DT bidirectional promoter regions, were treated with 
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appropriate restriction enzyme(s). Then, they were ligated into the multi-cloning site (MCS) of 

pGL4.10[luc2] (Promega, Madison, WI). Resultant plasmids, containing the correct/(reverse) 

orientations, were named, as indicated in Table 1 and Figure 2. 

Table 1. Primer pairs used for amplifying 5’-upstream regions of the human genes. 

Luc plasmid Primer Sequence (5’ to 3’) 

pGL4-IDH1 

(pGL4-IDH1AS1) 

hIDH1-5914 

AhIDH1-5502 

TTCAAGCTTCGCTGTCGGGATTCGGGACTGAATCT 

TTTAAGCTTGGAGCCTGAGGTTACCTGCCGGGATG 

pGL4-ACLY 

(pGL4-TTC25) 

hACLY-2813 

AhACLY-2349 

TTCAAGCTTTAGAAAATTCCCCGCACAGGTAGAGC 

TTTAAGCTTACCACGTATGCCTCATCCCTATTCGG 

pGL4-ACO2 

(pGL4-PHF5A) 

hACO2-4533 

AhACO2-5033 

TTCAAGCTTAGCCATAGCTCCTAACTAAGCCGGCC 

GGGAAGCTTTGTGCACTGACAAAGATGAGGTCGCA 

pGL4-ATP5C1 

(pGL4-KIN) 

hATP5C1 

AhATP5C1 

ATCTCGAGTAAGAAAATCCGACTTCCCCAT 

ATCTCGAGAACATGGTAGCCACAGCCCTGC 

pGL4-CDK2 

(pGL4-PMEL) 

hCDK2-5996 

AhCDK2-6839 

GGGAAGCTTAGCACCAGATCCATTGTGTTC 

TTTAAGCTTGAAACAATGTTGCCGCCTCCC 

pGL4-COX15 

(pGL4-CUTC) 

hCOX15-2379 

AhCOX15-2012 

TTCAAGCTTCGCTCAGAGGAGGCCCCCTGC 

GGGAAGCTTCAAGGCCCTCAACGGCGGAAA 

pGL4-CS 
hCS-1991 

AhCS-1485 

ACAGGTACCTCCATGGCCGTGAAGCCATTAACC 

AAAAAGCTTGACAAGGTTGAAAGGAGGCGGCTG 

pGL4-FH 
hFH-6212 

AhFH-5730 

ACAGGTACCTATTTCATTATCTACACTTTGCTG 

AAAAAGCTTGGGTAGAATTTCTGGGCGGCTGTG 

pGL4-MRPL32 

(pGL4-PMSA2) 

hMRPL32-2004 

AhMRPL32-2482 

CCCAAGCTTCCATACCTGAATGTAGTCAGC 

CGGAAGCTTCCGTAGCAGTCGCTCCCAGTA 

pGL4-MRPL37 

(pGL4-CYB5RL) 

hMRPL37-2096 

AhMRPL37-2545 

TTTAAGCTTACAGCGAGGGACACTGGGCCT 

TTTAAGCTTGCGGGCCCGGACGCCAATGCC 

pGL4-MRPS27 

(pGL4-PTCD2) 

hMRPS27-0607 

AhMRPS27-0012 

GGGAAGCTTAGGAGCTGTGGCTGCTCCACA 

GGGAAGCTTGGGGTGTTTGGTAGTGCAGAA 

pGL4-MRPS30 

(pGL4-BRCAT54) 

hMRPS30-8686 

AhMRPS30-9030 

GGGAAGCTTGCCGTATAGGGTCCTACAAGT 

AAAAGCTTAGCCGCGGTGTGCAATGAAAG 

pGL4-IDH3B 
hIDH3B-5810 

AhIDH3B-5192 

ACAGGTACCTGTCCTGGGGAGTTCAAGTCCGGG 

AAAAAGCTTCTCCCGGGGCCTCACTCGGGTCAG 

pGL4-IDH3G 
hIDH3G-4814 

AhIDH3G-4327 

TTTGGGTACCAACACCACCTGCCGTGGGTCAGAGG 

CCCAAGCTTGACGGAAAGTGAGAGCCTCCGCACGT 

Note: The names of Luc plasmids which PCR amplified DNA fragments were introduced in reverse orientations are 

indicated in the parentheses. 
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Figure 2. Effects of NAD+ metabolism affecting drugs on mitochondrial function-

associated genes in HeLa S3 cells. (A to D) The bidirectional promoter regions that contain 

putative TSSs of the human mitochondrial function-associated genes were inserted into 

the MCS of the pGL4.10[luc2] in both directions. The Luc reporter plasmids, containing 

5’-upstream of mitochondrial function-associated genes (right panels) and oppositely 

transcribed genes (left panels), were transfected into HeLa S3 cells, which were treated 
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with Rsv (20 M), 2DG (8 mM), 3AB (5 mM) or OLA (2.5 M) for 24 h (A to D, 

respectively). Luc activities were normalized to that of the pGL4-PIF1 transfected and 

drug non-treated cells. Histograms show relative Luc activities compared with that of the 

control cells (treated with 0.05% DMSO). Results are shown as means + S.D. from at least 

three independent experiments. Statistical analysis for the results between Rsv-treated and 

non-treated cells was performed with Student’s t-test, and asterisks indicate values of 

*p<0.05, **p<0.01 and ***p<0.001. 

Similarly, the IDH1 promoter deletion-introduced plasmids were constructed by ligating a PCR-

amplified DNA fragment into the MCS of pGL4.10[luc2]. pGL4-IDH1-414 has an identical region in 

the pGL4-IDH1, but the 5’-end of the inserted DNA has been designed to have a KpnI site. The sense 

and anti-sense primers used for the amplification of the DNA fragments are shown in Table 2. The 

shaded nucleotides (Table 2) indicate the introduced mutations. PCR was performed with template 

pGL4-IDH1-WT and sense/antisense primer pairs, hIDH15180/AhIDH1-5084MM, 

hIDH15180M/AhIDH1-5084 and hIDH15180M/AhIDH1-5084MM (Table 2), to amplify mutation-

introduced fragments, which were inserted into the MCS of pGL4.10[luc2] to make pGL4-IDH1-mut1, 

-mut2 and -mut3, respectively. The introduction of mutations in the pGL4-IDH1-mut4 and -mut5 was 

carried out according to a previously reported procedure [17] with slight modifications. Briefly, a PCR 

was carried out with sense hIDH1-mt/AhIDH1-mt primer pairs (Table 2) and pGL4-IDH1-mut1 as a 

template. The PCR products were denatured at 65 ℃ for 20 min, gradually cooled down to 25 ℃ for 

20 min and further kept at 25 ℃ for 20 min. They were treated with T4 DNA polymerase (Toyobo, 

Osaka, Japan) and digested with KpnI and XhoI, which were ligated into the MCS of the pGL4.10[luc2]. 

The pGL4-IDH1-mut5 was obtained by the same procedure using pGL4-IDH1-mut4 as a template for 

PCR. Nucleotide sequences were confirmed by a DNA sequencing service (FASMAC, Greiner Japan 

Inc., Atsugi, Japan) with primers Rv (TAGCAAAATAGGCTGTCCCC) and GL 

(CTTTATGTTTTTGGCGTCTTCC). The Luc reporter plasmids, pGL4-PIF1, were constructed as 

described [22]. 

2.4. Transient transfection and Luc assay 

Luc reporter plasmids were transfected into HeLa S3 cells by DEAE-dextran method in 96-well 

plates [16], and after 24 h of transfection, the culture medium was changed to Rsv (20 M), 2DG (8 

mM), 3AB (5 mM) or OLA (2.5 M) containing DMEM with 10% FBS. After a further 24 h of 

incubation, cells were collected and lysed with 100 L of 1 × cell culture lysis reagent, containing 25 

mM Tris-phosphate (pH 7.8), 2 mM DTT, 2 mM 1,2-diaminocyclohexane-N,N,N’,N’,-tetraacetic acid, 

10% glycerol and 1% Triton X-100. They were mixed and centrifuged at 12,000 × g for 5 sec. The 

supernatant was stored at −80 ℃. The Luc assay was performed with a Luciferase assay system 

(Promega), and relative Luc activities were calculated as described previously [16,17,21,22]. Because 

the human PIF promoter (590 bp) [22], which is contained in the pGL4-PIF1, is not affected by all 

chemicals used, results were compared with the pGL4-PIF1-transfected cells after both 

control/chemicals addition. 
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Table 2. Primer pairs used for amplifying 5’-upstream regions of the human IDH1 gene. 

Luc plasmid Primer Sequence (5’ to 3’) 

pGL4-IDH1-414 
hIDH1-5334 

AhIDH1-4921 

TTCAAGCTTCGCTGTCGGGATTCGGGACTGAATCT 

TTTAAGCTTGGAGCCTGAGGTTACCTGCCGGGATG 

pGL4-IDH1-D1 
hIDH1-5215 

AhIDH1-4921 

TTTGGTACCTGACTCCGCCCATCCCACGGGAATTG 

GGGAAGCTTTGTGCACTGACAAAGATGAGGTCGCA 

pGL4-IDH1-D2 
hIDH1-5185 

AhIDH1-4921 

TTTGGTACCTGTGGCGATTGGAGGCGTGTCGGGGG 

AAAAAGCTTGACAAGGTTGAAAGGAGGCGGCTG 

pGL4-IDH1-D3 
hIDH1-5144 

AhIDH1-4921 

TTTGGTACCTGGGCTGAGGAGGCGGGGCCTGGGAG 

AAAAAGCTTGGGTAGAATTTCTGGGCGGCTGTG 

pGL4-IDH1-D4 
hIDH1-5109 

AhIDH1-4921 

TTTGGTACCCGGGAAGAGGAAAAGCTCGGACCTAC 

AAAAAGCTTCTCCCGGGGCCTCACTCGGGTCAG 

pGL4-IDH1-D5 
hIDH1-5083 

AhIDH1-4921 

TTTGGTACCCCTGTGGTCCCGGGTTTCTGCAGAGT 

GGGAAGCTTTGTGCACTGACAAAGATGAGGTCGCA 

pGL4-IDH1-D6 
hIDH1-5334 

AhIDH1-4966 

TTCAAGCTTCGCTGTCGGGATTCGGGACTGAATCT 

TTTAAGCTTGGGGCGCCACAGCCGCTCACAAGCTC 

pGL4-IDH1-D7 
hIDH1-5334 

AhIDH1-5031 

TTCAAGCTTCGCTGTCGGGATTCGGGACTGAATCT 

TTGAAGCTTCCCAGTGCCTCCGCTTCTGAAGTAGA 

pGL4-IDH1-D8 
hIDH1-5334 

AhIDH1-5110 

TTCAAGCTTCGCTGTCGGGATTCGGGACTGAATCT 

TTTAAGCTTTGTCCCCTCCCAGGCCCCGCCTCCTC 

pGL4-IDH1-D9 
hIDH1-5334 

AhIDH1-5145 

TTCAAGCTTCGCTGTCGGGATTCGGGACTGAATCT 

TTTAAGCTTCCTCCCCCAGCCCCGCCCCCGACACG 

pGL4-IDH1-D10 
hIDH1-5334 

AhIDH1-5185 

TTCAAGCTTCGCTGTCGGGATTCGGGACTGAATCT 

TTTAAGCTTACGCCAATTCCCGTGGGATGGGCGGA 

pGL4-IDH1-D11 
hIDH1-5185 

AhIDH1-5031 

TTTGGTACCTGTGGCGATTGGAGGCGTGTCGGGGG 

TTGAAGCTTCCCAGTGCCTCCGCTTCTGAAGTAGA 

pGL4-IDH1-D12 
hIDH1-5185 

AhIDH1-5110 

TTTGGTACCTGTGGCGATTGGAGGCGTGTCGGGGG 

TTTAAGCTTTGTCCCCTCCCAGGCCCCGCCTCCTC 

pGL4-IDH1-D13 
hIDH1-5144 

AhIDH1-5031 

TTTGGTACCTGGGCTGAGGAGGCGGGGCCTGGGAG 

TTGAAGCTTCCCAGTGCCTCCGCTTCTGAAGTAGA 

pGL4-IDH1-D14 
hIDH1-5144 

AhIDH1-5110 

TTTGGTACCTGGGCTGAGGAGGCGGGGCCTGGGAG 

TTTAAGCTTTGTCCCCTCCCAGGCCCCGCCTCCTC 

pGL4-IDH1-WT 
hIDH1-5180 

AhIDH1-5084 

TAAGGTACCGATTGGAGGCGTGTCGGGGGCGGGGC 

CCCAAGCTTAGGTCCGAGCTTTTCCTCTTCCCGGC 

pGL4-IDH1-mut1 
hIDH1-5180 

AhIDH1-5084MM 

TAAGGTACCGATTGGAGGCGTGTCGGGGGCGGGGC 

CCCAAGCTTAGGTCCGAGCTTTTGGTCTTGGCGGC 

pGL4-IDH1-mut2 
hIDH1-5180M 

AhIDH1-5084 

TAAGGTACCGATTGGAGGCGTGTCGGTGTCGTGGC 

CCCAAGCTTAGGTCCGAGCTTTTCCTCTTCCCGGC 

pGL4-IDH1-mut3 
hIDH1-5180M 

AhIDH1-5084MM 

TAAGGTACCGATTGGAGGCGTGTCGGTGTCGTGGC 

CCCAAGCTTAGGTCCGAGCTTTTGGTCTTGGCGGC 

pGL4-IDH1-mut4 

pGL4-IDH1-mut5 

hIDH1-mt 

AhIDH1-mt 

GGAGGTGGGCTGAGGATGCTGTGCCTGGGAGGGGA 

GCTTTGTCCCCTCCCAGGCACAGCATCCTCAGCCC 

Note: Shaded characters indicate mutations that were introduced into Luc reporter plasmids. 
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2.5. Western blot analysis 

Western blot analysis was carried out after SDS-PAGE (15% acrylamide) as previously described 

[17,21], with antibodies against IDH1 (Cat. No. sc-49996, Santa Cruz Biotechnology, Santa Cruz, CA) 

and -actin (Cat. No. A5441, Sigma-Aldrich, St Louis, MO) followed by the addition of horseradish 

peroxidase (HRP)-conjugated anti goat (Cat. No. HAF109, Bio-techne, Minneapolis, MN) or anti-

mouse IgG (Cat. No. A9917, Sigma-Aldrich, St Louis, MO) secondary antibodies. Signal intensities 

were quantified with a ChemiDoc and Image Lab system (Bio-Rad, Berkeley, CA). 

2.6. Quantitative real-time reverse transcriptase polymerase chain reaction (RT-qPCR) 

First-strand cDNAs were synthesized with ReverTra Ace (Toyobo, Tokyo, Japan), random 

primers (Takara) and total RNAs extracted from HeLa S3 cells. Real time PCR analysis was carried 

out using the Mx3000P Real-Time qPCR System (Stratagene, La Jolla, CA) [17,21]. For PCR 

amplification, cDNAs were amplified by Thunderbird Realtime PCR Master Mix (Toyobo) and 0.3 

M of each primer pair. The primer pairs for amplifying human IDH1 and GAPDH transcripts were 

IDH1_h1104 GCATAGGCTCATCGACGACA/IDH1_Ah1236 CATCATGCCGAGAGAGCCAT and 

hGAPDH556/hGAPDH642 [17,21,22], respectively. Amplification was carried out initially for 1 min 

at 95 ℃, followed by 40 cycles (95 ℃ 15 sec and 58 ℃ 30 sec). Quantitative PCR analysis for each 

sample was carried out in triplicates. Relative gene expression values were obtained by normalizing 

CT (threshold cycle) values of target genes in comparison with CT values of the GAPDH gene using 

the Cq method [23]. 

2.7. Statistical analysis 

Standard deviations (S.D.) for each data were calculated and results are shown as means ± S.D. 

from three independent experiments. Statistical analysis for data in Figures 2, 3, and 7 was performed 

with the Student t-test, and asterisks indicate values of *p < 0.05, **p < 0.01 and ***p < 0.001. 

3. Results 

3.1. Confirmation of bidirectional promoters that contain mitochondrial function associated gene 

transcription start sites by comparison of NCBI database 

Duplicated GGAA motifs are frequently found within 500 bp from the putative TSSs of 

mitochondrial function associating protein-encoding genes [24]. To examine whether they respond to 

NAD+/NADH ratio-upregulating drugs [3], we cloned 306 to 732 bp of the 5′ upstream regions of the 

ACO2, ACLY, IDH1, ATP5C1, COX15, CDK2, MRPL32, MRPL37, MRPS27 and MRPS30 genes 

(Figure 1). As indicated, these genes are head-head linked with other genes or TSSs of non-coding 

RNAs. The JASPAR database indicated that most of them contained duplicated GGAA (TTCC) motifs. 

The IDH1 promoter responded to Rsv, 2DG, 3AB and OLA (Figure 2A–D, respectively), which 

are known to induce cellular NAD+/NADH level after 8 h treatment of HeLa S3 cells [3]. The enzymes 

IDH3B, IDH3G, ACO2, CS and FH catalyzed reactions of the TCA cycle [25–27]. The duplicated 

GGAA (TTCC) motifs are contained in the cloned 5’-upstream regions of the IDH3B, ACO2, CS and 
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FH genes (Figure 3). Similar experiments showed that IDH3B, IDH3G, ACO2, CS and FH promoters 

respond to 2DG and other drugs (Figures 2 and 3). Among them, only the IDH1 promoter showed 

positive responses to all drugs tested. Therefore, we focused on the regulation system of the IDH1 

gene expression in HeLa S3 cells. Sequence analysis revealed that the PCR-amplified 414 bp of the 

pGL4-IDH1-414 contains a nucleotide identical to NCBI Sequence ID NC_000002.12 (nucleotide 

from 208255334 to 208254921) and that it covers the sequence of the most-upstream 5’- end of the 

IDH1 cDNA (Sequence ID NM_005896.3 and GENE ID 3417) having no mutations. This 414 bp 

contains a 5’-upstream end of a non-coding RNA (ncRNA) IDH1-AS1 (Sequence ID NR_046452.1 

and GENE ID 100507475) in a reverse orientation to that of the IDH1 gene. The TSS was tentatively 

set as +1 at the most upstream 5’ of the IDH1 transcripts shown in the database. The JASPAR database 

(http://jaspar.genereg.net/) suggested several known transcription factor recognition sequences (Figure 4). 

Although no obvious TATA or CCAAT boxes were found, putative binding sites for E2F1 (-158 to -

148), ETS1 (+43 to +48), GATA2 (-61 to -57, +195 to +199), KLF5 (-20 to -11, -87 to -78, +20 to 

+29), KLF14 (-88 to -75), KLF16 (-21 to -11, -87 to -77), MZF1 (-153 to -138, -9 to -4), NFIC (-48 to 

-43, +128 to +133), NFIX (+126 to +134), RHOXF1 (-134 to -127), SOX10 (+29 to +34), SP1 (-21 to 

-11, +8 to +18), SP2 (+4 to +18), SP3 (-87 to -77, -21 to -11), SPI1 (-145 to -140, +37 to +42) and 

SPIB (+41 to +47) are contained. 

 

Figure 3. Effects of Rsv, 2DG, 3AB and OLA on promoter activities of the genes that 

encode human TCA cycle enzymes. (Left panel) The 5’-upstreams of the human TCA 

cycle enzyme encoding genes, which have been ligated into the MCS of the pGL4.10[luc2], 

are shown. The putative TSSs are indicated by arrows. GC-boxes and GGAA (TTCC) 

motifs are schematically shown. Luc reporter plasmids were transiently transfected into 

HeLa S3cells and treated with Rsv (20 M), 2DG (8 mM), 3AB (5 mM) or OLA (2.5 M) 

for 24 h. Luc activities were normalized to that of the pGL4-PIF1 transfected cells. 

Histograms show relative Luc activities compared with that of the same plasmid 

transfected cells without drug treatment. Statistical analysis for the results between Rsv-

treated and non-treated cells was performed with Student’s t-test, and asterisks indicate 

values of *p < 0.05 and **p < 0.01. 
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Figure 4. The 5’-upstream sequence of the human IDH1 gene. The nucleotide sequence 

of the PCR-amplified 414 bp is shown. The human IDH1 cDNA (NM_005896.3) and 

IDH1-AS1 (NR_046452.1) are indicated by bold and shaded characters, respectively. The 

most upstream of the IDH1 cDNA is numbered as nucleotide +1. Putative transcription 

factor-binding sites (JASPAR2018 program, threshold > 95%) are indicated by arrows. 

3.2. Effects of Rsv on IDH1 gene expression and its protein amount in HeLa S3 cells 

First, total RNAs were extracted from cells after adding Rsv (20 M) to the culture medium. The 

relative gene expression IDH1/GAPDH began to increase from 1 h after Rsv addition and reached a 

transient peak at 2 h, and then it declined and gradually increased to 2-fold at 24 h (Figure 5). 

 

Figure 5. RT-qPCR analysis of the IDH1 transcripts in HeLa S3 cells. The culture medium 

of HeLa S3 cells was changed to DMEM containing 10% FBS and indicated drugs. Cells 

were harvested after 0, 2, 4, 8 and 24 h of the treatment. Total RNAs were extracted from 

cells, and synthesized cDNAs were subjected to real time quantitative PCR with primer 

pairs to amplify IDH1 and GAPDH cDNA. The results show the relative IDH1/GAPDH 

gene expression ratio compared with that of the non-drug-treated cells. Results are shown 

as means ± S.D. from at least three independent experiments. 
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3AB (5 mM) treatment also induced relative IDH1 gene expression after 1 to 2 h addition to the 

culture medium (Figure 5). Similar early response was observed by 2DG (8 mM) treatment. However, 

the effect was most eminent at 24 h after the treatment. Surprisingly, OLA (2.5 M) did not affect the 

IDH1 gene expression during 24 h treatment. The results suggested that 2DG and OLA evoked some 

signals that regulate IDH1 transcripts degradation or splicing. The observations, indicating that Rsv 

and 3AB increased IDH1 transcripts effectively early after the treatment, lead us to further analyze IDH1 

protein amount. However, Western blot analysis revealed that the amount of IDH1 protein did not change 

significantly during treatment with Rsv and 3AB. The IDH1/-actin ratio was reduced to 85% of the 

control after 2 h, but it increased to the control level at 4 h after Rsv treatment, and then it declined 

and increased again to the control level (Figure 6). The IDH1/-actin ratio did not change during 3AB 

treatment (Figure 6). The results suggest that the amount of IDH1 protein is restricted or post-

transcriptionally maintained at a stable level through two mechanisms: degradation of IDH1 protein 

and regulation by non-coding or micro RNAs with regulatory functions. 

 

Figure 6. Western blot analysis of the IDH1 protein in HeLa S3 cells. HeLa S3 cells that 

were treated with (A and B) Rsv (20 M) (lanes 1-6) or 3AB (5 mM) (lanes 7-12) were 

collected after 0, 2, 4, 8, 16 and 24 h. Then extracted proteins were separated by a 15% 

SDS-PAGE, and Western blotting was performed with primary antibodies against IDH1 

and -actin (A and B, respectively). (C) Each band was quantified, and the results show 

the relative IDH1/-actin protein expression ratio. 

3.3. Identification of a drug responsive element in the IDH1 promoter 

To narrow the drug responsive sequence(s), deletion was introduced in the pGL4-IDH1-414 

plasmid vector (Figure 7A). Positive responses to 2DG, 3AB and OLA were observed in pGL4-IDH1-

1 and -2-transfected cells. However, pGL4-IDH1-3-transfected cells showed a much-lowered 

response to Rsv compared to the pGL4-IDH1-2-transfected cells (Figure 7A). 
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Figure 7. Drug response element in the human IDH1 promoter. (Left panels) The IDH1 

promoter regions in the Luc expression construct are schematically indicated. Deletions 

from (A) 5’-end and (B) 3’-end of the 414 bp IDH1 promoter region were introduced. (D) 

Mutations were introduced in the 154 bp human IDH1 minimum promoter region. (A to 

D) Luc reporter plasmids were transiently transfected into HeLa S3 cells and treated with 

drugs for 24 h. Luc activities were normalized to that of the pGL4-PIF1 transfected cells. 

Results are shown as means ± S.D. from three independent experiments. Statistical analysis 

of the results between Rsv-treated and non-treated cells was performed with Student’s t-

test, and asterisks indicate values of *p < 0.05, **p < 0.01 and ***p < 0.001. 
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The pGL4-IDH1-8-transfected cells showed apparent responses to all drugs (Figure 7B), but 

this was not observed in pGL4-IDH1-9 transfected cells, suggesting the 35 bp containing the putative 

c-ETS binding sequence and a GC-box are of primary importance for IDH1 promoter activity. This 

was confirmed by further deletion experiments, showing that a 154 bp sequence from -41 to +113 is a 

core promoter region with drug responsiveness (Figure 7C). This core promoter sequence is thought 

to be conserved within mammals, because the BLAST search program indicated that upstream 

sequence 153 bp region of the mouse Idh1 gene transcript variant 2 (in NC_000067.7) has 71% 

homology with the 154 bp (in NC_000002.12) (supplementary Figure 1). To precisely indicate the 

drug responsive element(s), point mutations were introduced to the pGL4-IDH1-WT that carries the 

154 bp (Figure 7D). Mutations on a GC-box (in pGL4-IDH1-mut2) greatly reduced basal promoter 

activity and the response to the drugs. The pGL4-IDH1-mut1-transfected cells showed higher promoter 

activity than pGL4-IDH1-WT transfected cells, suggesting that the duplicated GGAA functions as a 

suppressor or a modulator. The positive responses to drugs were completely lost by a mutation on the 

GC-box in the pGL4-IDH1-mut4 and -mut5 (Figure 7D). These results suggested that the IDH1 

promoter is co-operatively regulated by the c-ETS element and a GC-box to respond to NAD+ up-

regulating drugs in HeLa S3 cells. 

4. Discussion 

Many interferon-stimulated genes (ISGs) [28] and DNA repair-factor encoding genes [29] are 

TATA-less [30]. The human E2F4 [21] and ZNFX1 [31] promoters are also TATA-less, containing 

duplicated GGAA-motifs to respond to TPA, which induces macrophage-like differentiation of HL-60 

cells. Moreover, duplicated GGAAs are contained in the human TP53 [17], HELB [32] and MCM4 [33] 

and a variety of mitochondrial function-associated gene promoters [29]. The ACLY, ACO2, IDH1 and 

ATP5C1 encode enzymes that regulate or affect the TCA cycle [34] or OXPHOS [35]. The MRPL32/37, 

MRPS27/30 and PTCD2 genes encode mitochondrial ribosomal protein subunits [36] and a regulator 

that processes the RNA of cytochrome b [37]. All tested promoters containing duplicated GGAAs 

responded to 8 mM of 2DG (Figure 2), which limits glucose uptake and hexokinase activity [38] and 

up-regulates NAD+/NADH ratio in HeLa S3 cells [19]. Rsv activates mitochondrial complex I in the 

respiratory system [18]. 3AB and OLA will increase NAD+ by inhibiting PARP that consumes NAD+ 

for PAR synthesis [12]. Generally, in cancerous cells, energy production primarily depends on 

glycolysis [39]. Lowered NAD+/NADH ratio, during aging and cancer development [40], may cause 

both the Warburg effect and mitochondrial dysfunction. In this study, it was strongly suggested that 

the IDH1 promoter contains NAD+/NADH sensitive element(s). However, the protein amount of IDH1 

should be tightly regulated (Figure 6) by post-transcriptional mechanisms, which should be elucidated. 

It has been reported that miR-181a in mouse [41] and miR-32/-92b in human breast cancer [42] reduce 

IDH1. In addition, miR-101 and miR-183 could suppress IDH2 in human cancer [43,44]. Although 

expression of micro RNAs in HeLa S3 cells has not been examined, they could target IDH1 and IDH2. 

Generally, the upregulation of the NAD+/NADH ratio is thought to be beneficial for cancer prevention 

and anti-aging. Anyhow, the results all suggest that if an NAD+/NADH increasing event happens, post-

transcriptional regulation will prevent aberrant increase of IDH1, which could be involved in fatty acid 

metabolism [45]. 

SP1, SP3, KLF5 and KLF16 bind to GC-box [46], which is present adjacent to the putative TSS 

of the IDH1 gene (Figure 4). The Sp1 and KLF5 induce HIF-1 gene expression [47-49]. In this study, 
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it was shown that the GC-box is essential for the drug response, and a duplicated GGAA motif acts as 

a suppressor (Figure 7D). ETS family proteins and NF-κB, which bind to duplicated GGAA containing 

sequences [50], might hinder other TFs’ action. Given that CtBP regulates mitochondrial function [51,52] 

by binding to SPI1 and NF-κB [53,54], it can regulate NAD+-dependent transcription. 

In cancer, NAD+ would be consumed by PARP when DNA damage occurs. In gliomas and 

glioblastomas, increased cellular NAD+, which causes high IDH1 expression [55], may increase 

NADPH that activates hypoxia-inducible factor-1 (HIF-1) to promote hypoxia [48,56]. Under such 

circumstances, both lipid biosynthesis and hypoxia will be overpromoted to disturb the 

oxidation/reduction balance, forcing cells into a malignant state [57]. NAD+, which is reduced in 

accordance with aging [40], is an essential co-enzyme for the TCA cycle and OXPHOS and suppresses 

carcinogenesis [57,58]. It should be noted that IDH1 plays a role in epigenetic regulation [59] and that 

its gene promoter is bidirectional, linked with IDH1-AS1 in a head-head manner. In contrast, promoters 

of the DNMT1, DNMT3A, DNMT3B and DNMT3L genes, which encode DNA methyl transferases, are 

unidirectional to be isolated from other gene TSSs. NAD+ dependent deacetylase SIRT1 prevents DNA 

methylation in murine embryonic stem cells [60]. To establish a novel mitochondrial metabolism 

targeting [61,62] anti-cancer gene therapy [63], the NAD+ dependent transcriptional and post-

transcriptional systems should be elucidated. 
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Appendix 

 

Supplementary Figure 1. BLAST search program for the upstream sequence 153-bp region of the 

mouse Idh1 gene transcript variant 2 (in NC_000067.7) and the 154-bp. 
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