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Abstract: Lectins, a class of carbohydrate binding agents (CBAs), have been widely studied for their 
potential antiviral activity. In general, lectins exert their anti-HIV microbicidal activity by binding to 
viral envelope glycoproteins which hinders a proper interaction between the virus and its host, 
thereby preventing viral entry and replication processes. Several natural lectins extracted from plant, 
fungi, algae, bacteria and animals, as well as boronic acid-based synthetic lectins, have been 
investigated against the Human Immunodeficiency Virus (HIV). This manuscript discusses the 
nature of HIV envelope glycoprotein glycans and their implication in lectin antiviral activity for 
HIV/AIDS prevention. In addition, anti-HIV lectins and their carbohydrate specificity is reported. 
Furthermore, current formulations of anti-HIV lectins are presented to illustrate how to overcome 
delivery challenges. Although antiviral lectins will continue to occupy a major stage in future 
microbicide research, further investigation in this field should focus on novel delivery strategies and 
the clinical translation of CBAs. 
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SARS: Severe Acute Respiratory Syndrome; SIV: Simian immunodeficiency virus; SVL: Serpula 
vermicularis lectin; SVN: scytovirin 

1. Introduction 

Since its discovery in 1983 as the virus responsible for the Acquired Immune Deficiency 
Syndrome (AIDS), the Human Immunodeficiency Virus (HIV) has remained a scientific challenge; 
as a complete eradication strategy has yet to be successful [1]. Although early-generation 
microbicides, such as surfactant-containing spermicides, acid-buffering gels, and polyanionic gels 
have failed to demonstrate efficacy, advances in microbicide development using HIV-specific 
antiretroviral agents (ARV) have shown significant promise [2]. Part of the success demonstrated by 
ARV comes from their ability to target and block key stages in HIV replication including viral entry, 
reverse transcription, integration, and maturation. Despite recent progress in anti-HIV microbicide 
development and advances in access to antiretrovirals, an average of 1.9 million (1.9–2.2 million) 
new HIV infections still occur globally every year [3]. More alarmingly, the rate of new HIV-1 
infections is believed to be outpacing the rate of new individuals receiving antiretroviral therapy by 
an average of 2.5:1 [4]. Furthermore, the widely promoted “ABC” approach (abstinence, being 
faithful, condom usage) aimed at fostering HIV prevention and reducing the rate of infection spread, 
has shown some limitations, especially in third world countries, which remain the most affected by 
the pandemic infection [5]. In fact, Cohen stated that the practice of abstinence “is only theoretical, 
since one can only be certain of one’s own behavior, not the behavior of one’s partner” [6]. Although 
HIV infection declines in Uganda and Thailand were attributed to reduction in partner number, its 
long-term application remains a challenge in rural areas, where polygamy is often deeply rooted in 
traditional and religious beliefs [7,8]. Condoms, which are known to be effective when used 
consistently and correctly, still face a strong rejection from certain users who often report reduced 
physical pleasure, embarrassment of purchasing condoms, and a general perception that condom use 
represents a sign of infidelity and/or HIV/STD-seropositive status [9]. Therefore, there is a critical 
need for the development of alternative, long-lasting, self-applied and effective microbicides. Such 
topically (vaginally or rectally) applicable microbicides are projected to ultimately protect women, 
since more than half of all new HIV infections worldwide occur in females [10]. 

Among the different classes of anti-HIV microbicides currently in use, agents targeting and 
preventing viral entry into target cells have shown remarkable promises, partly favored by fewer 
barriers that could potentially hinder their mechanism of action. HIV entry inhibitors are subdivided 
into three main groups: Attachment, co-receptor binding and fusion inhibitors [11]. Attachment 
inhibitors such as zintevir, BMS-378806, and BMS-488043 block a non-specific adsorption step 
between HIV virions and target cells’ membrane, which is due to an interaction between the 
positively charged regions of the envelope glycoprotein gp120 and oppositely charged proteoglycans 
on cell surface. Co-receptor binding inhibitors are generally CCR5 antagonists such as aplaviroc, 
vicriviroc, and maravirok that bind to CCR5 and prevent further gp120-CCR5 interaction, which is 
critical for viral entry into host cells. Fusion inhibitors such as tifuvirtide, enfuvirtide, and sifuvirtide 
prevent the formation of the fusion pore by mimicking either heptad repeat 1 or 2 (HR1 or HR2) 
sequences in gp41. These sequences block the formation of a six-helix bundle structure necessary for 
HIV entry into host cells [11]. 

Lectins, which are carbohydrate binding proteins, have long being considered for their 
diagnostic and therapeutic potentials, as well as their pathogenic implication in many human diseases 
and conditions including various cancers [12], type 2 diabetes [13,14], cardiovascular disease [15], 
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weight management [16,17], and HIV/AIDS [18]. The ability of lectins to recognize and bind several 
mannose oligosaccharides was long considered a viable example of anti-HIV therapeutic strategy. 
Primarily, anti-HIV lectins act as viral entry inhibitors by binding to oligosaccharide epitopes on 
HIV surface glycoproteins, which either hinder a proper interaction between HIV and receptors on 
target cell membranes or affect post-binding conformational alterations of key viral envelope and 
transmembrane glycoproteins (HIV gp120/HIV gp41). In this manuscript, we report the current trend in  
anti-HIV lectins research and emerging lectins formulations aiming at improving the delivery of these  
sugar-binding proteins. 

2. HIV surface glycoproteins and glycans 

HIV surface glycoproteins (HIV gp120 and HIV gp41) mediate host cell entry through 
interactions with CD4 receptor and CCR5/CXCR4 co-receptors on target cells. These glycoproteins 
are first expressed as HIV gp160 precursor before the proteolytic cleavage in the trans-Golgi by 
cellular furin or furin-like proteases that lead to the formation of envelope glycoprotein HIV gp120 
and transmembrane glycoprotein HIV gp41. In mature HIV viruses, HIV gp120 and HIV gp41 
remain linked by noncovalent interactions [19]. Most anti-HIV lectins target and bind specific glycan 
structures on HIV envelope glycoproteins. Understanding the glycosylation pattern of these 
glycoproteins is useful not only for anti-HIV vaccine design, but also for the selection of appropriate 
lectins for potential anti-HIV therapy. Glycans found on HIV surface glycoproteins may also help in 
understanding anti-HIV lectins overall mechanism of action. Moreover, the extent and variation in 
glycosylation pattern between HIV strands, as well as changes in the glycosylation pattern during 
HIV maturation may help explain resistance to certain anti-HIV vaccines and lectins, as well as the 
lack of broad activity usually observed with anti-HIV lectins [20,21]. 

2.1. HIV gp120 glycans and their function 

HIV gp120 is the external envelope glycoprotein of HIV. It is a homotrimer with each subunit 
having a nominal molecular weight of 120 kDa. HIV gp120 plays an essential role in HIV entry into 
host cells. In fact, HIV entry into host cells is initiated by the binding of gp120 to CD4 receptor. This 
binding triggers a conformational change in HIV gp120, which, in turn, enhances its affinity to 
chemokine receptors CXCR4 or CCR5. This secondary binding induces another conformational 
change in the transmembrane glycoprotein HIV gp41 resulting in an intimate contact and fusion of 
both viral and host cell membranes. The membrane fusion process leads to the internalization of HIV 
viral capsid containing the viral mRNA and key viral proteins into host cells’ cytoplasm. Ultimately, 
new HIV virus particles are produced which then propagate the infection [22,23]. Literature 
expounds on HIV gp120 biosynthesis, trafficking, and incorporation. Rather than the underlying 
biological mechanism involved in these processes, we will focus on the nature of glycosylation and 
its role in the membrane fusion. 

Ratner et al. [24], Allan et al. [25] and Montagnier et al. [26] published some of the first 
studies that explored HIV gp120 glycosylation. Although these pioneering studies did not 
investigate HIV gp120 glycan structures in detail, they did report HIV gp120 glycosylation to 
account for approximately 27 to 50% of the overall glycoprotein molecular weight. Some of these 
early investigations also demonstrated the presence of 31 [25] or 32 [27] potential N-glycosylation 
sites on HIV gp120. Subsequent studies by Mizuochi et al. [28,29] further investigated HIV gp120 
glycan structures. Mizuochi’s findings showed in part that HIV gp120 is unique in its diversity of 
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oligosaccharide structures. These studies also reported HIV gp120 glycans to be predominantly 
oligomannoses that are mostly comprised of five to nine mannose residues, and accounting for 
approximately 33% of the overall glycoprotein’s carbohydrate structures [30]. Furthermore, this 
study projected the number of potential N-glycosylation sites on HIV gp120 to be 20. Besides the  
high-mannose type glycans, Mizuochi et al. also identified complex type glycan chains (34% of 
carbohydrate structures) mainly composed of four categories: mono-, bi-, tri- andtetra-antennary, with 
or without N-acetyllactosamine repeats, and with or without a core fucose residue [28,30–32]. A 
previous study by Geyer et al. [31] reported similar findings and showed that predominant 
oligomannose glycans in HIV gp120 are composed of seven to nine mannose residues, depending on 
whether the glycoprotein is excreted or expressed intracellularly. Geyer et al. also showed that HIV 
gp120 complex-type oligosaccharide are fucosylated with partial sialylated bi- and triantennary 
structures. Recent advances in glycoscience, genomic, proteomics, and mass spectrometry have led 
to more detailed and in-depth characterization studies of HIV gp120 glycosylation. In fact, recent 
mass spectrometry studies have confirmed HIV gp120 high mannose proportion for various viral 
clades and expression systems [32–36] and it is widely accepted that the number of HIV  
N-glycosylation sites range from 20–35 [19]. Following a matrix-assisted laser desorption/ionization 
(MALDI) time-of-flight (TOF) analysis, Bonomelli et al. showed that HIV gp120 oligosaccharides, 
derived from virus [clade A (92RW009), clade B (JRCSF), clade C (93IN905)] isolated from 
infected peripheral blood mononuclear cells (PBMCs), are almost entirely oligomannoses and varies 
from 62–79% for virion-associated versus 30% for recombinant monomeric HIV gp120 [33,37]. These 
studies also identified an “intrinsic” mannose patch in HIV gp120 composed essentially of  
Man5–9GlcNAc2 and conserved across primary isolates and geographically divergent HIV clades. 
Many other studies have confirmed the presence of the mannose patch on HIV gp120 and its 
relevance in the development of a successful anti-HIV vaccine [38–41]. HIV gp120 main glycan 
structures are summarized in Figure 1. 

HIV gp120’s heavy glycosylation is believed to play four key roles: Host immune evasion, 
pathogenesis, proper glycoproteins folding, and host cell surface recognition [42]. In fact, several 
studies have compared HIV gp120 extensive glycosylation to a protecting shield that prevents 
antibody access to underlying amino acid sequences and therefore limits their efficacy [40,43–46]. 
More specifically, Sanders et al. determined that the carbohydrate at asparagine 386 on HIV-1 gp120 
enhances HIV immune evasion [47]. Furthermore, the general role of HIV gp120 glycosylation in 
HIV pathogenesis has widely been reported [48]. Besides its major implication in HIV gp120 proper 
folding and lysosomal degradation, Francois et al. [49] and Mathys et al. [50] showed that cleavage 
of glycan at asparagine 260 of HIV-1 gp120 results in loss of viral infectivity. Similarly, Huang et al. 
demonstrated that deletion of HIV gp120 glycans from asparagine proximal to the CD4-binding 
region (156, 262 and 410) impairs HIV viral infectivity [51]. The essential role of glycosylation in 
proper HIV gp120 folding was also elucidated by numerous reports [50,52]. For example, Li et al. 
showed that N-linked glycosylation is highly essential for a proper conformation of HIV gp120 
capable of binding to CD4 receptor [53]. In a separate study Li et al. determined that deletion of the 
glycan at asparagine 448 can profoundly influence CD4 T-cell recognition of HIV-1 gp120 [54]. 
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Figure 1. High mannose and complex glycan structures found in HIV gp120. Structures 
are adapted from the following references [28,30,31,55,56]. 

2.2. HIV gp41 glycans and their function 

HIV gp41 is composed of 345 amino acids that are organized into three major domains: 
extracellular (ectodomain), transmembrane, and C-terminal cytoplasmic tail [19,57,58]. Unlike HIV 
gp120, the transmembrane glycoprotein contains fewer N-glycosylation sites. Nonetheless, there is 
an inconsistency pertaining to the number of N-glycosylation sites in HIV gp41, as various 
communications often report different numbers. This may be due to differences in expression 
systems, cell lines, and HIV strands. According to the current literature, the number of potential  
N-glycosylation sites in HIV gp41 vary between three to eight. In fact, Perrin et al. reported poor 
glycosylation of HIV gp41 ectodomain with only four or five potential glycosylation sites [59]. 
Following the screening of ten HIV-1 amino acid sequences, Johnson et al. determined that HIV 
gp41 typically contains three or four N-glycosylation sites, localized within a short stretch (20 to 30 
amino acid residues) of the C-terminal half of the ectodomain [60]. The same number of HIV gp41 
potential N-glycosylation sites was reported by Fenouillet et al. [61,62], Lee et al. [63],  
Ma et al. [64], and Wang et al. [65]. Furthermore, citing the work of Montefiori et al. [48] and 
Checkley et al. reported HIV gp41 N-glycosylation sites to vary between three to five [19]. The work 
of Balzarini et al. reported some of the highest number of HIV gp41 potential N-glycosylation sites 
which was thought to be seven with only four seemingly glycosylated [66]. Further studies by 
Mathys and Balzarini have reported N-glycosylation sites in HIV gp41 between four-eight with all 
four to five N-glycans on the ectodomain composed of complex-type glycans [67,68]. 

In contrast to HIV gp120, the transmembrane glycoproteins’ glycans are known to be primarily 
composed of more complex carbohydrate types. In fact, following the analysis of HIV gp41 
expressed from two different producer cells (Chinese hamster ovary cells and human embryonic 
kidney cells [293T]), Pritchard et al. determined that in combination with the presence of less 
oligomannose glycans (19–34%) compared to HIV gp120 (60–65%), HIV gp41 contains large 
populations of complex-type glycans on its ectodomain [56]. Regardless of the expression system, 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Johnson%20WE%5BAuthor%5D&cauthor=true&cauthor_uid=11689624
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HIV gp41 oligomannose population was also found to be composed of Man5–9GlcNAc2. Like HIV 
gp120, complex glycans in HIV gp41 are composed of sialilated and asialilated bi-, tri-, and  
tetra-antennary structures usually containing N-lactosamine repeats with or without core fucose 
residue [34,55,56]. HIV gp41 main glycan structures are summarized in Figure 2. 

 

Figure 2. High mannose and complex glycan structures in HIV gp41. Structures are 
adapted from the following references [34,55,56]. 

HIV gp41 plays an equally critical role in HIV entry into target cells by mediating the 
membrane fusion process required for the internalization of the HIV viral capsid [23]. Glycans in 
HIV gp41 are reported to play key roles in viral entry, immune evasion, and infectivity. In fact, 
Fenouillet et al., reported a loss of HIV ability to enter target cells after complete removal of the 
glycan cluster from asparagines at positions 621, 630 and 642 [69] in HIV gp41. A follow up study 
by Perrin et al., determined the critical role of HIV gp41 glycosylation for an effective membrane 
fusion process. This study also reported that out of the four or five glycosylation sites in HIV gp41, 
only two sites are sufficient for efficient membrane fusion with a single site at asparagine 621 being 
the most critical of all positions [59]. Yuste et al. have also suggested that the function of HIV gp41 
glycosylation from both HIV and SIV may be shielding underlying epitopes sequences, thereby 
allowing the virus to escape neutralizing antibodies [70]. Furthermore, Wang et al. reported that the 
glycan at asparagine 637 in HIV gp41 is composed of Man9GlcNAc2 and plays a critical role in 
immune evasion through the facilitation of the membrane fusion process [65]. A later study by 
Mathys and Balzarini lead to a rather different conclusion regarding the importance of this  
glycan [68]. By following the generation of several HIV-1 mutants lacking HIV gp41 N-glycans and 
assessing their influence on viral infectivity, this study determined that besides the glycan at 
asparagine 616 that when deleted, leads to a complete loss of HIV-1 infectivity, deletion of glycans on 
asparagines 611 and 637, displayed marginal effect on overall viral infectivity. In addition, this study 
concluded that glycans on asparagines 625 and 674 do not play any significant role in HIV 
infectivity, since their deletion did not influence viral infectivity. 
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3. Anti-HIV lectins 

3.1. Natural lectins 

Owing to HIV-gp120 high mannose content, various mannose binding natural lectins have been 
investigated as HIV entry inhibitors. Primarily, these lectins specifically bind mannose 
oligosaccharides on HIV-gp120, thus hindering a proper interaction between the envelope 
glycoprotein and its host cell receptor (CD4). This may ultimately prevent the membrane fusion step 
and the production of new HIV virions. Actinohivin (AH), a prokaryotic lectin derived from the 
gram-positive bacteria actinomycete Longispora albida (K97-0003T) successfully prevented HIV-1 
entry into CD4+ T lymphocytes (IC50 ≈ 2–110 nM) [71]. It was determined that AH binds  
α(1-2)-mannose oligosaccharides present in HIV gp120 and HIV gp41. Furthermore, AH did not 
induce any mitogenic activity or cytokine/chemokine production in PBMC cultures, suggesting that 
this lectin could be a safe and effective microbicide candidate [72]. Recently, Zhang et al. reported 
that Man1 and Man2 residues, found on HIV gp120 high-mannose type glycans structures, occupy 
two of the three carbohydrate binding sites of AH, while Man3 residues interact with conserved 
hydrophobic amino acid residues (Tyr and Leu) of AH [73]. Cyanovirin-N (CV-N) is a 
cyanobacterial lectin with broad-spectrum antiviral activity. The potential use of CV-N as anti-HIV 
microbicide has widely been reported (IC50 ≈ 3.9–31 nM) [74–78]. CV-N inhibits HIV replication in part 
by binding to HIV-gp120 high mannose glycans, thus preventing the envelope glycoprotein from 
binding to its cell surface receptor (CD4), thereby blocking the glycoprotein-mediated membrane 
fusion process required for HIV-1 entry [79]. Hu et al. have determined that CV-N binding 
interaction is mediated through three to five high-mannose residues from 289 to 448 in the C2–C4 
region of HIV gp120 and deglycosylation of these residues resulted in a resistance to CV-N [80,81]. 
It was also shown that CV-N inhibits HIV replication by interacting with the chemokine receptors 
CXCR4 and CCR5 [82]. Recently, a CV-N oligomer (CV-N2) was designed and demonstrated an 
increased HIV-1 neutralization activity by up to 18-fold compared to the wild-type CV-N  
(IC50 ≈ 0.1–41 nM) [81]. Oscillatoria agardhii agglutinin (OAA) is a newly discovered 
cyanobacterial lectin that was shown to prevent HIV transmission, replication, and syncytium 
formation between HIV-1-infected and uninfected T cells (IC50 ≈ 24–30 nM) [83]. OAA is known 
for having two sugar binding sites that recognize Manα(1–2)Man, Manα(1–6)Man and the branched 
core unit of Man9 (3α,6α-mannopentaose) [83–86]. Similar to OAA, scytovirin (SVN) is a 
cyanobacterium lectin isolated from Scytonema varium [87]. SVN was also shown to possess potent 
anti-HIV activity through its binding interaction with HIV gp160, HIV gp120, and HIV gp41 and 
binds Manα(1–2)Manα(1–6)Manα(1–6)Man tetrasaccharide in high mannose type 
oligosaccharides (IC50 ≈ 24.1 nM) [88–90]. In addition, MVL, a lectin isolated from the 
cyanobacterium Microcystis viridis also showed strong anti-HIV activity at nanomolar 
concentrations by binding to Manα(1–6)Manβ(1–4)GlcNAcβ(1–4)GlcNAc oligosaccharides on 
the surface of HIV gp120 (IC50 ≈ 30 nM) [91,92]. Another cyanobacterial lectin, microvirin 
(MVN), isolated from Microcystis aeruginosa has shown anti-HIV activity comparable to CV-N 
with a much better cytotoxicity profile (IC50 ≈ 2–12 nM) [93]. It was further shown that MVN 
binds Manα(1–2)Man residues on HIV gp120 [93,94]. Plant lectins such as Narcissus 
pseudonarcissus lectin (NPL) (EC50 ≈ 0.17–2.76 μg/mL) [95,96] and Myrianthus holstii lectin (MHL) 
(EC50 ≈ 150 nM) [97] have also shown potential HIV inhibition in vitro. Concanavalin A (Con A), 
one of the most studied plant lectins, is a mannose binding lectin extracted from jack bean. Con A 
binds sugars, glycoproteins, and glycolipids, containing internal and nonreducing terminal  
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α-D-mannosyl and α-D-glucosyl groups (KD ≈ 0.05 μM to 1.5 μM) [98,99]. Several studies have 
demonstrated the ability of Con A to bind HIV gp120 and inhibit the fusion process during HIV 
infection (EC50 ≈ 98 nM) [100–103]. Furthermore, BanLec is a lectin isolated from the banana fruit 
(Musa acuminata), which has shown potent anti-HIV activity (IC50 ≈ 2.5–694 nM) [104]. Like Con 
A, BanLec inhibits HIV by binding to high mannose carbohydrate structures found in HIV gp120, 
thus blocking the virus entry into host cells. In fact, in a comparative study, BanLec showed similar 
inhibitory activity like T-20 and maraviroc, two FDA approved HIV entry inhibitor microbicides [4]. 

Griffithsin (GRFT), a lectin isolated from the red algae Griffithsia inhibited cell-to-cell fusion 
between HIV infected and uninfected cells (IC50 ≈ 4 nM) [105]. GRFT also inhibited HIV-1 
transmission by binding to glucose, mannose, and N-acetylglucosamine residues in HIV 
glycoproteins (HIV gp120, HIV gp41 and HIV gp160) [106]. Emau et al. [107] have also 
established that GRFT strongly blocked CXCR4- and CCR5-tropic viruses at concentrations less 
than 1 nM, with low cytotoxicity, rapid onset of antiviral activity and long-term stability in 
cervical/vaginal lavage. GRFT tandemers, recently reported by Moulaei et al., have shown  
anti-HIV activities five to ten-fold higher than native GRFT (IC50 ≈ 0.02–0.274 nM) [108]. Table 1 
summarizes natural anti-HIV lectins and major properties discussed above. 

Table 1. Example of natural anti-HIV lectins. 

Lectin Glycan preference Target IC50/EC50 Origin References 

AH 
Manα(1–2)Man, Manα(1–

3)Man, Manα(1–6)Man, GlcNAc 
gp120 and gp41 IC50 ≈ 2–110 nM 

Actinomycete 

Longispora albida  
[71,72] 

CV-N Manα(1–2)Man in Man8 or Man9 gp120, CXCR4 and CCR5 IC50 ≈ 0.1–41 nM Nostoc ellipsosporum [80,81] 

OAA 
Manα(1–2)Man, Manα(1–

6)Man, 3α,6α-mannopentaose 
gp120 IC50 ≈ 24–30 nM Oscillatoria agardhii [83–86] 

SVN Man gp120 IC50 ≈ 24.1 nM Scytonema varium [88,89] 

MVL 
Manα(1–6)Manβ(1–

4)GlcNAcβ(1–4)GlcNAc 
gp120 IC50 ≈ 30 nM Microcystis viridis [91] 

MVN Manα(1–2)Man gp120 IC50 ≈ 2–12 nM 
Microcystis 

aeruginosa 
[93,94] 

NPL Manα(1–3)Man; Manα(1–2)Man gp120 
EC50 ≈ 0.17–2.76 

μg/mL 

Narcissus 

Pseudonarcissus 
[95,96] 

MHL GlcNAc gp120 EC50 ≈ 150 nM Myrianthus Holstii [97] 

Con A α-D-Man and α-D-Glc gp120 EC50 ≈ 98 nM Jack bean [98] 

BanLec Man gp120 IC50 ≈ 2.5–694 nM Musa acuminata [4] 

GRFT Glc, Man and GlcNac 
gp120, gp41, gp160, 

CXCR4 and CCR5 
IC50 ≈ 4 nM Griffithsia [106] 

CVL β-Gal gp41, gp120 EC50 ≈ 73 nM 
Chaetopterus 

variopedatus 
[110] 

Mermaid Manα(1–3)Manα(1–6)Man gp120 IC50 ≈ 3.1 μg/mL Laxus oneistus [111,112] 

SVL GlcNAc gp41, gp120 
IC50 ≈ 0.15–0.23 

μg/mL 
Serpula vermicularis [113] 
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Chaetopterus variopedatus lectin (CVL) is a β-galactose-specific lectin extracted from the 
marine worm Annelida. CVL was shown to inhibit both HIV attachment to host cells and the 
fusion process between HIV and target cells (EC50 ≈ 73 nM) [109]; suggesting that CVL might 
be exerting its action through interaction with complex glycan type found in HIV gp120 and HIV 
gp41 [110]. In addition, Mermaid, a calcium (Ca2+) dependent lectin isolated from the marine 
nematode (Laxus oneistus) was shown to have structural similarities and similar glycan 
specificity with the Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing  
Non-integrin (DC-SIGN). Mermaid, which binds mannose oligosaccharides on HIV gp120 
prevented HIV-1 binding to DC-SIGN on dendritic cells, which ultimately blocked HIV 
transmission (IC50 ≈ 3.1 μg/mL) [111,112]. Another marine lectin Serpula vermicularis lectin 
(SVL) isolated from the sea worm Serpula vermicularis was also shown to bind GlcNAc and 
inhibited the production of viral p24 antigen and cytopathic effect induced by HIV-1  
(EC50 ≈ 0.15–0.23 μg/mL) [113,114]. 

3.2. Synthetic lectins 

Carbohydrate binding agents (CBAs) can bind to carbohydrate residues on the surface of viral 
envelopes, as for HIV gp120. This binding could lead to an inhibition of viral entry. Moreover, 
mutations of the envelope glycoproteins can improve drug pressure and lead to viral immune 
response neutralization. Because manufacturing natural plant-based lectins can be expensive, 
synthetic lectins have been considered as potential inhibitory alternative [115]. Synthetic lectins are 
cheaper to mass-produce as compared to their plant-based counterparts. As a response to the high 
cost and potential mitogenecity of natural lectins, Mahalingan et al. developed a benzoboroxole (BzB) 
polymeric synthetic lectin. Like natural plant-based lectins, BzB targets and binds carbohydrates on 
HIV viral envelope. At pH 7, BzB demonstrated increased binding efficiency to reducing sugars, 
such as fructose and weak binding affinity to non-reducing sugars, such as galactopyranose, a 
terminal sugar found on the surface of HIV gp120 complex glycans. This study further showed that 
BzB polymers of high molecular weight increased antiviral activity, proving that polyvalent 
interactions between inhibitor and glycosylated sites on HIV viral envelope improved with increased 
molecular weight. For example, increasing the mole percent of BzB functionalization showed an 
increase in EC50 [EC50 = 15 uM (25 mol%); EC50 = 15 nM (75 mol%)]. Moreover, substituting the 
polymer backbone with 10% sulfonic acid, resulted in an increased synergistic anti-HIV activity, as 
well as a 50-fold increase in aqueous solubility of the polymer. Furthermore, BzB-sulfonic acid 
showed an improved selectivity to HIV gp120, and the presence of fructose from seminal fluid did 
not decrease its antiviral activity [116]. Similarly, synthetic lectins containing phenylboronic acid 
(PBAs) could potentially exhibit carbohydrate recognition like that of CBA. For instance,  
Trippier et al. synthesized mannose selective PBA-based synthetic lectins that were tested for 
binding affinity against HIV gp120 [117]. Because the mono-PBA synthetic lectins tested did not 
bind HIV gp120 and were not good antiviral candidates, bis-PBA synthetic lectins were further 
investigated [118]. Although the bis-PBA did not demonstrate pronounced antiviral activity, these 
compounds were however found to be relatively noncytotoxic. It was also suggested that the lack of 
HIV gp120 binding could be due to the lack of multivalency and the small size of the PBA compounds. 
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4. Current anti-HIV lectins delivery strategies 

4.1. Challenges in anti-HIV lectins drug development 

The clinical translation of anti-HIV natural lectins faces numerous challenges including stability, 
solubility, resistance, toxicity, and manufacturing. These factors have seriously limited the progress 
in the field and often overshadow the potential benefits that anti-HIV lectins may have. For example, 
BanLec has been shown to partially dissociate into its monomeric forms in acidic conditions (pH 2) 
while maintaining a dimeric structure at neutral pH. The monomeric form of BanLec also offered 
more resistance towards chemical denaturation than the native dimeric form [119]. In addition, AH 
was shown to display low solubility in neutral buffer solutions with an enhanced solubility in acidic 
conditions [120]. This lack of solubility in neutral pH conditions could dramatically limit AH use as a 
topical microbicide for the prevention of HIV sexual transmission. It is established that vaginal pH 
increases from acidic (pH ≈ 4.5) to neutral (pH ≈ 7.5) during intercourse [121]. Furthermore, lectin 
resistant HIV strands have been reported [20]. The mutation of certain glycan structures in HIV 
gp120 was shown to be responsible for CV-N and Con A resistant HIV strands [100]. Although the 
development of HIV resistance to lectin may ultimately undermine the potency of these proteins, this 
is however viewed as an indirect route for exposing underlying amino acid sequences that could 
potentially be targeted by antibodies [80]. Anti-HIV lectins have also been associated with strong 
toxicity. In particular, Con A was shown to be mitogenic toward T-cells and induced cytotoxicity at 
high concentrations [122,123]. Similarly, CV-N and BanLec induced pronounced mitogenic 
activities on PBMCs and T-cells respectively [124,125]. Nonetheless, by replacing histidine 84 with 
a threonine in BanLec, Swanson et al. have demonstrated the possibility of bioengineering anti-HIV 
lectins to suppress their mitogenicity while maintaining their antiviral activity [104]. The high cost of 
natural anti-HIV lectins mass production and purification presents another particularly difficult 
challenge [126]. Although recombinant technology was proposed to overcome this limitation, 
improving fermentation yield, controlling mutation, and addressing potential immune system insults 
need to be studied [127]. Besides their ability to address some of these limitations and inhibit HIV 
transmission with relatively good safety profiles, synthetic lectins usually lack carbohydrate 
specificity and often require extensive optimizations to improve their binding affinity for HIV 
surface glycoproteins [117,118,126]. 

4.2. Anti-HIV lectin formulations 

A potential barrier to the development of antibody-based vaccines against HIV is the 
oligosaccharide layer that provide a protective covering to the underlying antigens on the viral 
envelope surface [128]. Carbohydrate-lectin complexes are a promising therapeutic strategy because 
various proteins interact with oligosaccharides on the surface of many human cells. Glycoproteins 
and glycolipids can also interact with lectins and enhance mucosal absorption of drugs and  
vaccines [129]. Taking advantage of the so-called “lectin direct targeting”, potential efficacious HIV 
vaccine nanoformulations have targeted endogenous lectins for antigen delivery to immune  
cells [130]. Dendritic cell lectins are often targeted in this strategy. Those anti-HIV vaccines strategy 
activate various receptors on antigen presenting cells or C-type lectins to illicit immune responses. 

The mannose receptor, a C-type lectin found on the vaginal epithelium, is known to bind HIV 
gp120 [131,132]. Binding of the mannose receptor to HIV gp120 allows the virus to cross the 
vaginal epithelium [133]. Humans have two types of mannose receptors, type 1 (MRC1) and type 2 
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(MRC2) and both can stimulate active and adaptive immunity. Because mannose receptors are highly 
expressed on dendritic cells as well as macrophages, these receptors are important for antigen 
recognition. Mannose receptors on dendritic cells take up antigen which stimulates robust T-cell 
activation via both major histocompatibility complexes (MHC) I and II molecular uptake 
mechanisms. This T-cell activation plays a critical role in the successful anti-HIV vaccine 
development [131]. When HIV-1 DNA was encapsulated in mannan coated-cationic liposomes 
targeting MRC, the nanoformulation successfully activated immunological responses, such as 
cytotoxic T cells, IgA, and other hypersensitivity responses [131]. These cationic nanoparticles 
showed 50% higher uptake than non-coated mannan nanoparticles in the macrophage cell line  
J774E [133]. Similarly, Espuelas et al. showed that a liposome nanoformulation containing mono-, 
di-, and tetra antennary mannosyl lipid derivatives could potentially achieve identical mannose 
receptor targeting on dendritic cells for a potential mannose-targeted vaccination strategy [134]. 
Furthermore, this study proved that liposome formulations containing higher mannose density result 
in more efficient interactions with mannose receptors. DC-SIGN is a Ca2+ binding adhesion lectin 
present on the surface of immature dendritic cells that play an important role in modulating host 
response to infection and inflammatory stimuli [135]. Because of its implications for antigen 
targeting and stimulation of T-cell responses, DC-SIGN has been considered a potential receptor for 
HIV vaccine targeting. In fact, DC-SIGN recognizes various high mannose oligosaccharides on 
HIV gp120 [136]. In vitro studies using DC-SIGN-targeted PLGA nanoparticles have shown that 
these nanoformulations deliver antigens to human dendritic cells [137]. DC-SIGN also increased 
antigen presentation, which translated into an improved activation of CD4 + and CD8 + T-cells. 

The development of additional HIV nanovaccine immunogens utilized envelope glycoprotein 
mimetics. Ingale et al. investigated liposomes-grafted high-density enveloped HIV glycoprotein 
trimers that were recognized by anti-HIV-1 antibodies and activated B-cells [138]. These liposome 
constructs may lead to a promising HIV neutralization vaccine. Moreover, He et al. designed 
nanoparticles containing native like trimeric structures of V1V2 and gp120. These nanoformulations 
presented a variety of gp140 trimers that displayed 20 spikes like that of other virus like particles. 
This study showed high B cell stimulation, which may lead to further investigation in the 
development of a multivalent HIV vaccine [139]. 

Other lectin-based anti-HIV strategies have focused on “lectin indirect targeting” instead. In this 
case, lectins (natural or synthetic) are included in formulations to target HIV envelope glycoproteins. 
This “virion capture” approach may lead to a successful HIV prevention by hindering a proper 
interaction between HIV virus and its targets. Virion and HIV gp120 antigen capture could 
potentially lay the foundation for a mucosal anti-HIV vaccine. Akashi et al. proposed a Con A 
immobilized polystyrene nanospheres capable of capturing HIV virions through binding interactions 
with HIV gp120 high mannose glycans [140]. Hayakawa et al. further investigated a similar strategy 
using nanoparticles prepared via co-polymerization of polystyrene and poly methacrylate[141]. 
Recently, Coulibaly et al. developed a mannose specific lectin-based HIV-1 gp120 responsive 
microbicide formulation capable of the control release of the nucleotide reverse transcriptase 
inhibitor Tenofovir (TFV) [142]. In this study, Con A’s ability to bind glycogen (a glucose-based 
polysaccharide) was used to engineer a self-assembled layer-by-layer drug delivery system. Drug 
release was achieved through a controlled and reverse disassembly of Con A/glycogen layers in 
seminal and vaginal fluid simulants at HIV-1 gp120 concentrations ≥ 25 μg/mL. Con A/glycogen 
layers disassembly was also shown to be primarily due to the lectin’s higher binding affinity for 
mannose glycans in HIV-1 gp120. Moreover, the amount of TFV released was shown to potentially 
inhibit HIV sexual transmission. This system also appeared to be safer on vaginal (VK2), murine 
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macrophage (RAW 264.7) and Lactobacillus crispatus cell lines. Although this system could be a 
safe and effective template for HIV vaginal microbicide drug delivery, future studies still need to 
prove its anti-HIV activity and in vivo safety. Current anti-HIV lectins’ formulations, discussed 
above, have been summarized in Table 2. 

Table 2. Summary of anti-HIV lectin formulations. 

Formulation Lectin Target References 

Mannan coated-cationic liposomes 
Mannose receptors,  

C-type lectins 
MRC (Dendritic cells) [131,133] 

Mannosylated liposome 
Mannose receptors,  

C-type lectins 
MRC (Dendritic cells) [134] 

PLGA nanoparticles DC-SIGN Dendritic cells [137] 

High density enveloped HIV glycoprotein 

liposomes 
N/A BRC (B cells receptor) [138] 

Con A immobilized polystyrene nanospheres Con A HIV gp120 [140] 

Con A immobilized 

polystyrene/methacrylate nanospheres 
Con A HIV gp120 [141] 

Layer-by-layer engineered Con A/glycogen 

microparticles 
Con A 

HIV gp120, methyl 

α-D-mannopyranoside 
[142] 

5. Conclusion 

In general, the field of lectinology has greatly contributed in the structural elucidation, the 
mechanistic understanding and the advancement of lectin based alternative antiviral therapy for 
various enveloped viruses including HIV, Zika, Ebola, Marburg, Herpes, Hepatitis-C, influenza, 
Severe Acute Respiratory Syndrome (SARS), Feline Infectious Peritonitis Virus (FIPV), and many 
more [143–150]. Despite test tube promises shown by lectins (natural and synthetic) against these 
pathogens, lectin-based antiviral clinical translation still faces great challenges including, resistance, 
cytotoxicity, immunogenicity, antigen specificity, and limited stability [151]. Nonetheless, current 
research on selected lectin candidates, such as BanLec and Griffithsin, may potentially lead to the 
first clinically available lectin-based antiviral therapy in the future [4,152]. Although anti-HIV 
lectins research is projected to grow, future investigations in the field would likely have to address 
novel delivery strategies to significantly improve CBA clinical translation. 
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