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Abstract: The transforming growth factor beta (TGF-β) family plays an important role in embryonic 
development and control of the cell cycle. Members of the TGF-β family have pleiotropic functions 
and are involved in both the inhibition and progression of various cancers. In particular, deregulation of 
the TGF-β family has been associated with prostate cancer, as both a mechanism of disease progression 
and a possible therapeutic target. This review concentrates on the TGF-βs, activins and inhibins, bone 
morphogenetic proteins and NODAL and their connection to prostate cancer. Whilst most studies 
examine the family members in isolation, there are multiple interactions that may occur between 
members which can alter their function. Such interactions include ligand competition for receptor 
binding and shared intracellular pathways such as the Mothers against decapentaplegic (SMAD) 
proteins. Another mechanism for interaction within the TGF-β family is facilitated by their dimeric 
structure; heterodimers can form which exhibit different functional capabilities to their homodimeric 
counterparts. The potential formation of TGF-β family heterodimers has not been well examined in 
prostate cancer. The multiple methods of interrelations between members highlights the need for gross 
analysis of the TGF-β family and related factors in association with prostate cancer, in order to 
discover possible future avenues for TGF-β based diagnosis and treatments of the disease. This review 
describes the role of the TGF-β family of proteins in cancer and, in particular, prostate cancer. After a 
brief overview, the role of individual members of the family is considered and how these members may 
be involved in prostate cancer growth is discussed. The review highlights the complex interactions that 
occur between family members and that may contribute to the progression of prostate cancer. 
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1. Introduction 
 

The transforming growth factor beta (TGF-β) family consists of 33 proteins which includes the 
TGF-βs, activins and inhibins, bone morphogenetic proteins (BMPs), growth and differentiation 
factors (GDFs) and Nodal growth factor (NODAL). The family members share a similar structure, 
and functions that include roles in development, wound healing, differentiation and control of the 
cell cycle [1-6]. Members of the TGF-β family usually exist as dimers and are often secreted in an 
inactive form which is cleaved by proprotein proteases to produce a mature active region [7]. It is the 
activated mature fragment that normally binds to the receptor, although there is evidence that the 
proregion fragment may also affect signalling [8-10]. Although there are 33 members of the family 
there are considerably fewer receptors available for these ligands to bind. There are five known 
type-2 receptors and seven known type-1 receptors often referred to as activin-like kinase receptors 
(ALK1-7) but in this review will be referred with their correct nomenclature (ACVRL1, ACVR1A, 
BMPR1A, ACVR1B, TGFBR1, BMPR1B, and ACVR1C) [11,12]. Within the mature protein is an 
active region that is formed of a cysteine knot that commonly binds first to a type-2 receptor, though 
some are able to bind directly to the type-1 receptor [13,14]. As a result of ligand binding, the type-2 
receptor recruits and phosphorylates a type-1 receptor. This receptor complex then activates 
intracellular signalling proteins, Mothers against decapentaplegic (SMADs), which translocate to the 
nucleus to alter gene transcription. These components of the canonical TGF-β family signalling 
pathway depend on phosphorylation to activate them. However, ‘non-canonical’ pathways also exist 
and include the utilization of signalling molecules such as the kinases; the mitogen activated kinase 
(MAPK) pathways including ERK, JNK and p38 and protein kinase B (Akt).  
 
The role of the TGF-β family in cancer 
 

The role of the TGF-β family in cancer development and progression is context dependent, and 
members of the family have been shown to be both cancer suppressive and cancer promoting at 
different stages of the disease. Some members of the TGF-β family are associated with cancer 
inhibition in the early stages of the disease, being generally associated with cell cycle arrest and 
apoptosis. However as the disease progresses and becomes metastatic, resistance to these growth 
inhibitory effects have been noted, with some TGF-β family members promoting tumour progression 
and invasion as the functions of the TGF-β family start to become more akin to their roles in early 
development, in contrast to their roles of tissue maintenance in mature tissue [15,16]. For example, 
functions such as epithelial mesenchymal transition (EMT) [17,18], fibrosis, myofibrosis, 
angiogenesis [19] and osteoclast differentiation [20,21] are normal actions of the TGF-β family and 
are important in the correct context. However, in cancer, aberrant expression of the proteins may 
exacerbate the condition by allowing the tumour to invade or by altering the microenvironment to 
favour metastasis [22]. Many TGF-β family related proteins have been shown to be up-regulated in 
cancer, and have potential use as diagnostic markers, or to monitor disease progression [3,23,24]. An 
example of a TGF-β family related target in prostate cancer progression is plasminogen urokinase A 
(PLAU), which cleaves plasminogen in the extracellular matrix and allows mass migration of cells. 
Cleaving of plasminogen when expressed normally assists with wound healing, but in cancer aids 
invasion [25-27]. Another TGF-β family target gene, that when expressed aberrantly results in the 
advancement of cancer, is homeobox protein goosecoid (GSC) which is involved with the Spemann 
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organiser and induces the migration of cells [28]. Likewise, the association of various TGF-β family 
members with bone formation and control, makes bone a target for the aberrant expression of TGF-β 
family members observed in cancer. Target genes of the TGF-β family in bone production and 
metastasis include receptor activator of nuclear factor κ B (RANK), which may be promoted with 
increased TGF-β production. This aids metastasis to bone as RANK promotes osteoclast 
differentiation allowing for the breakdown of bone tissue and for the invasion of the cancer cells into 
bone. Other TGF-β associated genes that may aid bone metastasis include connective growth tissue 
factor (CGTF), which may act as an extracellular mediator of invasion and angiogenesis, and 
interleukin 11 (IL11) which stimulates receptor activator of nuclear factor κ B ligand (RANKL) to 
activate osteoclastic activity [29,30]. In healthy mature bone tissue, the TGF-β family is associated 
with the formation and absorption of bone by osteoblasts and osteoclasts. In prostate cancer 
metastasis this relationship and balance is lost, resulting in the promotion of metastasis and tumor 
growth in bone [31,32]. The relationship between TGF-β family members, prostate cancer and 
metastasis to the bone is complex due to the large number of ligands involved in bone growth, their 
pleiotrophy, and the heterogeneous nature of prostate cancer.   

The relationship between the TGF-β family and prostate cancer may be examined at three 
possible levels: the expression of the TGF-β family ligands, the receptors utilized and also the 
signalling pathways activated. Complexity is derived from the number of possible ligands, their 
structure and multiple signalling pathways. An inter-ligand relationship is evident in that members of 
the TGF-β family are shown to interact with each other, either directly, through shared receptors, or 
in the form of heterodimerisation and cleaved fragment interactions. As a consequence, the signalling 
pathways, canonical and non-canonical, may be affected by competition, or inhibition by other 
TGF-β family proteins as well as the formation of heterodimers that have different functions [33-35]. 
Therefore, this review proposes that an important avenue for further investigation is how interactions 
between members of the TGF-β family may affect prostate cancer development and progression.  
 
2. TGF-β 
 

In mammals the TGF-β proteins comprise of three main isoforms: TGF-β1, TGF-β2 and 
TGF-β3. These isoforms share approximately 75% sequence homology, differing mostly in their 
extracellular interacting domains [36]. All have 9 cysteine residues that form disulphide bonds 
between subunits. TGF-β is secreted in vivo as a latent complex (pre-pro-TGF-β). The precursor 
molecule is then cleaved by the proprotein cleavage protein, furin [2] to release the mature signalling 
portion. The three isoforms of TGF-β, have a conserved protein structure in humans, simians, 
porcine, bovine, and mice [37]. Despite having quite similar structures, they have distinct temporal 
and spatial expression patterns throughout development and in mature tissues. This suggests that the 
three isoforms have differing functions prenatally and that these functions are conserved between 
species [37-39]. The isoforms usually bind initially to the TGF-β type-2 receptor (TGFBR2), which 
then recruits the TGF-β type-1 receptor (TGFBR1). This complex then acts by phosphorylating 
SMAD2/3, which then recruits SMAD4 resulting in activation of gene transcription. The individual 
isoforms differ in how they bind to the type-2 receptor. While TGF-β1 and TGF-β3 bind directly to the 
receptor, TGF-β2 requires betaglycan (TGFBR3) to assist binding to TGFBR2 [40].  

There are multiple ways that TGF-β signalling is regulated. A common method of regulation of 
TGF-β signal transduction is through inhibitory SMADs, I-SMADs, and other associated molecules 
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such as E3 ubiquitin-protein ligase, SMURF1 and SMURF2 proteins [41,42]. TGF-βs may bind to 
latent TGF-β binding proteins (LTBP) which can prolong the half-life of the molecule as well as 
provide recognition sites to promote the activation of the molecules. These various mechanisms of 
control allow tight regulation of the effects of TGF-β [43]. Tight regulation of TGF-βs’ signalling is 
important because of their multiple roles in development, tissue maintenance and wound healing, 
which when unbalanced may lead to pathologies such as cancer. Other modulatory molecules that 
regulate TGF-β activity include micro ribonucleic acids (miRNA) [44-46]. These have been shown 
to modulate both the canonical and non-canonical signalling pathways and potentially provide 
another degree of control. As well as signalling through SMAD2/3, there is evidence that TGF-β also 
signals via SMAD1/5/8, through co-expression of the WNT pathways in chondrocytes. This 
co-expression of WNT signalling pathway and TGF-β was shown to increase TGF-βs’ potential to 
phosphorylate SMAD1/5/8 and decrease the phosphorylation of SMAD2/3 [47]. A possible action of 
TGF-β phosphorylated SMAD1 molecules is to form complexes with SMAD3, this signalling molecule 
complex may bind to BMP-responsive promoters, thus inhibiting BMP SMAD1 signalling [48]. This 
type of cross-signalling has also been shown in breast cancer [49], but such a relationship has yet to 
be proven in the prostate. 
 
2.1. Expression of TGF-β in the prostate and prostate cancer 

 

The three TGF-β isoforms are all expressed in the prostate [50]. Their expression is regulated by 
androgens, with increased androgen expression associated with decreased TGF-β production [51]. In 
humans, TGF-β1 is predominantly localised intracellularly in the stromal and epithelial cells of 
healthy prostate tissue. In prostate cancer tissues expression of the TGF-β1 protein in epithelial cells 
increases, with only a slight increase in TGF-β1 in the surrounding stroma in comparison to healthy 
tissue [50]. There is evidence that the prostatic epithelia of both rats and humans primarily produce 
TGF-β2, which is localised to the apical region of the epithelial cells. TGF-β2 protein expression is 
more diffuse in malignant tumour epithelia and expression is greater in stromal cells surrounding 
malignant epithelia than stromal cells surrounding healthy prostate epithelia [50,52]. TGF-β3 protein, 
like TGF-β2, is predominantly localised to the apical region of the epithelial cells of the prostate. In 
malignant epithelia TGF-β3 expression is more diffuse, but there is no change in expression in the 
stromal cells [50]. Another ex vivo study showed a decrease in TGF-β3 expression in prostate cancer 
tissue compared to the other isoforms of TGF-β and also when compared to the healthy prostate and 
benign prostate hyperplasia [53-55].  

 
2.2. The role of TGF-β in prostate cancer 

 

The role of TGF-β in prostate cancer appears to depend on the stage of the disease. The three 
isoforms have tumour suppressive effects early in cancer development associated with cell cycle 
arrest and apoptosis. However, in later stages, their presence exacerbates the disease [56,57]. The 
effectiveness of each isoform in inducing aggressive cancer characteristics differs. TGF-β1 has been 
shown to be up-regulated in patients with prostate cancer, increasing angiogenesis and tumour 
growth [58-60]. TGF-β1’s role in prostate cancer metastasis has recently been shown to be linked 
with both tumour necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) cleaving the 
intracellular domain of the TGFBR1, and localisation of that cleaved fragment to the nucleus of 
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prostate cancer cells [61]. Conversely, the up-regulation of TGF-β2 has been shown to arrest growth 
in PC3 cells [62,63]. TGF-β3 is the most potent in inducing invasive capabilities in PC3 cells, acting 
via SMAD3 signalling. TGF-β3 is expressed at higher levels in PC3 cells compared to TGF-β1 and 
TGF-β2, but has no effect on proliferation of the PC3 cell line. It instead causes loss of cell adhesion 
and increased cell motility. TGF-β3 does, however, inhibit the proliferation of the prostate cancer cell 
line DU145 [64-66].  

Disruption of TGF-β signalling seems to be a major component in the progression of TGF-β 
related prostate cancer. Loss of TGFBR2 was found by Williams et al. (1996) in all 22 patients with 
prostate cancer studied when compared to healthy prostate controls and BPH tissue [67]. SMAD4 
signalling, a target of TGF-β signalling, has been shown to be protective against the development of 
various cancers, with mutations being associated with cancer progression [68,69]. Therefore 
inactivation of TGF-β signalling, either through the loss of receptors, or inactivation of the canonical 
signalling pathway have been found to be associated with the rapid development of invasive 
metastatic tumours [70]. The anti-tumour effects of TGF-β include their ability to induce apoptosis 
through multiple targets such as: phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1 (SHIP) 
proteins, death-associated protein 1 (DAP)-kinases, Kruppel-like factor 10 (TIEG) and cJUN-N-terminal 
kinase (JNK) activation [71] and mitogen-activated kinase kinase 3 [72]. Knocking out or inhibiting 
TGF-β signalling has been shown to induce malignant phenotypes [17]. Activation of the canonical 
signalling of TGF-β leads to recruitment of SMAD4 which is associated with increased apoptotic 
bodies in prostate tumour tissue [12,73].  

The tumour promoting effects of TGF-β are based around increasing the ability of the cells to 
proliferate, invade, and evade the immune response. For example, TGF-β can induce cells to 
differentiate into myofibroblasts, which as secretory cells, may secrete factors that promote tumour 
development [74]. TGF-βs have been shown to stimulate the collective migration of cells through the 
non-canonical ERK pathway [17]. Exposure of naive T cells to TGF-β3 inhibits their development 
into the tumour targeting immune cells CD4+ helper T cells or CD8+ cytotoxic T cells [18,75]. There 
are a multitude of variables that change how TGF-β signalling may be controlled. These may 
included multiple non-SMAD signalling molecules which are able to direct signalling to induce 
metastasis in prostate cancer [76]. With the structural similarity between TGF-β molecules and other 
TGF-β family members, alteration in ligand expression levels may result in promotion of prostate 
cancer. Further studies are needed to better understand the effect of each isoform in relation to the 
prostate and prostate cancer. 

 
3. Activins and inhibins 

 

Other members of the TGF-β family include the activins and inhibins. These proteins are 
composed of dimers of the inhibin-α and -β subunits; inhibin consisting of an inhibin-α and an 
inhibin-β subunit and activin formed by inhibin-β dimers. Activin is made up of two inhibin-β 
subunits that exist as 4 isoforms A, B, C, and E and may form either heterodimeric or homodimeric 
forms. These activin dimers bind to type-2 activin receptors A or B (ACRV2A/ACVR2B) to initiate 
signalling with the recruitment of the type-1 activin receptor (ACVR1). Activin E is expressed solely 
in the liver, while activin A, B and C are expressed in the prostate. 
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Figure 1. Diagram of activin and inhibin formation from proprotein monomers to active 
homo- and hetero-dimers. Inhibin-α subunits in blue and inhibin/activin-β subunits in red.  

Activins have been shown to have the greatest capacity of the TGF-β family to interact with 
each other and other family members. Activin was named for its ability to stimulate secretion of 
follicle stimulating hormone (FSH). Conversely inhibin, a molecule that inhibits activin signalling, 
was named for its ability to oppose FSH signalling. Inhibin antagonism of activin signalling is 
derived from its competition for the type-2 receptor, which is aided by betaglycan which acts as a 
co-receptor, preventing the subsequent dimerization and phosphorylation of the type-1 receptor [10]. 
The most studied isoforms of activin are the subunits inhibin-βA and inhibin-βB which share 63% 
sequence homology. These form the homodimers activin A and activin B, and the heterodimer activin 
AB. Though these subunits are similar in structure their expression patterns are distinct during 
development, and knockout of the genes has specific effects [77]. Activins are structurally similar to 
the TGF-βs hinting at a possible redundancy in signalling. The differing roles that TGF-β and activin 
have are hard to elicit postnatally, due to activation of SMAD2 and SMAD3 by both families, as well 
as non-canonical signalling [35,78,79]. Activin A has been shown to have many inhibitors. Inhibin 
and follistatin are the most well-described inhibitors, while activin C has also been shown to be 
antagonistic towards activin A and B signalling, competing for the type-2 activin receptor [23,80,81]. 
The inhibin-βC subunit also has the ability to dimerise with the inhibin-βA and -βB subunits forming 
activin AC and activin BC heterodimers. These heterodimers have altered binding and signalling 
capabilities, with the AC heterodimer having less affinity for the receptor and less bioactivity than 
activin A [82]. The formation of these heterodimers decreases the formation of activin A [83].  

Activins and inhibins are secreted as large monomeric subunits consisting of the proregion 
bound noncovalently to the mature region. These proregion bound monomers then dimerise and fold 
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to form the pre-mature protein. The formed dimers are aided in their binding to the receptor by their 
proregion which is cleaved by proprotein convertases prior to receptor binding (Figure 1) [10,84,85]. 
The proregion fragments have the potential to alter the signalling and binding of inhibin and activin. 
The inhibin-α subunit proregion fragment prevents the binding of inhibin A to betaglycan, which 
inhibits binding of inhibin to the type-2 receptor. Alterations to the cleavage site of the proregion also 
greatly affect synthesis of inhibin [9]. The presence of the proregion in inhibin-β subunits, however, 
increases the half-life of activin in vivo when compared to its mature protein counterpart, and as such 
the role of the prodomain has been studied as a possible therapeutic modulator of activin [10,86].  
 

3.1. Expression of inhibins and activins in the prostate and prostate cancer 
 
Inhibin is primarily produced in the testis, however the prostate has a method of concentrating 

inhibin resulting in inhibin concentrations being much higher than those in the testis [87]. In the prostate, 
inhibin expression is mostly localised to the epithelial cells and is more concentrated in the central zone 
of the prostate [88]. In the non-malignant prostate, inhibin-βA subunit mRNA and protein are localised in 
the basal and secretory epithelial cells. The inhibin-βB subunit protein is predominantly located in the 
basal epithelial cells of non-malignant prostate tissue rather than the secretory epithelial cells [89].  

 
3.2. The role of activins and inhibins in prostate cancer 

 

The role of inhibin in prostate cancer is complex. It was initially thought to be an inhibitor of 
prostate cancer development because it is not detected in prostate cancer cell lines [90] and 
expression is reduced in some prostate cancer patients [91]. Inhibin expression has, however, been 
found to be increased in metastatic prostate cancers in vivo [92]. Further roles in cancer for activins 
and inhibins are suggested by the evidence that inhibin knockout mice develop sex cord stromal 
tumours with activin being found in supraphysiological levels in these mice [80,93,94].  

Activin is usually associated with growth inhibitory effects in the normal prostate and in low 
grade prostate cancer cell lines, where it has apoptotic and cell cycle arrest inducing roles [95-97]. Like 
TGF-β, activin has been shown to have dual roles in cancer. The role of activin A and B in cancer 
follows a similar pattern to TGF-β, where they are growth inhibitory early on in cancer development, 
but have no effect or promote tumour development in advanced forms of the disease [95]. Activin A 
has been shown to be up-regulated in breast and prostate cancer, with the up-regulation in prostate 
cancer correlating with an increased Gleason score [98]. Increased activin A is also associated with 
metastasis to bone, a common site of metastasis in prostate cancer [21,99]. The activin C knockout 
mouse has no evidence of prostate abnormality. Up-regulation of activin C, however, has been shown 
to significantly decrease activin A signalling and induce prostate epithelial cell hyperplasia (personal 
communication). Activin C antagonises activin A growth inhibition in the activin-sensitive prostate 
cancer cell line LNCaP [23,100] and slows down the progression of cancer where activin A signalling 
is an underlying factor [80]. Further research is needed to understand how the complex associations 
between activins and inhibins are involved in the progression of prostate cancer. 
 

4. Bone morphogenetic protein (BMP) 
 

The BMP family is comprised of 10 ligands [101,102]. Like other members of the TGF-β family, 



48 
 

AIMS Molecular Science  Volume 4, Issue 1, 41-61. 

the members share conserved cysteine residues and exist as dimers. The BMP family shares 
approximately 35% homology with the other TGF-β family members and within the BMP family 
there exists between 60–80% sequence homology. The BMPs normally bind to the BMP type-2 
receptor (BMPR2) and recruit the type-1 BMP receptor (BMPR1). Canonical signalling utilizes 
SMAD1, 5, and 8, though like other members of the TGF-β family they are able to signal via 
non-canonical pathways. BMPs were first implicated in regulation of bone formation via osteoblast 
differentiation [103,104]. They are also important in dorsal ventral axis formation and have other 
developmental functions [105].  

Inhibitors of BMP function include BMP3, BMP binding endothelial regulator (BMPER), 
noggin, and BMP and activin membrane-bound inhibitor homolog (BAMBI) [106-108]. BMP3 is a 
unique member of the BMP family in that it is the only inhibitory BMP, fulfilling a role similar to 
that of activin C in the inhibition of activin A and B. BMP3 inhibits the signalling of other BMP 
isoforms through receptor competition. Knockdown of BMP3 results in increased bone density, 
while its up-regulation causes the development of fracture-prone bones [109]. BMP3 not only 
competes for BMP receptor binding, preventing signalling from occurring, but may also inhibit 
activin A signalling [110]. BMP3 is able to promote adipogenesis via activin A pathways, providing 
an example of how the different SMAD pathways may interfere with each other, as well as the 
structural and functional similarities between family branches [111]. This interference between the 
BMPs and activins is further evidenced by BMP3 inhibition of activin A signalling and activin 
inhibition of BMP6 and BMP9 signalling due to competition for binding of the type-2 receptors 
ACVR2A and ACVR2B [110,112]. Similar to the activin family, heterodimers of the differing BMP 
subunits can be formed. These BMP heterodimers appear to have altered signalling ability compared 
to their homodimer counterparts. An example of this is BMP2/7 which differentially targets TGF-β 
signalling when compared to BMP2 and BMP7 homodimers. The heterodimers have been shown to 
be more potent in inhibiting breast cancer and TGF-β directed SMAD signalling and less susceptible 
to noggin inhibition than BMP2 and BMP7 alone [34]. 

 
4.1. The role of BMP in the prostate and prostate cancer 

 

Due to their role in development and their expression throughout the body BMPs have been 
studied for a potential role in cancer. Tissues from healthy prostate and prostate cancer have been 
shown to express members of the BMP family, namely BMP2, BMP3, BMP4, BMP6 [113] and 
BMP7 [114]. The potential role of BMPs in the prostate may be tied to development, for example 
BMP4 has been shown to restrict ductal formation and branching morphogenesis of the developing 
prostate [115]. The metastasis promoting contributions of BMPs are often associated with increased 
invasion into bone, whereas the cancer inhibiting roles of BMPs are associated with induction of 
apoptosis [116]. BMP2 and BMP6 have been shown to increase tumour invasiveness of both prostate 
cancer and other cancer types [117,118]. BMP2 has been reported to enhance the motility of the 
prostate cancer cell lines LNCaP, DU145 and PC3 [119] and both BMP2 and BMP4 have been shown 
to increase PC3 cell migration and invasion [120]. BMP6 secreted by prostate tumours may also have a 
role in aiding invasiveness by up-regulating vascular endothelial growth factor (VEGF), a protein 
involved in angiogenesis [121]. BMP7 and BMP4 have been shown to have an inhibitory effect on 
tumour invasiveness in glioblastomas [122] and BMP7 is down-regulated in prostate cancer [114,123]. 
BMP7 is a potent inhibitor of TGF-β induced EMT, counteracting TGF-β induced SMAD activation 
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as well as reducing metastasis to bone in vivo. BMP7 also has the ability to form heterodimers with 
BMP2 which can have inhibitory effects on certain cancers [34].   

 
4.2. The role of GDFs in prostate cancer 

 

Often described as a sub group of the BMP family, the growth and differentiation factors (GDFs) 
are comprised of 10 members [101]. These ligands can also influence cancer development. GDF9 
overexpression has been shown to increase proliferation in PC3 cells acting through TGFBR1 
receptors [124,125]. GDF9 also has the ability to dimerise with BMP15, and is involved in regulating 
ovarian function [126,127]. BMP15 has not been identified in the prostate, but the ability of GDF9 to 
dimerise and its ability to induce EMT in PC3 cells warrants further investigation [125,128]. GDF15, 
also referred to as macrophage inhibiting cytokine, is another ligand that is up-regulated in prostate 
cancer. GDF15 is associated with stress, tissue damage and development. The alteration of both 
serum GDF15 and PSA levels seems to have a greater correlation with the high Gleason score of 
metastatic prostate cancer than prostate specific antigen (PSA) alone [129]. The expression of 
GDF15 is independent of PSA expression, which is important because PSA levels may be influenced 
by multiple conditions such as benign prostate hyperplasia and aging. Circulating GDF15 has 
potential as a diagnostic biomarker when it is used in conjunction with PSA, providing an increase in 
diagnostic accuracy in determining metastatic prostate cancer [130,131]. 

 
5. NODAL 

 

NODAL is a TGF-β family ligand and is also an activin antagonist. As with many other 
members of the TGF-β family, NODAL has a multitude of functions in embryonic development and 
is essential in maintaining pluripotency and mesoderm patterning [132]. NODAL homodimers, aided 
by Cripto, bind to ACVR2B receptors and then recruit ACVR1B and ACVR1C type-1 receptors. 
They compete with activin for receptor binding, preferentially activating SMAD2 [133-135]. Like 
other TGF-β members, NODAL signalling has an additional layer of complexity with 
Cripto-independent mechanisms of signalling. Heterodimers consisting of BMP7 or BMP3 and 
NODAL are also possible. The affinity of NODAL for dimersiation with BMP7 and BMP3 is as 
strong as the affinity for NODAL homodimerisation. In vitro these heterodimers do not activate 
either SMAD1 or SMAD2 and act as a method of inhibiting BMP signalling [135]. NODAL 
signalling can be inhibited by Lefty and Cerberus proteins. Lefty inhibition of NODAL signalling 
occurs via two possible mechanisms that prevent NODAL from forming NODAL-receptor 
complexes; firstly by binding to Cripto, and secondly by binding directly to NODAL itself [136]. 
Likewise, Cerberus binds directly to NODAL preventing receptor-binding and signalling [137].  

Role of NODAL in prostate cancer 

Expression of NODAL is largely confined to embryonic development and stem cells, and is 
generally absent from normal adult tissue. Its presence in adult cancerous tissue makes it a promising 
target for cancer therapy, especially in prostate cancer [132,138]. NODAL and its receptors are 
up-regulated in the progression of various metastatic cancers, such as pancreatic and gastric cancer. 
NODAL signalling has been reported to be influential in other cancers with its up-regulation 



50 
 

AIMS Molecular Science  Volume 4, Issue 1, 41-61. 

increasing glioblastoma proliferation [139]. Up-regulation of Cerberus and Lefty has been able to 
inhibit the metastatic ability of NODAL expressing breast cancer cells [140]. The expression of 
NODAL in vitro is associated with the more aggressive prostate cancer cell lines DU145 and PC3, 
and when expression is induced in the less aggressive LNCaP cells, they exhibit increased invasive 
abilities [138,141]. In vivo there is a possible association between NODAL expression and prostate 
cancer progression, with increased NODAL staining in high grade prostate cancer biopsy tissue 
when compared to low grade prostate biopsy cancer biopsy tissue, and little to no expression of 
NODAL in benign prostate glands. The expression of the embryonic developmental gene NODAL in 
prostate cancer highlights a potential role for NODAL in the progression of prostate cancer [138].  

 
6. Interactions of the TGF-β family 

 

Many studies that explore the TGF-β family’s involvement in cancer examine a few members in 
isolation [94,110,121,123]. Whilst this is useful for teasing out the function of a specific gene and 
associated protein, these studies ignore the fact that due to structural and functional similarities, there 
may be cross-talk, interactions or redundancy occurring between ligands and their signalling 
pathways. Consideration of these possible interactions are important when many ligands can interact 
with a single receptor (Figure 2), and other co-factors and inhibitory factors exist [78]. 
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Figure 2. Simplified diagram of the signalling pathways that the main members of TGF-β 
family may employ. The diagram highlights the high number of ligands relative to the low 
number of receptors and signalling pathways. The ligands typically bind to type-2 
receptors which then recruit type-1 receptors via phosphorylation. Inhibitory family 
members are shown in red. 
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Interactions between family members include competition for receptors and downstream 
signalling molecules, and heterodimer formation. These mechanisms have been demonstrated for 
specific members of the TGF-β family with members able to either prevent a ligand from binding 
to its receptor [110,112] or altering its signalling by the formation of heterodimers [34,83]. The 
receptors for TGF-β and activin are almost identical, and the TGF-β and activin signalling 
pathways share a total of 21 overlapping target genes [78]. This possible overlap in signalling 
could be achieved either through interactions between ligands, either directly or by competition for 
receptors, or due to shared recruitment of SMAD2, SMAD3 and SMAD4 signalling [35,79]. Such 
interactions and complexity may hinder the promise of TGF-β family associated treatments of 
cancer [23,80,142].  

 
6.1. Heterodimerisation in the TGF-β family 

 

The dimeric structures of TGF-β family members allow for a wide variety of ligand formation 
both within and between family branches (Figure 3). Activins and inhibins are expressed in the 
prostate and have the capacity to form both homo and heterodimers and interact with each other in 
vivo [83]. The heterodimers of inhibin subunits are especially important to consider when there are 
dimers that oppose the signalling or interfere with the signalling of other ligands. This is apparent 
with inhibin, (inhibin-α and inhibin-β heterodimer), and activin C heterodimers (activin AC and 
activin BC), which are antagonistic to the signalling of activin A and activin B homodimers [83]. 
Likewise, BMP heterodimers may form and have been observed to have altered receptor-binding 
capabilities compared to their homodimer counterparts. BMP2 and BMP7 can form heterodimers 
which have different functions to their homodimer counterparts, potentiating the inhibition of 
breast cancer metastasis to bone and also reducing the size of the cancer stem cell population [34]. 
Other BMP heterodimers include BMP2/6, which has a higher affinity for ACVR2B and BMPR1A 
and exhibits increased signalling via SMAD1 when compared to either of the homodimers [143]. 
BMP4/7 produces increased SMAD1 activation in xenopus embryos when compared to BMP4 or 
BMP7 alone [144]. Heterodimers of BMP15 and GDF9 are far more potent in altering ovarian 
function than BMP15 and GDF9 alone [128]. NODAL may form a heterodimer with BMP7, with a 
similar kinetic affinity for heterodimerism as their homodimeric counterparts. This association 
between NODAL and BMP may be a mechanism for NODAL based inhibition of BMP signalling 
as the formed heterodimer does not activate phosphorylation of SMAD1 or SMAD2 [145]. 
Heterodimers also occur between GDF1 and NODAL which result in altered receptor-binding 
kinetics binding to the co-receptor Cryptic rather than Cripto. These heterodimers have a lower 
molecular weight with enhanced diffusion capabilities than NODAL homodimers which may aid 
signalling during embryonic development [146]. Aside from heterodimers of inhibin/activin 
subunits, heterodimers of other TGF-β family members have not been documented in the prostate 
or in prostate cancer. Potential heterodimers may contribute to the development of prostate cancer 
by altering receptor binding and signalling of TGF-β superfamily ligands. Such interactions 
between members of the TGF-β family adds further complexity to the role of these proteins in 
prostate cancer but may also provide potential targets for the development of new therapies. 
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Figure 3. Known heterodimers of the TGF-β family that involve the inhibin-α (blue), 
inhibin-β (red), BMP (orange) and NODAL (purple) subunits and the receptors that they 
may signal through. 

 

6.2. Receptor competition and inhibition 
 

The common structure between family members means that there are many shared modulators 
of the TGF-β family. For example, BMP and activin receptor binding can both be inhibited by 
BAMBI [134]. Activin A signalling is opposed directly by inhibin and activin C both of which compete 
for binding to the type-2 activin receptor. The inhibition of activin pathways in particular has been 
highlighted as an important area of research for possible therapeutics for prostate cancer [23,80,147]. 
BMP3, as well as inhibiting BMP signalling, has also been shown to inhibit activin A signalling. 
Again, this inhibition of activin A signalling occurs through competition for the activin receptor by 
BMP3, preventing activin signalling from occurring [111,112]. Cripto, the co-receptor of NODAL, 
helps NODAL form a stable NODAL-Cripto-receptor complex that recruits SMAD2, but Cripto has 
also been shown to bind activin and the ACVR2A and ACVR2B receptors. This interaction forms a 
non-signalling receptor complex with activin, preventing it from recruiting the type-1 receptor and 
thus inhibiting activin signalling [133]. Therefore the presence of Cripto aids NODAL signalling but 
inhibits activin signalling [135]. This prevention of activin signalling and promotion of NODAL 
related effects, may be a mechanism by which Cripto and NODAL expression can influence the 
progression of prostate cancer [138].  

 
7. Conclusion 

 

TGF-β family members have important roles in development [148]. Hijacking of these functions 
can lead to cancer promoting effects [17,19,66,79]. As such, there has been much study into the roles 
that this large group of proteins may play in various cancers, including prostate cancer [15,101]. As 
well as interactions between members of the same family, members of different families also interact 
with each other. This complexity of signalling could possibly alter the effectiveness of TGF-β 
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derived treatments [23,142]. The greatest hurdle to fully understanding TGF-β family signalling in 
relation to prostate cancer, is the sheer number of possible interactions that are not apparent when 
studying a protein or gene in isolation. A holistic view of the superfamily is therefore required. The 
availability of techniques, such as whole transcriptome sequencing, that allow the level of expression 
of multiple members of this family to be measured at the same time in tumours, will greatly benefit 
our overall understanding of the TGF-β family’s role in prostate cancer. With improvements to 
genomic and proteomic techniques, the ability to study the co-expression and interactions between 
TGF-β family members is now easier, allowing for more holistic studies to be carried out. With a 
better understanding of the interactions between TGF-β family members and their downstream 
effects, diagnostic and therapeutic agents specific to tumour type may be developed. 
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