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Abstract: Lectins are carbohydrate recognizing proteins originating from diverse origins in nature, 
including animals, plants, viruses, bacteria and fungus. Due to their exceptional glycan recognition 
property, they have found many applications in analytical chemistry, biotechnology and surface 
chemistry. This manuscript explores the current use of lectins for cancer diagnosis and therapy. 
Moreover, novel drug delivery strategies aiming at improving lectin’s stability, reducing their 
undesired toxicity and controlling their non-specific binding interactions are discussed. We also 
explore the nanotechnology application of lectins for cancer targeting and imaging. Although many 
investigations are being conducted in the field of lectinology, there is still a limited clinical translation 
of the major findings reported due to lectins stability and toxicity concerns. Therefore, new 
investigations of safe and effective drug delivery system strategies for lectins are warranted in order 
to take full advantage of these proteins. 
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Abbreviations:  

AAL: Aleuria aurantia lectin  AAL-2: Agrocybe aegerita lectin 
ABL: Agaricus bisporus lectin ACA: Amaranthus caudatus agglutinin 
AEL: Aspidistra elatior lectin AFP-L3: Alpha-fetoprotein-L3 
AHA: Arachis hypogea agglutinin AIA: Artocarpus integrifolia agglutinin  
ALSA: Antibody-lectin sandwich array  AML: Amaranthus mantegazzianus lectin 
AOL: Aspergillus oryzae lectin  
BNIP3: BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 
BPL: Bauhinia purpurea lectin CA125: Cancer antigen 125 
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CMP-SA: Cytidine monophosphate-sialic acid Con A: Concanavalin A  
Cra: Cratylia mollis lectin  DISC: Death-inducing signaling complex 
DL: Dalton's lymphoma  EAC: Ehrlich ascites carcinoma 
ERK: Extracellular signal-regulated kinase  FUT8/FucT: fucosyltransferase  
GAGs: Glycosaminoglycans GDP: Guanosine diphosphate  
GlcNAcT-V: N-glycan GlcNAc transferase V  GMA: Glycine max agglutinin  
GNA: Galanthus nivalis agglutinin GSA I: Griffonia simplicifolia agglutinin I  
GSLs: Glycosphingolipids  HCC: Hepatocellular carcinoma 
HddSBL: Haliotis discus discus sialic acid binding lectin 
HE4: Human epididymis protein 4  HIV: Human immunodeficiency virus 
JNK: c-Jun N-terminal protein kinase  
LC3-II: Microtubule-associated protein 1A/1B-light chain 3 
LCA: Lens culinaris agglutinin LTA: Lotus tetragonolobus agglutinin 
MAA-II: Maackia amurensis agglutinin/Maackia amurensis Lectin-II 
MCL: Momordica charantia seeds  MLs: Mistletoe lectins  
NF-κB: Nuclear factor-kappa B  PHA: Phytohemagglutinin lectin  
PNA: Peanut agglutinin  PSA: Prostate specific antigen  
PTL: Pinellia ternata lectin RCA/RCA I: Ricinus communis Agglutinin/Ricin 
RLL: Russula lepida lectin SFL: Sophora flavescens lectin  
Siglecs: Sialic acid binding Ig-like lectins  SNA: Sambucus nigra agglutinin/Elderberry lectin 
STL-S and STL-D: Solanum tuberosum lectin TF: Thomsen-Friedenreich  
Tg: Thyroglobulin Anti-Tg-Ab: Thyroglobulin antibody  
TJA-I: Trichosanthes japonica agglutinin-I  UDP-Gal: Uridine diphosphate galactose  
UDP-GlcNAc: Uridine diphosphate-N-acetylglucosamine  
UEA I: Ulex europaeus agglutinin I VVL: Vicia villosa lectin 
WFA: Wisteria floribunda agglutinin  WGA: Wheat germ agglutinin  

 

1. Introduction  

Since the term “lectin” was first coined in 1954 by Boyd and Shapleigh to define a group of plant 
agglutinins, lectins have received a lot of attention, partly due to their exceptional sugar binding 
property, as well as their therapeutic and biotechnological potentials [1,2]. Subsequent studies will 
later show that lectins are not limited to plants but originate instead from a wider range of sources. In 
fact, lectins are found in plants, animals and microorganism such as fungi, algae and bacteria [3-5]. 
According to Harold and Hans [6], regardless of its origin, to be considered a lectin, a protein should 
fulfill the following three main criteria: (i) bind carbohydrate, (ii) be different from immunoglobulins 
and (iii) not biochemically modify the carbohydrates which they bind. 

These criteria allow the exclusion of tannins, certain lipids, carbohydrate specific antibodies, 
glycosyltransferases, glycosidases and other enzymes that bind and modify carbohydrates. Lectins 
have been classified based on their origin, sequence and structural homology, nature of glycan-lectin 
interactions, multivalency, type of natural ligands, biosynthesis and trafficking [7-10]. More recently, 
Kumar et al. have divided lectins into two modes of classification [11]. The first mode of classification 
is essentially based on lectin’s ligand preference and is divided into four different subgroups: (i) 
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glucose/mannose binding lectins, (ii) galactose and N-acetyl-D-galactosamine binding lectins, (iii) L-
fucose binding lectins and (iv) sialic acids binding lectins. Kumar’s second mode of classification is 
based on lectin-like proteins evolutionary features and contains two major types. The first type is based 
on structural and evolutionary sequence similarities of lectin-like proteins, the second type is 
essentially composed of lectin-like proteins without established evolutionary sequence. 

Various biological functions have been attributed to lectins. In plants, lectins function can be divided 
into internal and external activities. Externally, plant lectins are believed to play a critical role in root 
nodules formation through symbiotic rhizobia binding, and protect from insects and fungi. Internally, 
plant lectins are mainly involved in sugar transport or carbohydrate storage and often activate enzymatic 
processes [6]. Animal lectins have been associated with much broader functions, including clearance of 
sulfated glycoprotein, control of lymphocyte migration, control of glycoproteins biosynthesis, induction 
of apoptosis, induction of angiogenesis, complement activation, lectinophagocytosis, mitogenic activity, 
modulation of cell-cell and cell-substrate interactions, modulation of signal transduction by B 
lymphocytes, neuronal myelination and regeneration, sperm-egg interaction, targeting of glycoproteins 
to lysosomes and tumor metastasis [12]. In microorganisms, lectins are known for enhancing microbial 
infectivity, fungal parasitism, host recognition, yeast flocculation, defense mechanism, development 
and morphogenesis [2,12].  

Lectins carbohydrate specificity is the underlying basis for their multitude biological functions. 
Consequently, lectins have been investigated for a variety of new applications which has given rise to 
an emerging field of science known as “lectinology” or the science of lectins [13]. In fact, lectin-bound 
stationary phases are commercially available for glycoproteins or glycopeptides enrichment [14]. 
Furthermore, antibody-lectin sandwich array (ALSA) technology has been proposed to address 
limitations and sensitivity issues, high-throughput sample processing problems and high consumption 
of clinical samples associated with conventional bioanalytical methods [15-17]. Lectins have also 
found a wide range of applications in cytochemistry, histochemistry and immunochemistry for the 
detection and characterization of glycosylated residues and different glycoconjugates in human or 
animal cells and tissue surfaces [18]. Owing to their potent anti-insect properties, plant lectins have 
particularly received increasing attentions for their potential in pest management in the field of 
agriculture [19,20]. This use of lectins in agriculture is expected to address as much as 27% of the 
worldwide crop loss caused by plant pathogens and related diseases, estimated to US$1350 billion 
each year [21]. Perhaps, the single field of science where lectins have found an explosion of 
applications is in surface chemistry. Lectin functionalized surface technologies offer scientists the ease 
to design homemade and cost effective sensors tailored to unique applications with desired 
specifications (sensitivity, selectivity) [22-24].  

Not surprisingly, lectins ability to specifically and selectively target diver glycosylated biological 
molecules with good sensitivity has found very promising applications in the field of pharmaceutical 
sciences. In the past decades, there has been an exponential increase in the use of lectins to address 
some of the most challenging questions in health sciences [25-28]. This manuscript aims at reviewing 
the current trend in the use of lectins for cancer diagnosis and therapy. 

2. Glycan alterations in cancer 

The glycocalyx, a distinctive carbohydrate coating of most vertebrate and bacteria cells’ 
membrane, is composed of glycoproteins, glycolipids, and glycosaminoglycans. Typically the 



4 
 

AIMS Molecular Science  Volume 4, Issue 1, 1-27. 

glycocalyx contains N-linked and O-linked glycans attached to glycoproteins, proteoglycans and 
glycosphingolipids (GSLs) [29]. Glycosaminoglycans (GAGs), which are also found in the glycocalyx, 
are O-linked to proteins core [30]. Changes in the glycocalyx structure from physiological state to 
pathological state are the underlying principle for various lectins-based disease diagnosis. Although 
poorly understood in the early 1970s (when this phenomenon was first described), recent evolution in 
glycoscience, genomic, proteomics and mass spectrometry enable precise distinctions in the glycan 
structure and composition between disease and normal states. In cancer, cell surface glycans alterations 
following malignant transformation, tumor cell differentiation, and metastasis have been widely 
documented [31,32]. Common alterations include loss of expression or overexpression of certain 
glycan structures, the appearance of incomplete, truncated or novel structures and the accumulation of 
precursors [33]. Kumamoto et al. reported a significant overexpression in the amount of mRNA for 
uridine diphosphate galactose (UDP-Gal) transporter in colon cancer tissues compared to 
nonmalignant mucosa tissues [34]. More importantly, UDP-Gal transporter mRNA increase was 
associated with an enhanced expression of cancer-associated carbohydrate markers such as Thomsen-
Friedenreich (TF) and sialyl Lewis A/X antigens in colon cancers. Although this study did not find any 
significant difference in the mRNA level of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) 
and cytidine monophosphate-sialic acid (CMP-SA) between malignant and nonmalignant colon tissues; 
numerous other studies have associated UDP-GlcNAc with cancer progression. In fact, cell lines with 
increased expression of N-glycan GlcNAc transferase V (GlcNAcT-V), an enzyme responsible for β1–
6 branching of N-glycans, showed an increased frequency of metastasis in animal models due to an 
impairment of cell adhesion which consequently promoted tumor cell invasion [35]. Furthermore, the 
loss of GlcNAcT-V enzyme activity correlates with a loss of the metastatic phenotype [36]. In addition, 
fucosylation or the transfer of fucose residues to oligosaccharides linked to proteins or lipids, is known to 
be one of the most prominent glycan modification involved in cancer. Fucosylation, generally increases 
during carcinogenesis, and is primarily regulated by fucosyltransferases, guanosine diphosphate (GDP)-
fucose synthetic enzymes, and GDP-fucose transporter(s) [37]. Recently, Chen et al. reported that an 
upregulation in the expression of fucosyltransferase 8 (FUT8) in non-small cell lung cancer (NSCLC) 
correlates with tumor metastasis, disease recurrence, and poor survival rate in patients. This study also 
determined that knocking down FUT8 in aggressive lung cancer cell lines significantly inhibit cancer 
cell proliferation, metastasis and tumor growth [38]. Moreover, α-L-fucose has been found to be 
overexpressed in a variety of cancers, including thyroid carcinoma [39], leukemia [40], lung cancer [41], 
ovarian carcinoma [42], colorectal adenocarcinoma [43], and brain tumor [44]. In human 
hepatocellular carcinoma, fucosylation biosynthesis was found to be regulated by a high expression of 
GDP-L-fucose synthase (FX protein) followed by an increase in GDP-L-fucose, as well as an 
enhancement in α1-6 fucosyltransferase (α1-6 FucT) expression [45,46]. Consequently, defucosylation 
was proposed by Listinsky et al. [47] as a selective ablation therapeutic strategy against many human 
malignancies. This hypothesis was further tested by Yuan et al. by treating human breast cancer MDA-
MB-231 with α-L-fucosidase, a glycosidase that specifically removes α-L-fucose. Although MDA-
MB-231 cells proliferation and viability was unaffected by fucosidase treatment, the cancer cells 
invasion was significantly decreased due to a downregulation of cell surface CD44 and CD15 [48] 
levels. Conversely, Zhao et al. found that the core fucosylation (the addition of a fucose residue in α 
1,6 linkage to the first GlcNAc of the oligosaccharide core during posttranslational modifications) is 
down regulated in gastric cancer and proposed that an upregulation of core fucosylation could 
effectively inhibit the proliferation of human gastric cancer cells [49]. More specifically, it was 
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proposed that α-L-fucose might be essential in the malignancy and metastatic phenotype development 
of many human breast cancers [50]. Furthermore, sialylation, which is essentially the transfer of sialic 
acid, a nine-carbon acidic monosaccharides, into terminal position of glycan chains, is known to be a 
prominent alteration in most cancers [51]. It was hypothesized that the high degree of sialylation in 
cancer may favor disease progression by protecting cancer cells from apoptosis, promoting metastasis, 
and by conferring a resistance to therapy [52,53]. The increase in sialylation is generally manifested 
as a specific increase in 2-6-linked sialic acids attached to outer N-acetyllactosamine (Galβ1-4GlcNAc) 
units or to inner GalNAc-α1-O-Ser/Thr units on O-glycans [33]. This specific alteration in sialylation 
is known to correlate with human cancer progression, metastatic spread, and poor prognosis [54]. 
Nonetheless, α2-3-sialic acid has also been shown to play an important role in cancer progression. In 
fact, Cui et al. established that the highest expression level of α2-3-sialic acid residues in breast cancer 
is associated with metastatic potential [55]. Table 1 is a summary of the main glycans alterations 
observed in cancer that are discussed in this manuscript. 

 

Table 1. Glycan, monosaccharides, sugar transporters and enzymes alterations in cancer. 
Cancer Glycan, monosaccharides, sugar transporters and enzymes References 

Colon Cancer UDP-Gal [34,56] 

α2-6- sialic acid 

Thomsen-Friedenreich  

Sialyl Lewis A/X antigens  

Gastric cancer  α1-6-fucose [39] 

Lung cancer  α-L-fucose [38,43] 

Fucosyltransferase 8 

Breast Caner α2-3- sialic acid  [40,55] 

α-L-fucose 

Thyroid carcinoma  α-L-fucose [41] 

Leukemia α-L-fucose [42] 

Ovarian carcinoma  α-L-fucose [44] 

Colorectal adenocarcinoma  α-L-fucose [45] 

Brain tumor  α-L-fucose [46] 

Hepatocellular carcinoma GDP-L-fucose synthase  [47,48] 

GDP-L-fucose 

α1-6 fucosyltransferase  

 
In colorectal cancer, α2-6-linked sialic acids have been associated with metastasis and therapeutic 

failure [56]. Sialic acid binding Ig-like lectins (Siglecs) are expressed on most immune cells surface 
and can transmit immunosuppressive signals upon binding to sialic acid [57]. It has been proposed that 
altered sialylation of tumor cells may affect interactions with some Siglecs which ultimately promotes 
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immune system evasion by sending an inhibitory signal to innate immune cells [52]. Similarly, although 
hypersialylation of the Fas receptor (apoptosis antigen 1) does not affect its agonist binding, this however 
prevents apoptosis induction in cancer cells. More specifically, α2-6 sialylation of Fas by the 
sialyltransferase ST6Gal-I prevents the initiation of death-inducing signaling complex (DISC) by 
hindering the binding of the Fas-associated adaptor molecule (FADD) to the FasR death domain [52,58]. 
Figure 1 summarizes major glycosylation reactions and glycan structures observed in cancer.  

 

Figure 1. Summary of key glycosylation reactions (A, B and C) and major glycan 
structures in cancer. Reactions are adapted from [33] and [59]. 

3. Lectins-based cancer diagnosis 

Owing to their high selectivity and specificity for certain glycan structures, lectins have been 
investigated for their potential in cancer diagnosis. One of the successful clinical translations of 
lectin use as diagnosis tools is Lens culinaris agglutinin (LCA). LCA, a plant lectin extracted from 
lentil seed, which bind specifically to α1-6 fucose, has been used to diagnose hepatocellular 
carcinoma (HCC) [60,61]. LCA-based HCC diagnosis relies primarily on a specific affinity of the 
lectin for Alpha-fetoprotein-L3 (AFP-L3), a malignant tumors specific isoform of AFP glycoprotein. 
A commercial clinical kit for AFP-L3 serum concentration was subsequently developed for HCC 
diagnosis [62], which quickly became a valuable clinical alternative to more expensive and 
sophisticated techniques such as CT scans and MRI imaging [61]. Today, LCA based HCC diagnosis 
is a FDA approved HCC clinical diagnosis tool covered by the health insurance of the Japanese 
Medical Service [63] and used by leading cancer treatment centers across the US [64]. LCA/AFP-L3 
interaction has also been investigated to diagnose and monitor testicular tumor activity [65].  

Lectins have also been investigated for their potential in ovarian cancer diagnosis. Cancer antigen 
125 (CA125) and human epididymis protein 4 (HE4) are two FDA approved glycoprotein biomarkers 
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for ovarian cancer. Amaranthus caudatus agglutinin (ACA), Artocarpus integrifolia agglutinin (AIA), 
Arachis hypogea agglutinin (AHA), Vicia villosa lectin (VVL), Griffonia simplicifolia agglutinin I 
(GSA I) and Ulex europaeus agglutinin I (UEA I) are a group of lectins that recognize Thomsen-
Friedenreich antigen, Thomsen-nouvelle and sialyl-Thomsen Friedenreich glycan alterations (Figures 
1 and 2) of CA125 and HE4 [66-69]. Targeting CA125 glycan alterations with VVL, Chen et al. were 
able to distinguish benign ovarian neoplasms from invasive epithelial ovarian cancer with a specificity 
of 61.1% at 90% sensitivity [68]. Other studies have also shown that wheat germ agglutinin (WGA) 
and Glycine max agglutinin (GMA) could potentially be used for ovarian cancer diagnosis [70,71]. 
Because CA125 glycan alteration include an increase in core-fucosylated bi-antennary monosialylated 
glycans; LCA and UEA which specifically recognize α1-6 fucose and α1-2 fucose, respectively, have 
been investigated for their potential in ovarian cancer diagnosis [72]. Furthermore, Pinellia ternata 
lectin (PTL), a lectin recently isolated from mushroom, specifically bind 1-6 fucose residues and 
could potentially be used in ovarian cancer, breast cancer and pancreatic cancer diagnosis [37].  

 

Figure 2. Thomsen-nouvelle and sialyl-Thomsen Friedenreich structures. 

Aleuria aurantia lectin (AAL), which specifically recognizes α1-6, α1-3 and α1-4 fucose moieties 
was successfully used for differential diagnosis and predicted prognosis of pancreatic cancer. In serum 
samples from pancreatic cancer patients, AAL binds to the highly fucosylated haptoglobin β chain 
which occurred in 60–80% of patients screened in the study [37]. Moreover, taking advantage of the 
difference in sialylation in pancreatic cancer, Li at al. showed that Alpha-1-β glycoprotein interaction 
with Sambucus nigra agglutinin (SNA) can be used to specifically detect pancreatic cancer with high 
sensitivity and specificity [73]. 

Thyroglobulin (Tg) is a FDA approved glycoprotein biomarker for thyroid cancer. Studying the 
presence of distinct GalNAc termini of N-glycans on human thyroglobulin, Takeya et al. found 
Wisteria floribunda agglutinin (WFA) to have a broad binding activity to different Tg isoforms [74]. 
This finding might provide additional diagnostic strategies for thyroid cancer using WFA. A different 
study by Zhao et al. focused instead on the variation of glycosylation in sera anti-Tg-Ab [75]. In fact, 
to determine the extent of thyroglobulin antibody (anti-Tg-Ab) glycosylation in patients with different 
thyroid diseases, Zhao et al. applied three different Lectin-ELISAs. In this study, AAL detected the 
fucose residues, Ricinus communis agglutinin I (RCA I) recognized the galactose residues and 
Elderberry lectin (SNA) specifically bound α2-6-sialic acid in anti-Tg-Ab. Among the three lectins 
investigated, SNA showed a faster binding response to anti-Tg-Ab and could potentially serve as a 
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rapid thyroid cancer detection tool. Likewise, prostate specific antigen (PSA) is the most accurate 
biomarker approved by the FDA for prostate cancer detection [76]. Using a quartz Crystal 
Microbalance biosensor, Pihikova et al. determined that SNA has a better affinity for PSA compared 
to Maackia amurensis agglutinin-II (MAA-II) and Lotus tetragonolobus agglutinin (LTA), probably 
due to an increased amount of 2-6-sialic acid glycans in the glycoprotein compared to other glycan 
types [77]. MAA-II specifically binds 2-3-sialic acid while LTA is known for -L-fucose detection. 
This study also explored the potential of electrochemical lectin-based immunosensors in prostate 
cancer diagnosis. Similarly, in another study reported by Bhanushali et al., SNA and AAL have shown 
more sensitive detection capabilities (1.58 and 1.45 ng/mL) for PSA glycans compared to Maackia 
amurensis Lectin-II (MAA-II) (1.71 ng/mL) [78]. However, all three lectins showed detection limits 
significantly lower than the currently used clinical assay cutoff for PSA (4 ng/mL) [67]. This suggests 
the potential of these lectins to accurately diagnose prostate cancer by detecting PSA glycans levels in 
serum samples of prostate cancer patients. Furthermore, targeting PSA glycans with Phytohemagglutinin 
lectin (PHA) from Phaseolus vulgaris, Batabyal et al. have demonstrated the ability to differentiate 
PSA from prostate cancer, benign prostate hyperplasia (BPH) and normal serum [79]. PHA is a plant 
lectin extracted from the red kidney bean which preferentially recognizes branched N-glycans bearing 
the β1-6 branched GlcNAcT-V product [80,81]. Similar results were also reported by Basu et al. using 
the mannose specific lectin Concanavalin A (Con A) [82]. These findings could represent the 
underlying basis for a new and rapid prostate cancer diagnosis tool which may ultimately reduce 
unnecessary biopsies in men [83].  

Using PHA, Kim et al. successfully identified 26 new colorectal cancer candidate biomarkers that 
showed 100% specificity and sensitivities greater than 50% [81]. Similarly, using principal component 
analysis and hierarchical clustering to analyze glycoarrays from five (5) plant lectins, Qui et al. found 
that except for peanut agglutinin (PNA), all the other lectins tested (Con A, SNA, AAL, MAA-II) 
successfully separate colorectal cancer samples from normal controls [84]. Although, ConA and SNA 
differentiated normal controls samples from cancer samples, these two lectins did not show a good 
separation efficiency between adenoma and cancer samples. On the contrary, in addition of 
differentiating normal control samples, AAL and MAA-II were better at segregating adenoma from 
cancer samples. Therefore, AAL and MAA-II could potentially be used for the diagnosis of colorectal 
cancer but also the study of disease progression. Furthermore, to distinguish metastatic from non-
metastatic breast cancer patients, Fry et al. designed lectin microarrays consisting of 45 lectins with 
different binding preferences. Serum and urine samples were then analyzed for binding differences. 
Four lectins, Aspergillus oryzae lectin (AOL), Galanthus nivalis agglutinin (GNA), RCA 120 and 
Phaseolus vulgaris erythroagglutinin (PHA) showed a significant binding difference between sera 
from metastatic and non-metastatic patients [85]. AOL is a core fucose (α1-6-fucosyl) specific fungus 
lectin, GNA is a plant lectin that preferentially recognizes mannose rich glycan and RCA 120 is a 
galactose-binding plant lectin [86-89]. Trichosanthes japonica agglutinin-I (TJA-I), RCA 120 and 
Bauhinia purpurea lectin (BPL) also showed significantly higher binding in metastatic compared to 
non-metastatic urines samples, suggesting that patient urine sample may contain potential glycosylated 
biomarkers for metastatic breast cancer diagnosis. TJA-I and BPL are two plant lectins that bind 
specifically α2-6 linked sialic acid and Galβ1-3GalNAc (T-antigen), respectively [90,91]. An overview 
of different lectins used for cancer diagnosis along with their glycan specificity is provided in Table 
2. 
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Table 2. Lectins for cancer diagnosis. 

Cancer  Lectin Glycan preference References 

Hepatocellular carcinoma LCA α1-6 fucose [60,61] 

Testicular cancer LCA α1-6 fucose [65] 

Ovarian cancer  ACA Thomsen-Friedenreich antigen (Galβ1 → 

3GalNAcα-O-Ser/Thr); Thomsen-nouvelle 

(GalNAcα-O-Ser/Thr) and sialyl-Thomsen 

Friedenreich structures (Neu5Acα2 → 3Galβ1 → 

3GalNAcα-O-Ser/Thr) 

[37,66-72] 

AIA 

AHA 

VVL 

GSA 

UEA 

GMA GalNAcα1-Ser/Thr and/or 

GalNAcGalβ1,3GalNAcα1-Ser/Thr) 

WGA  Sialic acid and N-acetyl glucosamine (GlcNAc) 

PTL  α1-6 fucose  

LCA  α1-6 fucose 

UEA  α1-2 fucose 

Pancreatic cancer SNA  α2-6-sialic acid [37,73] 

AAL α1-3/α1-4 and α1-6 fucosylations  

PTL  α1-6 fucose  

Breast cancer GNA Mannose  [37,85-91] 

RCA  Galactose 

PHA GlcNAc 

AOL  α1-6-fucose 

TJA-I  α2-6 linked sialic acid 

PTL  α1-6 fucose  

BPL Galβ1-3GalNAc  

Thyroid cancer RCA I Galactose [75] 

SNA  α2-6-sialic acid 

AAL  α1-6, α1-3 and α1-4 and fucose  

WFA  GalNAc  

Prostate cancer  SNA  α2-6-sialic acid [67,77-

79,82] MAA-II α2-3-sialic acid  

LTA α-L-fucose  

PHA Galβ1, 4GlcNAcβ1, 2Man 

Con A  α-Man > α-Glc > GlcNAc 

Colorectal cancer  PHA β1-6 branched GlcNAc [80,81,84] 

AAL α1-6, α1-3 and α1-4 and fucose 

Con A  α-Man > α-Glc > GlcNAc 

SNA  α2-6-sialic acid 

MAA-II α2-3-sialic acid 
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4. Lectins-based cancer therapy 

In addition to their specific glycan recognition, most lectins are also known for their cytotoxicity 
which makes them ideal anti-cancer therapeutic candidates. Lectins anti-cancer activities generate from 
diverse mechanisms, including apoptosis, autophagy, and inhibition of tumor growth [92]. Ricin (RCA), 
one of the first discovered lectins, is an ideal example of how lectins can both specifically target and 
induce cell death [93]. Extracted from castor plant seeds, RCA is a heterodimer composed of two distinct 
N-glycosylated polypeptide chains (chain A and chain B) joined by a disulfide bond [94]. Chain A plays 
the role of an enzyme that irreversibly inactivates mammalian 60S ribosomal subunits rendering them 
unable to bind the GTP-binding translation elongation factor EF-2, which ultimately prevents protein 
synthesis [95-97]. Chain B mainly plays the role of a targeting ligand by specifically recognizing 
galactosyl residues on cell surfaces. Binding of chain B to β1-4-linked galactosyl containing 
glycoproteins triggers RCA uptake by endocytosis [98]. Recently, Zou and Zhan found that RCA has 
the potential to selectively kill leukemia (K562) and colon cancer (SW480) tumor cells [99]. RCA 
induced tumor cell death by apoptosis via caspase-3 activation and DNA fragmentation [100].  

Mistletoe lectins (MLs), which also belong to the ribosome inactivating proteins type II family, 
have been divided into three main types comprised of ML-I, ML-II and ML-III. Similar to RCA, MLs 
are composed of two polypeptide chains. Chain A inhibits protein synthesis intracellularly by blocking 
the elongation step of protein biosynthesis through the catalyzed hydrolysis of the N-glycosidic bond 
at adenine-4324 in the 28S RNA of the 60S ribosomes [101]. Chain B is responsible for the 
immunomodulatory activity of mistletoe lectin, manifested by enhancing the secretion of cytokines 
and the activity of natural killer cells [102]. ML-I binds lactose, D-galactose and GalNAc, while ML-
II and III bind GalNAc preferably [103-105]. Currently, ML-I is the most studied of the MLs for its 
potent antitumor and immunomodulatory effects. MLs (mainly ML-I and ML-II) have shown 
promising antiproliferative activities toward various types of cancer cells, including breast cancer, 
leukemia, liver cancer, melanoma and lung cancer [106,107]. In fact, Marvibaigi et al. recently 
published a comprehensive review of the preclinical and clinical effects of mistletoe against breast 
cancer [108]. MLs induce tumor cell death via an apoptosis pathway by activating several caspases 
(caspase 8, caspase 9 and caspase 3), inducing a down-regulation in pro-survival protein Bcl-2 and by 
inhibiting telomerase activity [109-111]. Using a lectin extracted from Pinellia ternata (PTL), Zuo et 
al. have been able to inhibit Sarcoma 180, HeLa (cervical cancer cells) and K562 cells proliferation at 
a maximum of 85.2, 74.6 and 59.4%, respectively. It was proposed that PTL inhibits cancer cell 
proliferation by preventing the transition from G1 to S phase in the cell division cycle, which 
subsequently induces cells to enter the quiescent G0 state from G1, thus cell division cycle arrest. 
Although cyclophosphamide (a cancer chemotherapy agent) induced a significant tumor size reduction 
compared to PTL, in vivo, tumor growth was still inhibited up to 36% with PTL [112]. Furthermore, a 
recent study using Con A and Sophora flavescens lectin (SFL) established that these lectins display 
antitumor activities against human breast cancer cells (MCF-7), both in vitro and in vivo [113]. Tumor 
cell death, which ultimately led to the decrease in tumor mass volume and weight in MCF-7 bearing 
nude mice, was also shown to occur by apoptosis. In fact, both ConA and SFL induced an increase in 
the activities of pro-apoptotic mediator caspase-3, caspase-9 and cytochrome C in a dose dependent 
manner. In addition, an upregulation in pro-apoptotic proteins Bax and Bid and a downregulation in 
pro-survival protein Bcl-2 and Bcl-XL levels was associated with the treatment of MCF-7 cells with 
both lectins. Moreover, Con A reduced the nuclear factor-kappa B (NF-κB), the extracellular signal-
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regulated kinase (ERK), and the c-Jun N-terminal protein kinase (JNK) levels, and increased tumor 
suppressor protein p53 and the cyclin-dependent kinase inhibitor p21 levels while SFL only caused 
similar changes in NF-κB, ERK, p53, and p21 levels and did not affect JNK expression level. Similar 
to NF-B, ERK and JNK control many cell processes, including growth, differentiation, transformation 
and apoptosis [114-118] while p21 is known to regulate cell division cycle progression at G1 and S 
phase and mediate cellular senescence [119,120]. Similar results were previously reported by Chang et 
al. when Con A was tested on hepatoma cells [121]. However, Con A was found to preferentially locate 
in the mitochondria, triggering tumor cell death with microtubule-associated protein 1A/1B-light chain 
3 (LC3-II) generation, double-layer vesicle formation, BCL2/adenovirus E1B 19 kDa protein-interacting 
protein 3 (BNIP3) induction, and acidic vesicular organelle formation following a change in the 
mitochondria membrane permeability, indicative of an autophagic cell death pathway [121-123]. 

A galactose-specific lectin (nagaimo lectin), recently purified from the tubers of Dioscorea 
opposite, induced potent antiproliferative activities against breast cancer cells (MCF-7) and liver 
cancer cells (HepG2) [124]. It was also determined that nagaimo lectin inhibits MCF-7 cells 
proliferation by apoptosis, potentially through a mitochondrial membrane depolarization. When 
soybean lectin’s (SBL) antitumor effect was tested in vivo in Dalton's lymphoma (DL) bearing mice, a 
strong antiproliferative activity (74.51 ± 3.5 and 82.95 ± 5.8% within ten days of treatment) with 
selectivity toward tumor cells was observed. SBL-mediated tumor cell death was reported to occur by 
autophagy, apoptosis and DNA damage through a dose dependent generation of reactive oxygen 
species [125]. Similarly, Amaranthus mantegazzianus lectin (AML) and ACA showed promising 
antiproliferative activities against rat osteosarcoma-derived cells. Amaranthus lectins-induced cell 
death was also reported to be through an apoptosis pathway [126]. Furthermore, two lectins extracted 
from Solanum tuberosum tubers (STL-S and STL-D) were recently tested on Ehrlich ascites carcinoma 
(EAC) in Swiss albino mice and inhibited tumor growth by 79.84 and 83.04%, respectively. Although 
a mechanism of STLs-induced tumor cell death is yet to be determined, Hasan et al. suggested that 
STLs might regulate their antiproliferative activity via apoptosis [127]. In addition, a D-galactose-
specific lectin extracted from Momordica charantia seeds (MCL) showed a strong growth inhibition 
against EAC (up to 75%). MCL induced EAC cell cycle arrest at the G0/G1 phase suggesting an 
apoptosis mediated cancer cell death [128]. Moreover, a significant in vitro antiproliferative activity 
of Aspidistra elatior lectin (AEL), purified from the rhizomes of Aspidistra elatior Blume, has been 
reported toward Bre-04, Lu-04, HepG2, and Pro-01 tumor cell lines [129]. AEL promotes tumor cells 
entry in the sub-G1 phase, indicative of a programmed cell death [130]. Leczyme, also known as sialic 
acid-binding lectin and isolated from oocytes of bullfrog (Rana catesbeiana), has previously been 
reported for its ribonuclease and antitumor activities [131]. Until recently, leczyme-induced tumor cell 
death was not well understood. Tatsuta et al. showed that leczyme induced tumor cell death via 
apoptosis by activating the initiator caspases (8 and 9) and the effector caspase (3) [132,133]. Similarly, 
MLL-2, a lectin purified from the Musca domestica Linnaeus fly’s larvae, has been shown to inhibit 
breast cancer cells (MCF-7) proliferation. Cao et al. suggested a mitochondrial pathway to be 
responsible for the apoptosis mediated tumor cell death observed with MLL-2 [134].  

Lectins extracted from various genus and species of mushroom have also shown significant 
antiproliferative activities both in-vitro and in-vivo [135,136]. Yu et al. reported that Agaricus bisporus 
lectin (ABL), a Thomsen-Friedenreich antigen binding lectin, is a reversible noncytotoxic inhibitor of 
epithelial cell proliferation [137]. In fact, a strong inhibition (up to 87%) of [3H]-thymidine 
incorporation, which correlates directly with the inhibition of cell proliferation, was observed on 
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human colorectal adenocarcinoma cells (HT29) proliferation. Fifty percent (50%) inhibition of MCF-
7 breast cancer cells proliferation was also reported in the same conditions. Although a mechanism for 
ABL induced anticancer activity was not investigated by Yu et al., in this report, the lack of 
cytotoxcicity observed with this lectin suggested a different mechanism than the irreversible 
mechanism by which lectins, such as ricin, inhibit protein biosynthesis through ribosome subunit 
inactivation. It was later shown that the anti-proliferative effect of ABL is a consequence of the lectin 
blocking the nuclear localization sequence-dependent protein uptake into the nucleus [138]. Similarly, 
Russula lepida lectin (RLL), an inulin and O-nitrophenyl-β-D-galacto-pyranoside binding lectin, 
inhibited HepG2 and MCF-7 tumor cells. Furthermore, RLL induced a 67.6% reduction in tumor size 
in-vivo, in male white Kunming mice bearing S-180 tumor [139]. To date, the mechanism of RLL 
induced anticancer activity is still not well understood. In a separate study, Zhao et al. showed that 
Agrocybe aegerita lectin (AAL-2), a Thomsen-Friedenreich antigen binding lectin, can inhibit various 
cancer cells proliferation including HeLa, SW480, gastric cancer cells (SGC-7901, MGC80-3, BGC-
823), acute promyelocytic leukemia cell HL-60 and mouse sarcoma S-180. AAL-2 also demonstrated 
a significant inhibition of S-180 tumor in BALB/c mice [140,141]. AAL-2 antitumor activity was 
shown to occur mainly via apoptosis and DNase activity. A brief summary of lectins discussed in this 
manuscript for cancer therapy and their carbohydrate preference is presented in Table 3. 

5. Clinical translation of anticancer lectins 

Although lectins antitumor potential is widely studied and likely to continue to be reported, there is 
however a slow rate of clinical translation of these proteins into cancer therapeutics. To date, only 
Mistletoe lectins (MLs) have been extensively studied in clinical trials (Table 4) to assess their anticancer 
potentials [142]. The lack of clinical trials for many other potentially effective lectins has pushed some 
scientists to call for an increase and diversity in anticancer lectins clinical trials [143]. Although not 
approved by the food and drug administration for commercialization in the US, mistletoe extracts are 
widely used in European countries for the treatment of various cancers, including breast cancer, pancreatic 
cancer, lung cancer and colon cancer [144-147]. MLs extracts are marketed under various trade names, 
such as Iscador®, Helixor®, Eurixor®, Lektinol® and Isorel® [148]. Among their many advantages, MLs 
extracts dramatically increase cancer patients’ survival rate and quality of life, prolong relapse intervals, 
and reduce side effects associated with chemotherapy treatments [108]. More specifically, in a 
nonrandomized matched-pair study, Iscador® increased patients’ mean survival time by 40% (4.23 years) 
compared to the untreated control groups (3.05 years; P < 0.001) [144]. Furthermore, Helixor® was shown 
to significantly increase cell surface glycoprotein CD107a expression in Natural Killer (NK) cells [147]. 
CD107a is widely accepted as a functional marker for the identification of natural killer cell activity [149]. 
Similarly, Lektinol® showed a strong effect on survival ratio, inhibition of primary bladder tumors growth 
and the formation of multiple metastases when administered at 3–30 ng/0.1 mL/kg animal [150]. Recently, 
few clinical trials have also emerged to explore the effects of mushroom extracts as anti-cancer therapeutics 
(Table 4) [151-153]. Lectins are believed to be part of a group of active components responsible for 
conferring anti-cancer potential in mushrooms, including lentinan, krestin, hispolon, calcaelin and 
Hericium polysaccharide A and B (HPA and HPB) [154]. Mushrooms extracts have shown promises in 
various cancers, including breast cancer, pancreatic cancer, liver cancer, oral cancer, prostate cancer, colon 
cancer, gastric cancer, leukemia, lung cancer and against some forms of malignancies, such as estrogen 
receptor negative human breast cancer, where chemotherapy has failed. 
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Table 3. Example of lectins used in cancer therapy. 

Lectin Monosaccharide/glycan 

preference 

Cancer References 

RCA Galactose Leukemia (K562)  [99,100] 

Colon Cancer (SW480)  

ML-I, ML-II Lactose, D-galactose, 

GalNAc 

Breast Cancer [101-107] 

Leukemia 

Liver Cancer 

Melanoma 

Lung Cancer  

PTL  α1-6 fucose  Sarcoma (180) [112] 

Cervical Cancer (Hela) 

Chronic Myelogenous Leukemia (K562) 

Con A  α-Man > α-Glc > 

GlcNAc 

Breast Cancer (MCF-7)  [113,121-

123] Hepatoma Cells 

SFL  Mannose Breast Cancer (MCF-7)  [113] 

Nagaimo lectin Galactose Breast Cancer Cells (MCF-7) [124] 

Liver Cancer Cells (HepG2)  

SBL Galactose Dalton’s Lymphoma  [125] 

AMM, ACA Galβ1-3GalNAcα-O- Osteosarcoma [126] 

STL-S, STL-D N-Acetylglucosamine Ehrlich Ascites Carcinoma  [127] 

MCL D-galactose Ehrlich Ascites Carcinoma  [128] 

AEL D-mannose Breast Cancer (Bre-04) [129,130] 

Lung Cancer (Lu-04) 

Liver Cancer Cells (HepG2) 

Prostate Cancer (Pro-01) 

Leczyme Sialic acid Mesothelioma [131-133] 

Leukemia 

Breast 

Carcinoma 

Hepatoma Cells 

MLL-2 D-galactose Breast Cancer Cells (MCF-7)  [134] 

ABL Thomsen-Friedenreich 

antigen 

Colon cancer cells (HT29),  [137] 

Breast Cancer Cells (MCF-7) 

RLL inulin and O-

nitrophenyl-β-D-galacto-

pyranoside 

Breast Cancer Cells (MCF-7) [139] 

Liver Cancer Cells (HepG2) 

AAL-2 Thomsen-Friedenreich 

antigen 

HeLa, SW480, SGC-7901, MGC80-3, BGC-

823, HL-60 and S-180 cells 

[140,141] 
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Table 4. Example of Mistletoes and Mushroom lectins clinical trials. 

 Product tested Study design Participant Major findings References

MLs Eurixor® Pilot trial (phase I/II 

study) 

16 Stabilization of patient 

quality of life 

[145] 

Iscador® Nonrandomized and 

randomized matched-

pair studies nested 

within a cohort study 

10,226 Prolonged survival 

time, stimulated self-

regulation  

[144] 

Viscum album 

(L.) 

randomized clinical 

trial 

220 Prolongation of overall 

survival  

[155] 

Helixor® Randomized 

controlled clinical 

trial. 

233 Improved quality of life, 

reduced chemotherapy 

side-effects  

[156] 

Aviscumine 

(recombinant 

mistletoe 

lectin-I) 

Phase I trial 41 Stimulated the immune 

system with a release of 

cytokines, stabilized 

disease 

[157] 

Iscador® Randomized phase II 

study 

72 Chemotherapy dose 

reductions, less severe 

side-effects and 

hospitalizations 

[158] 

Lektinol® 

(PS76A2) 

Randomized, placebo-

controlled, double-

blind, multicenter 

clinical trial. 

352 Safe and effective, 

improved quality of life 

[159] 

lectin-

standardized 

mistletoe 

extract 

Controlled 

epidemiological 

multicentric retrolective 

cohort study 

1248 Improved quality of 

life, prolonged relapse-

free intervals 

[160] 

Iscador® M 

spezial 

Prospective open 2-

armed non-

randomized study 

33 Lower frequency of 

nausea/vomiting; low 

systemic therapy side 

effects. 

[161] 

Abnoba 

VISCUM(®) 

Mali 

Noninterventional and 

prospective trial 

270 Improved health related 

quality of life 

[162] 

Mushroom Trametes 

versicolor 

Phase I 11 Safe and tolerable, 

improved immune 

status  

[153] 

White button 

mushroom 

Phase I  36 Decreased PSA levels, 

decreased 

immunosuppressive 

factors 

[152] 
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6. Advanced lectins formulations for cancer targeting and therapy 

Potential challenges related to lectins successful clinical translation might generate from their poor 
stability, unspecific binding interactions and difficulties in production and purification [163,164]. To 
address some of these challenges, Andrade et al. investigated a nanoparticle formulation of Cratylia 
mollis lectin (Cra). Liposomal formulation of Cra, a mannose and glucose binding lectin, was 
investigated against sarcoma 180 in Swiss mice. The nanoparticle formulation, which ultimately 
improved the protein stability and delivery, showed a significant tumor inhibition (71%) with minimal 
tissue toxicity compared to free Cra solution (41%) [165]. Similarly, Lyu et al. reported an alginate-
chitosan microparticle formulation of mistletoe lectin which offered an excellent stability of the lectin in 
acidic conditions with desired drug release profiles, suggesting the potential for MLs oral delivery [166]. 
Furthermore, a gene therapy approach for lectin drug delivery, which may ultimately provide an anti-
cancer genes reservoir, was explored. In fact, a replication-deficient adenovirus-carrying gene encoding 
Haliotis discus discus sialic acid binding lectin (HddSBL) showed significant antiproliferation activities 
against hepatocellular carcinoma cell line Hep3B and lung cancer cell lines A549 and H1299 [167].  

Other strategies focusing on the use of lectins as cancer targeting ligands have also been 
investigated. Although lectins may exert beneficial anticancer properties in such drug delivery systems; 
they are typically conjugated onto nanoparticles surface only for the so called “lectin direct targeting”. 
Mo and Lim successfully developed a novel WGA-conjugated isopropyl myristate (IPM)-incorporated 
PLGA nanoparticle for local delivery of paclitaxel to the lung. This nanoparticle formulation showed 
a superior in vitro cytotoxicity against A549 and H1299 cells compared to the clinical paclitaxel 
formulation, due to a more efficient cellular uptake via WGA-receptors [168,169]. A similar 
formulation tested against colon cancer cells (Caco-2 and HT-29 cells) yielded an increased 
intracellular retention of paclitaxel and an enhanced antiproliferative activity [170]. The intracellular 
transport profile of lectin-functionalized nanoparticles in Caco-2 cells was further studied by Gao et 
al. using quantum dots-loaded WGA-PEG nanoparticle. This study demonstrated that WGA-
functionalized PEG nanoparticle cellular uptake begins with the binding of WGA to its receptor, onto 
the cell surface, followed by particle uptake by clathrin and caveolae-mediated endocytosis 
mechanisms [171]. RCA-conjugated gold nanoparticle was shown to strongly accumulate onto HeLa 
cells, suggesting the use of such systems for cervical cancer selective targeting [172]. More recently, 
a gold nanoparticle formulation bearing hydrophobic zinc phthalocyanine photosensitizers and PEG 
conjugated jacalin (a Thomsen-Friedenreich antigen binding lectin) moieties has been reported for 
photodynamic therapy. The strong phototoxicity observed in HT-29 cancer cells (95–98%) was mainly 
due to the specific interactions between jacalin and the antigen expressed onto the cancer cell surface [173]. 
“Reverse lectin targeting” systems, in which carbohydrate moieties are conjugated to a drug delivery 
system to target endogenous lectins, have also been proposed. In a phase I clinical trial, such a system 
(PK2) composed of a polymer bearing doxorubicin with galactosamine has demonstrated liver-specific 
delivery of doxorubicin when administered by infusion [174].  

Furthermore, lectins carbohydrate recognition was proven to be remarkably useful in cancer 
detection and imaging. In fact, SNA-tagged fluorescent polymeric nanoparticles were engineered to 
specifically target sialic acid moieties expressed on cancer cell surface (MCF-7 and HeLa) [175]. This 
study further confirmed the difference in sialic acid expression between cancerous and non-cancerous 
cells. A similar strategy was investigated for colorectal cancer cell imaging for potential application in 
colonoscopy. Thus, PNA immobilized onto fluorescent nanospheres showed high affinity and  
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Table 5. Example of novel drug delivery systems (DDS) for therapeutic lectins. 

DDS Lectin/ 

monosaccharide 

Glycan preference/ 

lectin targeted 

Cancer Ref. 

Liposome Cra  Mannose, glucose  Sarcoma (180)  [165] 

Alginate-Chitosan 

Microparticle  

MLs  Lactose, D-galactose, 

GalNAc 

Liver cancer (SK-

Hep10) 

[166] 

Gene Therapy 

(Adenovirus) 

HddSBL Sialic acid  Hepatocellular 

carcinoma (Hep3B), 

lung cancer (A549, 

H1299) 

[167] 

WGA-IPM-PLGA 

nanoparticle 

WGA Sialic acid and N-acetyl 

glucosamine (GlcNAc) 

Lung cancer (A549 and 

H1299) 

[168, 

169] 

WGA-PEG 

nanoparticles 

WGA Sialic acid and N-acetyl 

glucosamine (GlcNAc) 

colon cancer (Caco-2 

and HT-29) 

[170, 

171] 

RCA-conjugated 

gold nanoparticle 

RCA Galactose Cervical cancer (HeLa) [172] 

Jacalin conjugated 

PEG-gold 

nanoparticles 

bearing hydrophobic 

zinc phthalocyanine  

Jacalin Thomsen-Friedenreich 

antigen 

colon cancer (HT-29) [173] 

Polymer bearing 

doxorubicin with 

galactosamine (PK2) 

galactosamine Hepatic lectin 

[asialoglycoprotein receptor

(ASGPR)] 

Liver cancer [174] 

SNA-tagged 

fluorescent 

polymeric 

nanoparticles 

SNA α2-6-sialic acid Cervical cancer (HeLa) 

Breast Cancer  

(MCF-7) 

[175] 

PNA immobilized 

onto fluorescent 

nanospheres 

PNA Thomsen-Friedenreich 

antigen 

Colorectal 

adenocarcinoma (HT-29, 

HCT-116, and LS174T) 

[176] 

lectin conjugated 

paclitaxel loaded 

magnetic 

nanoparticle 

Not specified Human C-type lectin like 

molecules-1 

Chronic myelogenous 

leukemia (K562) 

[177] 

 
specificity for human colorectal adenocarcinoma cell lines (HT-29, HCT-116 and LS174T) implanted 
on the cecal serosa of immune-deficient mice [176]. The latest investigations in this field are now 
focusing on the theranostic application of lectin conjugated nanoparticles drug delivery systems. This 
implies the ability of those systems to diagnose cancer, deliver an anticancer drug and monitor the 
therapeutic response, all at once. Singh at al. investigated a lectin conjugated paclitaxel loaded 
magnetic nanoparticle for leukemia theranostic application [177]. The nanoparticle formulation 
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showed a significantly higher efficacy (~67%) against chronic myelogenous leukemia cells (K562) 
compared to that of the native paclitaxel. A much longer circulation time (T1/2 = 15 h) of this lectin 
coupled with paclitaxel nanoparticle compared to the native paclitaxel (T1/2 = 5 h) was also reported 
in rats, in the same study. Table 5 is a summary of major lectin-based nanotechnology strategies 
discussed.  

7. Conclusion 

In summary, the use of lectins for cancer diagnosis, imaging and treatment has received a lot of 
attention among researchers. Although the clinical translation of these findings is still a major hurdle, 
the field of lectinology is expected to grow at an even faster pace in the coming years. Nevertheless, 
new investigations will probably have to explore safe and effective drug delivery system strategies for 
lectins, in order to maximize their use and increase the likelihood for their clinical translation. In fact, 
lectins-induced inflammation, toxicity and their resistance to digestive enzyme are some of the major 
arguments against these potent proteins [178-181]. In addition to cancer, lectins are being investigated 
for their role and/or therapeutic potential in other diseases, such as HIV [182-185], rheumatic heart 
disease [186,187], obesity-induced adipose tissue fibrosis [188] and diabetes [189-191]. Furthermore, 
understanding the function of lectin in ocular surfaces may provide new avenues for treating certain 
ocular diseases [192-194]. 
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