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Abstract: Age-related macular degeneration (AMD) is a leading cause of vision loss affecting tens 

of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as 

well as pigmentary changes in the retinal pigment epithelium (RPE). These soft, confluent drusen 

can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD) or choroidal 

neovascularization (CNV, or wet AMD). Both forms of AMD result in a similar clinical progression 

in terms of loss of central vision. The exact mechanism for developing early AMD, as well as 

triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, 

significant evidence exists demonstrating a complex interplay of genetic and environmental factors 

as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs) have 

been found associated with AMD, including various genes involved in the complement pathway, 

lipid metabolism and extracellular matrix (ECM) remodeling. Of the known genetic contributors to 

disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of 

the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging 

diseases including cardiovascular disease, cancer, Alzheimer’s disease and AMD. Due to the 

exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye 

than other tissues, which can be further complicated by additional oxidative stressors such as 

smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the 

innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of 

AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation 

products. As the eye in non-pathological instances maintains a low level of inflammation despite the 
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presence of a relative abundance of potentially inflammatory molecules, we have previously 

hypothesized that the tight homeostatic control of inflammation via the innate immune system is 

likely critical for avoidance of disease progression. However, the presence of a multitude of potential 

triggers of inflammation results in a sensitive balance in which perturbations thereof would 

subsequently alter the inflammatory state of the retina, leading to a state of chronic inflammation and 

pathologic progression. In this review, we will highlight the background literature surrounding the 

known genetic and environmental contributors to AMD risk, as well as a discussion of the potential 

mechanistic interplay of these factors that lead to disease pathogenesis with particular emphasis on 

the delicate control of inflammatory homeostasis and the centrality of the innate immune system in 

this process. 

Keywords: age-related macular degeneration; oxidative stress; innate immunity; complement factor 

H; inflammation 

 

 

1. Introduction 

 

Age-related macular degeneration (AMD) is a well-established disease of aging and chronic 

inflammation. The hallmark of the disease condition is the presence of soft drusen, yellow deposits 

of lipids and proteins, primarily in the area of the central region of retina called macula (Figure 1). 

However, the presence of confluent, soft drusen is not sufficient for the clinical diagnosis of AMD. 

Rather, at this early/intermediate stage of AMD tissue loss is either absent or only in its early stages 

and vision is usually unaffected [1]. AMD progression and severity is directly correlated to the 

number and size of drusen. Advanced AMD occurs in 2 forms: (i) geographic atrophy (GA) of the 

retinal pigment epithelium (RPE) and overlying photoreceptors (also called advanced “dry” AMD), 

and (ii) choroidal neovascularization (CNV, also called “wet” AMD). Dry (GA) AMD is 

characterized by confluent areas of photoreceptor and RPE cell death, and is responsible for 10% of 

the legal blindness caused by AMD [2]. Approximately 900,000 people in the United States are 

currently affected by GA with more than half of the patients occurring bilaterally [3]. Wet (CNV) 

AMD accounts for the remaining 90% of acute blindness caused by AMD and is characterized by 

abnormal blood vessel growth under the macula. These new vessels are largely malformed, which 

leads to the improper vascular integrity causing undesirable fluid leakage within the disrupted tissue 

infiltrated by the unwanted vasculature (Figure 2) [4,5]. 

Despite the prevalence of this disease, its etiology remains largely unknown. A growing amount 

of evidence has indicated that the pathogenesis and progression of AMD result from a combination 

of genetic risk factors and environmental insults such as smoking, UV exposure and microbial 

assault [6]. However, as with much of the underlying physiology of AMD, the interplay between 

environmental factors linked to AMD and genetic variants resulting from risk-associated genetic 

variation remains a mystery. Efforts to understand the pathological interplay of multifactorial 

systems have led our lab to explore the specific interactions of risk-associated genotypes associated 

with complement factor H (CFH) proteins and consequences of oxidative stress, specifically those 

related to lipids. We found that the CFH genetic variation CFHY402H, which is association with 

increased AMD risk, demonstrated decreased interactivity with oxidation-modified lipids. As the 

association of CFH with these molecules restricted their innate inflammatory capacity, this  
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Figure 1. Drusen are yellow deposits under the retina, the light-sensitive tissue at the 

back of the eye. Drusen consist of lipids and fatty protein. While not all drusen cause AMD, 

their presence increases a person’s risk of developing AMD. (Adapted from [7]). 

 

 

Figure 2. Age-related macular degeneration (AMD) is a disease that causes the 

progressive damage of the macula, the center of retina responsive for central and 

precise vision. Genetic risk factors response to the environment stimulants, such as 

oxidative stress resulting in drusen formation, inflammation and abnormal vascular 

growth. The unique nature of the eye leads to an abnormal burded of both degraded lipid 

products and oxidative stress, leading to relatively greater burden of oxidized lipid 

biproducts such as oxPLs. There are two forms of advanced AMD: graphic atrophy (GA) 

(upper right) and choroidal neovascularization (CNV) (lower right). 

 

diminished affinity disrupts of the tightly controlled inflammatory homeostasis of the eye, leading 

to increased inflammatory burden which is central to AMD pathogenesis [8]. As the accumulation 
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of chronic, low-level inflammation is exacerbated over time by the accumulation of oxidation 

products, the result is a gradual progression of disease pathology over the course of life, eventually 

causing tissue damage that permanently impairs the central vision, leading to blindness. Studies such 

as these which uncover a novel interplay between genetic and environmental disease contributors 

provide insight into the complex pathology involved in AMD, and are critical to furthering our 

understanding towards creating the next generation of approaches to AMD therapeutics. The 

following review investigates further the specific actors within genetic variations and environmental 

stressors that lead to the irreversible vision loss caused by AMD.  

 

2. Genetic variants associated with AMD 

 

Genome Wide Association Studies (GWAS) have identified several genes and/or single 

nucleotide polymorphisms (SNPs) that associate with AMD (Figure 3). However, as mechanistic and 

genetic investigations of the underlying triggers of AMD pathology continue to evolve, the 

polygenicity and complex interplay with environmental triggers increasingly portrays AMD as a 

disease where variable combinations of factors converge on the same pathogenic road towards 

macular degeneration and vision loss. Understanding these convergence points, and the 

commonalities of these variable disease effectors, remains the scientific mystery likely to hold the 

key to understanding the true underlying mechanisms of this disease. These understanding will 

undoubtedly be central to developing the next generation of truly efficacious interventions. This 

section will provide an overview of the more substantive identified genetic contributors to AMD, 

 

Figure 3. Manhattan plot showing the summary of genome-wide association results in 

the discovery GWAS sample. The significance of association for genetic variants 

including single nucleotide polymorphisms (SNPs) in a genome-wide association analysis 

is indicated by the P values in log scale. The data set are plotted for SNPs on each 

chromosome with P < 5 × 10−8 labeled with the gene. Red circles indicate genes in 

complement pathway; purple circle indicates the HTRA1/ARMS2 loci. Adapted from [9]. 
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as well as a brief discussion of the putative mechanistic contributions these genetic factors afford to 

AMD. This will be followed by a discussion of environmental contributions, with a focus on the 

most highly validated environmental contributor to AMD, oxidative stress. Finally, this review will 

discuss the potential interplay between these factors, providing additional mechanistic insight into 

both aspects of AMD risk. Table 1 shows the genes and SNPs that associate with AMD risk. Here we 

also show a Manhattan plot, which display genetic variants in genes and chromosome regions 

associated with AMD. 

 

Table 1. Genes/SNPs with published AMD associations. 

Genes Variants (SNP) Full Name Function Position Odds Ratios References 

ABCA4 rs1800553, 

rs1800555 

ATP-binding cassette, 

sub-family A (ABC1), 

member 4 

Photoreceptor 

specific 

expression; 

transport of 

N-retinylidene-PE 

across the outer 

segment disc 

membrane 

1p22 N.A. [10-12] 

APOE rs429358, rs7412 apolipoprotein E lipid and 

cholesterol 

transport 

19q13 ε2 ORhomo = 

1.046; ε4 

ORhomo = 0.847 

(Thakkinstian); 

ε4 ORhomo = 

0.35–0.53, 

0.847 (separate 

report-Francis)  

[13,14]  

ARMS2 

/LOC387715* 

rs10490924, in/del 

(372_815delins54) 

age-related 

maculopathy 

susceptibility 2  

no known 

function; protein 

localized to 

mitochondrial 

outer membrane 

10q26 ORhomo = 8.59 

(rs10490924) 

[12,15-17] 

HTRA1* rs11200638  human High 

Temperature 

Requirement A1 

trypsin-like serine 

protease 

10q26 ORhomo = 6.92, 

7.46 

[6,18,19] 

C2/CFB rs9332739 (c2), 

rs4151667(CFB), 

rs641153 (CFB) 

complement 2/ 

complement factor B 

regulation of 

complement 

activation 

6p21 ORhetero = 

0.21–0.45 

[6,20]  

C3 rs2230199, 

rs1047286 

complement 3 Innate immunity 

(alternative 

complement 

pathway activator, 

classical pathway 

component) 

19p13 ORhomo = 

1.93–3.26 

[21-23] 
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CETP rs1864163 Cholesteryl ester 

transfer protein 

Transfer 

cholesteryl esters 

between 

lipoproteins 

16q21 ORhomo = 1.2 [24] 

CFH* rs1061170 complement factor H inhibitor of 

alternative 

complement 

pathway 

1q32  ORhomo = 6.35  [25-28] 

CFHR1 

/CFHR3 

84K bp deletion  complement factor 

H-related 1, 3 

exact function 

unknown, possible 

overlapping 

function with CFH 

1q31-q32 ORhomo = 0.29 [29,30] 

CFI rs4698775 Complement factor I regulation of 

complement 

activation 

4q25 ORhomo = 1.1 [31] 

CX3CR1 rs3732378 chemokine (C-X3-C 

motif) receptor 1 

Inflammatory 

(chemokine 

receptor) 

3p21 ORhomo = 

1.98–2.70 

[32,33] 

ERCC6 rs3793784 excision-repain 

cross-complementing, 

group6 

DNA repair 10q11 ORhomo = 1.6 [34] 

LIPC rs920915 Hepatic lipase Lipid metabolism 15q21-23 ORhetero = 1.1 [24,35,36] 

TIMP3 rs9621532 Tissue inhibitor of 

metalloproteinase 

Complexes with 

inactive 

metalloproteinase  

22q12 ORhomo = 

1.31–1.91 

[37-39] 

TLR3 rs3775291 toll-like receptor 3 Innate immunity 

(encodes protein to 

recognize viral 

dsRNA) 

4q35 ORhomo = 

0.44–0.61 

[40,41] 

TLR4 rs4986790 toll-like receptor 4 Innate immunity 

(encodes bacterial 

endotoxin 

receptor) 

9q32-q33 ORhetero = 2.65 [32,42,43] 

VEGFA rs833069, 

rs1413711 

vascular endothelial 

growth factor A 

Angiogenic and 

vasculogenic 

growth factor 

6p12 ORhomo = 5.29 

(rs833069),  

ORhomo = 2.40 

(rs1413711)  

[44-46] 

*ORhomo indicates odds ratio from homozygous; ORhetero indicates odds ratio of heterozygous. 

 

2.1. Genetic contributions of the complement pathway 

 

The best characterized region of genetic risk associated with AMD has been repeatedly 

demonstrated to localize within a specific loci on chromosome one. Within this region, genetic 
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variants associated with the alternative complement pathway in multiple forms have been identified. 

For example, the risk genotype of rs1061170 that causes amino acid changes in CFH 402Y to H 

(CFHY402H) increases AMD risk between 2 to 4-fold for heterozygote carriers (only one allele of 

chromosome carries the risk variant) and 3 to 7-fold for homozygotes (both chromosome alleles 

carry the risk variant) [26,27]. As part of the innate defense system, the complement system is tightly 

regulated by many of its component factors, such as CFH and CFH related proteins (CFHRs) in 

modulating the alternative complement pathway. CFH, which consists of 20 short consensus repeats 

(SCRs), preferentially binds to host cells through glycosaminoglycans to protect host tissue from 

complement-mediated damage. CFHRs are composed of variation combinations of the SCRs, but all 

lack SCR1-4 (Figure 4 from [47]). Nevertheless, as the homology may suggest, CFH and CFHRs 

play similar, yet intricate, roles in regulating the complement pathway [48,49]. In the immune 

privileged eye, under the condition of non-infectious settings, oxidatively modified materials can be 

recognized “non-self” and removed by the complement system to maintain homeostasis [50,51]. 

Similar to naturally occurring antibodies, CFH plays an anti-inflammatory role in the eye by 

restricting immune activation in response to these molecules [8]. The risk-associated CFHY402H 

mutation reduces the affinity of CFH to bind such molecules, thereby reducing its ability to maintain 

immune homeostasis in the eye. 

While wild-type CFH has demonstrated protective benefits in AMD, expression of CFHR1 and 

CFHR3 demonstrate a surprising and opposite effect in their ability to increase risk of AMD 

occurrence [52,53]. Paradoxically, loss-of-function mutation or deletion of complement-protective 

CFHR1/3 (protective for AMD) is actually pathogenic in other conditions such as C3 

glomerulopathy [54] and hemolytic uremic syndrome (HSU) [55]. In the latter case, homozygous 

deletion of CFHR1/CFHR3 is strongly associated with the development of factor H auto-antibodies 

(DEAP HUS) [49,55-57]. The identification of CFHR1, but not CFH, in AMD drusen and Bruch’s 

membrane indicates an important distinction in their ability to contribute to lipid accumulation in 

RPE, which is likely to contribute to the inability of CFHR1/3 to maintain inflammatory homeostasis 

in the eye. The opposing contributions of CFH and CFHRs in conferring disease risk indicate that the 

suppression of complement activation by CFHRs may be mechanistically uncoupled, at least in part, 

from their role in promoting AMD risk (Figure 5). However, other polymorphisms in non-coding 

regions of CFH, or in nearby genes encoding other complement factors, also demonstrate 

comparably strong association with disease susceptibility. For example, two genes within the major 

histocompatibility complex class III region have been identified as AMD risk variants; factor B (CFB) 

and complement component 2 (C2) [20,25]. As genetic variations in this system can both promote 

and protect against disease risk, it appears that any disruption of this system can have a prominent 

effect on disease. In general the genetic variations in the complement pathway that contribute to 

disease risk putatively fall into 2 categories of disrupted control of complement-mediated immune 

activity: (i) alterations that lead to unchecked hyperactivation of the complement pathway, (ii) 

alterations that restrict the checks on protection of endogenous molecules from unwanted 

complement attack. In each case, either loss of “self” protection or undesirable complement activity 

contribute to chronic increases in low-level inflammation that can then contribute to AMD 

progression over time. However, the specific functions of these mutations in the specific context of 

environmental modifications of lipids is of particular interest. This will be discussed further in 

discussion of oxidative stress contributions to AMD risk. 
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Figure 4. The genetic (A) and domain structures (B) of human CFH and CFHRs 

(adapted from [47]). 
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Figure 5. Putative role of CFH and CFHRs in regulating classical or alternative 

complement pathways. CFH interacts with C3 convertase and also with C3b. CFHR1/3 

inhibit later stages of the cascade and their deficiency of would results in a loss of 

complement control but enhances local regulation CFH. 

 

2.2. Genetic risk factors involved in lipid metabolism  

 

In addition to variations associated with the complement system, genes involved in lipid metabolism 

arise as the next common system associated genetic variants with links to AMD risk [58,59]. As 

disruption of lipid homeostasis in the eye in terms of accumulation, improper degradation, aggregated 

storage, etc., are hallmarks of AMD pathology, this is perhaps unsurprising. The accumulation of lipids, 

particularly in terms of the formation of drusen, leads to chronic inflammation in the eye, further 

converging the handling of lipids into the “usual suspects” of AMD progression. The cholesterol 

transport protein apolipoprotein E is well-established as perhaps the strongest genetic factor related 

to the most well-known age-related pathologies of our time; atherosclerosis and Alzheimer’s Disease 

(AD) [60-62]. In humans, the ApoE gene is represented by 3 alleles; ApoE2, ApoE3, and ApoE4. In 

AD, ApoE4 is of the strongest genetic factors associated with disease risk, while ApoE2 is protective. 

Surprisingly, in AMD the opposite is true with ApoE2 being associated with increased risk of AMD 

and ApoE4 serving a protective role [63]. All 3 ApoE variants can be found in the RPE and Bruch’s 

membrane, but while ApoE4 is protective and correlates to decreased inflammation and macrophage 
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recruitment, ApoE2 results in increased macrophage infiltration and inflammation [64]. While the 

complexity of this paradox is likely multifaceted, the affinity for different ApoE isoforms for 

amyloid-β oligomers is widely believed to play at least some role in the susceptibility to AD. As such, 

the opposite effect on disease risk in AMD is likely due to similar distinctions in affinity for molecules 

in the eye that cause inflammation. This will be discussed further in later sections.  

While ApoE proteins are well established contributors to AMD, they are not the only 

lipid-handling proteins implicated as contributors of genetic risk to AMD. Cholesterol ester transfer 

protein (CETP), lipoprotein lipase (LPL) and hepatic lipase (LIPC) have all recently been 

reproducibly implicated as factoring into AMD risk [9,35,36] These proteins are central to proper 

handling and degradation of lipoproteins, further demonstrating the vital nature of lipid homeostasis 

in AMD prevention. Similarly, polymorphisms in the cholesterol exporter ABCA1 also demonstrates 

increased risk for AMD [36]. As lipid homeostasis increasingly demonstrates a central theme in 

AMD pathogenesis, we will likely continue to see additional lipid-related genes with AMD influence. 

However, as the number of genes continues to grow, it is unlikely that any single gene will provide 

value as a therapeutic target. Rather, promotion of lipid homeostasis/proper lipid handling will likely 

prove a more rational approach to the disease. 

 

2.3. Genetic variation in proteases and AMD risk 

 

Another prominent genetic association with AMD are SNPs in or near the promoter region of 

the high temperature required factor A1 (HTRA1) or age-related maculopathy susceptibility protein 2 

(ARMS2) genes, including rs11200638 rs10490924, rs11200638 and rs2293870 on chromosome 10, 

which are perhaps the most well-documented genetic associate with neovascular AMD [15,18,19]. 

Within this genetic region lies a common disease haplotype, TAT-tagged by rs10490924, rs11200638 

and rs2293870, which encompasses HTRA1/ARMS2 and is significantly associated with the risk for 

AMD [15]. HTRA1 is a serine protease that has been shown weaken extracellular matrix (ECM) [65]. 

In addition, our previous study has characterized its ability to function as a transcriptional enhancer 

of VEGF expression, which has obvious implications for neovascularization. In the Bruch’s 

membrane, HTRA1 enzymatic activity compromises the compartmental integrity of the basal retina, 

which can leave the tissue susceptible to the aberrant vascularization from increased levels of VEGF. 

Additionally, the abnormal levels of HTRA1 found in AMD patients that causes Bruch’s membrane 

deterioration also leads to stimulation of inflammation of the RPE, which has also been observed in 

vitro [65]. 

Another protease contributor to AMD is the tissue inhibitor of metalloproteinases 3 (TIMP 3), 

which belongs a group of peptidases involved in degradation of the ECM. Various forms of 

stimulation such as oxidative stress and inflammatory cytokines can induce TIMP3 expression, and 

genetic variants in this gene have been associated with AMD [37-39] and the highly AMD-related 

autosomal dominant disorder Sorsby’s fundus dystrophy (SFD) [66]. However, the role of TIMP3 in 

AMD is somewhat controversial as some have proposed, due to the penetrance of TIMP3 in 

subpopulations of patients with macular degeneration, that this particular gene may represent a 

specific and distinct disease subset [67]. 

In summary, the genetic variants at the CFH and HTRA1/ARMS2 loci contribute to major 

genetic risk for AMD, which lead to growing functional study aiming to elucidate the molecular 

mechanisms underlying AMD pathogenesis, in particular how such changes interplay with the 
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environmental risk factors. As the number of genetic studies investigating AMD continues to grow, 

evidence continues to emerge indicating additional rare coding variants also involved in disease, 

allowing us to better pinpoint causal genes within known genetic loci. As such results are 

experimentally confirmed, we increasingly see the need for large sample sizes to detect new loci and 

genes that can inform on disease pathology [68]. 

 

3. Environmental contributors to AMD 

 

AMD risk has both environmental and genetic contributions. However, as an age-related disease, 

it also shares common risk contributors with other chronic health ailments related more to lifestyle or 

medical comorbidities as opposed to environmental exposure. Conditions such as obesity, sendentary 

lifestyle, high cholesterol and high blood pressure have well-defined influence on promoting AMD 

risk [69-76]. However, the ability of such factors to promote AMD progression is highly non-specific 

as these factors influence a variety of chronic, age associated pathologies such as atherosclerosis, 

diabetes, AD, etc. As such, for the sake of this review we will focus primarily on the more 

fundamental environmental and biological contributors even as some may be secondary to these 

more broadly encompassing lifestyle contributions.  

 

3.1. Oxidative stress 

 

When considering the global list of correlated factors contributing to AMD, it becomes apparent 

that many of these factors (i.e.: sunlight exposure, diet, smoking, vitamin D levels, etc. [75,77,78]) 

have well-documented effects on oxidative stress and its consequent inflammation. Additionally, the 

downstream effects of oxidative stress have a variety of disparate disease-related consequences that 

can influence disease progression through several avenues. As such, the following will focus to some 

extent on the general concept of oxidative stress and its role in other contributing aspects of AMD 

progression to highlight the centrality of this factor in this disease.  

The contribution of oxidative stress to age-associated pathology is a common trend in many 

diseases such as cancer, atherosclerosis, Alzheimer’s disease and Parkinson’s disease [79-83], and is 

a natural consequence of many of the lifestyle-associated risk factors discussed above. The centrality 

of oxidative stress as a disease contributor to AMD was highlighted by the Age-Related Eye Disease 

Study (AREDS); a major clinical trial sponsored by the National Eye Institute which was designed to 

learn more about the natural history and risk factors of AMD. The study specifically evaluated the 

effect of high doses of vitamin C, vitamin E, beta-carotene and zinc on the progression of AMD and 

concluded that a variety of antioxidant agents ameliorate AMD. This study was the first to confirm in 

humans via rigorous assessment the importance of oxidative stress in initiation and progression of 

the disease [69,76]. This perspective has been supported anecdotally by several studies pinpointing 

smoking is the top environmental risk for developing AMD in all age and ethnic groups [74,84-89], 

as well as in other ocular diseases [90].  

Oxidative stress/damage in the eye can be occurred in many forms via a variety of stimuli other than 

smoking [91]. In human eyes, local exposure sunlight combined with the high local oxygen content, 

which is higher than other tissues, leads to a high predisposition for oxidative burden. When combined 

with the systemic exposure to oxidative stressors incurred via lifestyle choices or other contributors, the 

relative burden of oxidative stress can rapidly become disproportionately high. While oxidative stress has 
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been linked to a variety of specific and general modes of inflammatory promotion, oxidative stress has 

specific mechanistic consequences in the eye directly related to AMD pathogenesis [81,82,91-93]. 

 

3.2. Oxidative modifications in the eye 

 

In the eye, retinal photoreceptor outer segments are constantly turned-over by retinal pigment 

epithelium (RPE) and enriched with polyunsaturated fatty acid (PUFA) phospholipids such as 

phosphatidylcholine (PC), which results in a constant supply of lipid products to be cleared and 

handled by the retina [94,95]. While the system is capable of maintaining such turnover, the 

relatively high level of oxidative burden in the eye locally and systemically results in a ready pool of 

lipids available for oxidative modifications. This combination can give rise to a variety of lipid 

modifications, particularly oxidized phospholipids (oxPLs) arising from turned over PUFAs. For 

example, oxidative modification of a phospholipid such as PC results in a conformational change of 

the head group exemplified by oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine 

(PAPC) into 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) (Figure 6). This, 

and similar, modifications can change otherwise ubiquitous and benign biomembrane molecule into 

neo-epitopes that begin to resemble that of bacterial membrane proteins, which can incite undesirable 

attention from immune cells [8,96]. 

 

 

Figure 6. Chemical structure of PAPC, a common membrane phospholipid in the 

retina, and conversion to oxidatively modified POVPC, which recognized by a 

monoclonal antibody specific to oxPLs. 

 

Oxidation of lipoproteins also produces oxysterols such as 7-ketocholesterol, 25-hydroxycholesterol, 

etc. When generated in vivo, similar to oxPLs, these are pro-inflammatory and have been shown to 

contribute to AD through their ability to alter cholesterol homeostasis in the brain [97], as well as 

atherosclerosis via activation of macrophages and stimulation of foam cell formation [98]. Many 
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oxysterols in the eye have been shown to be pro-inflammatory and cytotoxic to both photoreceptors 

and RPE cells [99].  

Several in vitro and in vivo studies have established the association of AMD with a variety of 

such peroxidation-degraded lipids. During lipid peroxidation, the reactive oxygen species attack 

polyunsaturated fatty acids causing the breakdown of double bond that results in a variety of 

degraded, oxidized lipid byproducts [100]. For example, enhanced lipid peroxidation necessitated in 

the retina for proper lipid metabolism creates several breakdown products such as malondialdehyde 

(MDA), malondialdehyde-acetaldehyde (MAA) [101] and POVPC. These newly modified molecules 

are very reactive and can facilitate interaction with a variety of matrix and structural proteins, as well 

as cellular membranes, to form adducts. These adducts form molecular moieties which are inherently 

antigenic, which can lead to improper targeting of healthy cells/molecules by the immune system causing 

inflammation. Consequently, studies have identified adducts of MDA [101], oxidized phosphocholine 

(oxPC), carboxymethyllysine (CML) [102], pentosidine [103], and carboxyethylpyrrole (CEP) [104] in 

AMD drusen. The fact that these oxidatively-induced modifications of autologous proteins convert 

ubiquitous molecules into antigenic, inflammatory stimulants is central to understanding the 

functional mechanism of these modifications as well indicative of the potent role of oxidative stress 

in AMD pathology.  

In addition to its ability to modify lipid structure, oxidative stress can also lead to DNA damage, 

particular within mitochondria where high ROS are potent agents to mitochondrial DNA [105]. 

Interestingly, it has been shown that DNA or RPE cells in AMD patients exhibit extensive DNA 

damage which leads to an inflammatory response [106]. This DNA damage-related inflammation has 

been previously shown to not only associate with AMD, but also with aging in general [107,108]. As 

a result, protection of mitochondrial DNA from oxidative and other forms of damage has been 

proposed as a novel therapeutic strategy to slowing the progression of AMD [109]. 

In sum, in AMD the contribution of oxidative stress combined alterations in lipid handling 

caused by with the known link to genetic changes in lipid handling and inflammatory modulation 

indicates that inflammatory homeostasis in the eye via tight regulation of oxidized lipid products, 

and non-lipid byproducts, may be central to this disease. 

 

3.3. Oxidative damage, inflammation, and retinal pathology  

 

It is now clear that oxidative modifications of molecules within the eye such as those discussed 

above are pro-inflammatory and promote the progression of early AMD drusen to CNV or GA. The 

question then arises, what are the mechanisms that translate these inflammatory signals in AMD 

pathology? It is known that generic retinal inflammation is characteristic of a number of pathologies 

of the eye, and while such inflammation is undoubtedly central to AMD, chronic eye inflammation 

does not always lead to AMD [110]. As such, identifying specific triggers and mechanisms of 

inflammation, as well as the participating cell types, is foundational to our understanding of this 

disease. We have previously discussed the prominent role of oxPLs in AMD due to the promotion of 

inflammation. The mechanism by which this occurs is a results of the ability of such molecules to 

recruit T-cells and monocytes to the subretinal tissue, where monocytes then differentiate into 

macrophages. These macrophages take on a strong pro-inflammatory phenotype, even sometimes 

resembling the morphology of foam cells readily found in atherosclerotic lesions, leading to a potent 

inflammatory burden within the retina [8,111]. While not directly proven to influence the 
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transformation of early AMD to CNV, oxidized lipids have also been reported to directly affect 

growth, differentiation, and survival of vascular cells, which may be why some patients with wet 

AMD fail to respond to anti-VEGF therapy [112]. In fact, studies indicate that even early forms of 

oxidized lipoproteins (e.g. minimally modified LDL) cause changes in gene expression (e.g. activating 

NFB-like factors) of vascular cells, leading to the initiation and maintenance of an inflammatory 

response that could contribute to conversion of early drusen into advanced CNV [113,114].  

 

3.4. Oxidative modification and innate immunity 

 

Despite the overwhelming evidence that complement pathway gene polymorphisms strongly 

associate with AMD disease risk, the mechanism and pathways through which oxidative stress affect 

AMD are not yet clear. Our lab has recently identified a novel mechanistic interplay between the 

genetic variations in CFH associated with disease risk and oxidative modifications of lipids. 

Although eye is an immune privileged organ, CFH protein have been observed in retina and AMD 

drusen (Figure 7) indicating its role that may not directly involve in regulation complement 

activation. Wild-type CFH demonstrates a substantially increased affinity for oxidatively modified 

lipids such as oxPLs and malondialdehyde (MDA) compared to native, un-oxidized lipids [8,115,116]. 

As these oxidized lipids have inflammatory capacity, the interaction of CFH acts to restrict this 

inflammatory potential in a similar fashion to naturally occurring antibodies of the innate immune 

system [115]. Risk-associated genetic variants either decrease the affinity of CFH for these oxidation 

products, or displace CFH with CFH- related proteins that lack the same anti-inflammatory capacity. 

As such, the oxPLs burden has a higher propensity for RPE interaction leading to inflammation and 

drusen formation in these patients.  

 

Figure 7. Co-localization of oxPC with CFH in human AMD lesions. 

Immunohistochemistry of serial sections of an AMD eye stained with antibodies to CFH 

(Panel B, blue color) or oxPC (Panel D, pink color). Omission of 1st antibody served as a 

negative control (Panels A and C). Size bars: 50 microns. [8]. 
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Innate immune system protect host from lethal pathogenic microbial assults before adaptive 

innunity kicks in by recognizing pathogen-associated molecular patterns (PAMPs). Previously, 

studies have made an interesting finding that in addition to defending the host from microbial 

infection, natural antibodies, which are a branch of innate immunity, can shield host from oxidative 

damages, thereby preventing un-wanted inflammation, particularly in response to oxidation-specific 

neo-epitopes [96]. These antibodies prevent the immune system from inappropriately reacting to 

self-proteins as pathogens, which is normally an interaction restricted to PAMPs on microbial surface 

or debris. Oxidized lipid products can sometimes mimic PAMPs, requiring intrinsic mechanisms to 

control for attack of these non-pathogenic structures. For example, mouse natural antibody TEPC-15 

(aka T15), which protects neonatal animals from fetal pneumococcal infection before adaptive 

immune response, recognizes and interacts with phosphocholine (PC) n-linked on the cell wall of 

certain bacteria such as S. pneumococci. However, this anti-PC antibody does not recognize the PC 

structure o-linked to mammalian cell membrane phospholipids. After oxidative modification of 

phospholipids as illustrated in the Figure 6, the conformational change will present modified PC 

head-group to the host immune system as a neo-antigen resembling those on bacterial cell walls. 

Therefore, these modified cellular and molecular structures from endogenous oxidative damage are 

also called damage associated molecular patterns (DAMPs). Interestingly, after oxidative 

modification, when phospholipids on cell membrane become oxPLs, the same PC epitope can be 

recognized and interacted by T15. As such, T15 is able to interact with endogenous oxPC on cell 

membranes or lipoproteins and maintain homeostasis by turnover of unhealthy cells and 

macromolecules such as to remove apoptotic cells and oxLDL [96,115].  

 

3.5. Immune cells, inflammation and AMD progression 

 

Even though the eye is an immune privileged organ, the presence of resident immunocompetent 

cells (e.g. microglia), and humoral factors such as cytokines, adhesion molecules, auto-antibodies, 

and acute phase proteins lead to a somewhat self-contained immune system that can play important 

roles in determining the inflammatory status of the retina. However, understanding the specific 

cellular contributors and signals unique to AMD is important in the understanding of this disease. 

Unsurprisingly, a panel of pro-inflammatory cytokines and chemokines, including IL-1, IL-6, IL-8, 

TNF, INF-γ, MCP-1, have been shown to accelerate the AMD progression [117]. In addition, tissue 

factors that have pro-angiogenic activity, such as VEGF A-E, platelet-derived growth factor (PDGF), 

placental growth factor (PlGF), hepatocyte growth factor (HGF), and fibroblast growth factor-2 

(FGF-2), are also involved in CNV formation [118].  

Recently it was shown that CFHY402H patients expressed significantly greater levels of 

INFγ-inducible protein-10 (IP-10) and eotaxin, perhaps indicating such factors may be useful as 

vitreal biomarkers of early AMD [119]. As this was uniquely identified in this specific genetic 

background, future studies to assess the incidence of elevation of these markers in non CFHY402H 

AMD patients will be of great interest. Similarly, it has also been shown in CFHY402H patients that 

macrophage infiltration is likely stimulated by elevated levels of vitreal granulocyte macrophage 

colony-stimulating factor (GM-CSF), leading to detection of choroidal macrophages in the 

postmortem human eye [120]. The role of these macrophages is yet unclear, as these cells can 

accumulate in sites of damage or disease without contributing to disease progression, in some cases 

even serving a beneficial purpose. However, a recent study demonstrated a large population of 
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CD163 positive cells in the retina of wet and dry AMD postmortem human samples [121]. As CD163 

is associated with potently inflammatory immune populations, it is likely that macrophages present 

in the retina of AMD patients are not serving any putative disease restricting purpose. Regardless, 

these specific, localized inflammatory events continue to provide insight into the unique players 

involved in promotion of inflammatory disease within an immune-privileged tissue. As such, further 

characterization and mechanistic elucidation could identify novel therapeutic avenues by which 

disruption of disease-associated cellular recruitment, or inflammatory status of infiltrating cellular 

populations, could slow the progression of vision loss. 

The infiltration of macrophages from the peripheral circulation is a unique and interesting 

component of AMD pathology. The role of these macrophages, as well as the specific functions of 

the pro-inflammatory (M1) and inflammation suppressing (M2) phenotypes in regulating AMD 

pathology, is currently an important topic of active investigation [11]. M1 macrophages in the retina 

contribute to the elevated levels of inflammatory cytokine/chemokines known to be associated with 

AMD such as IL1, IL6, IL8, and the production of VEGF. Conversely, while M2 macrophages do not 

express the inflammatory milieu characteristic of M1, they do produce pro-angiogenic factors, such 

as basic fibroblast growth factor (FGF-2), insulin-like growth factor-1 (IGF-1), and placental growth 

factor (PGF) [10]. As a result, while M2 macrophages are largely considered beneficial to disease, 

this pro-angiogenic function could still contribute to wet AMD progression despite expression of 

anti-inflammatory cytokines such as IL-10 and IL-18 that have shown to have protective effect in 

regard to AMD risk [122]. Additionally, while M1 macrophages are commonly considered pathogenic, 

their expression of the cytokine IL-18 has been shown to combat the neovascular effects of VEGF 

via attenuation of CNV in rodent models, as well as in nonhuman primate models of wet AMD, 

thereby indicating a potential therapeutic role for M1 macrophages in this pathology [123,124]. 

Future work should elaborate on the intricacy of macrophage function in these diseases, and the 

specific contributions of M1 vs. M2 phenotypes. 

 

4. Immune response in GA and CNV  

 

The commonalities between wet and dry AMD are numerous in their early stages. The strong 

association of complement pathway genes with AMD susceptibility [125] and the presence of 

complement proteins in drusen indicate that AMD is likely, at least in part, a chronic inflammatory 

disease involving abnormal regulation of complement and immune system [25,126-131]. Proteomic 

studies have found that many oxidatively modified proteins and lipids as well as immunoglobulins in 

AMD drusen [91,131,132]. Such oxidative materials including oxPLs are strong stimulants to the 

immune system resulting in promoting inflammation and activating the complement cascade in RPE 

cells. Thus in early and intermediate stages of AMD, the immune responses to oxidative damage play 

important roles in RPE apoptosis and lipids accumulation leading to drusen formation.  

Despite the early hallmark pathology for both forms of wet and dry AMD to be commonly held, 

a divergence point seems defined by the degradation of the Bruch’s membrane and parallel 

development of malformed vasculature infiltration. The clearest differentiating contributor to this 

pathological distinction is the role of VEGF. However, VEGF levels are most likely a secondary 

consequence of the pathological mechanisms at play as opposed to directly related to disease 

progression due to some form of unwanted, and untriggered, overexpression. The SNPs in or near the 

promoter region of the high temperature required factor A1 (HTRA1) or age-related maculopathy 



212 
 

AIMS Molecular Science  Volume 3, Issue 2, 196-221. 

susceptibility protein 2 (ARMS2) genes on chromosome 10 include rs11200638 rs10490924, 

rs11200638 and rs2293870 are the strongest genetic contributor to wet AMD and these result in 

increased production of VEGF in the retina [19,65]. In addition to its characterized ability to function 

as a transcriptional enhancer of VEGF expression, which has obvious implications for CNV, HTRA1 

is also a serine protease that has been shown weaken ECM [65,133]. In the Bruch’s membrane, this 

enzymatic activity compromises the compartmental integrity of the basal retina, which can leave the 

tissue susceptible to the aberrant vascularization that results from increased levels of VEGF. 

Additionally, the abnormal levels of HTRA1 found in AMD patients that causes Bruch’s membrane 

deterioration also leads to stimulation of inflammation of the RPE, which has also been observed in 

vitro [65]. While it has not been tested, TIMP3 may also contribute to CNV pathogenesis in a similar 

fashion.  

Although the specific role of the macrophage lineage cells at different stages of AMD is still 

controversial, these components of innate immune system play an important role in neovascular 

AMD [134,135]. The macrophages recruited in the retina are from two sources. The first one belongs 

to microglia, which are bone marrow-derived resident macrophages recruited to neural tissue during 

retinal development. They provide immune surveillance in the inner retina and have been associated 

with AMD [136,137]. The second group is from circulating monocytes that can be recruited from the 

blood vessels to sites of inflammation by specific chemokines and cytokines, which are stimulated 

by oxidative in the retina and RPE [138,139]. Regardless of the source, macrophages can undergo 

further differentiation depending under the oxidative microenvironment and eventually perform their 

effector functions [140,141]. For example the presence of extracellular nitric oxide synthase (iNOS) is 

associated with macrophage recruitment to Bruck’s membrane and alteration in the immunophenotype 

of resident choroidal macrophages [135,142]. In the presence of interferon-gamma (IFN-γ), macrophages 

are activated as proinflammatory M1 macrophages, which produce tumor necrosis factor alpha 

(TNF-α) and interleukin-12 (IL-12) and are associated with tissue damage [143]. 

 

5. Conclusions 

 

In the past decade, there has been an unprecedented increase in the understanding of genetic and 

environmental contributions to AMD. These novel insights have begun to frame a general interplay 

of extrinsic and intrinsic factors that contribute to important homeostatic aspects of the eye such as 

inflammation and lipid processing, but the precise mechanisms contributing to these pathologic 

disruptions are still poorly understood. By continuing to investigate the functional consequence of 

genetic variants contributing to AMD such as those found in 1q31-32 and 10q26, which represent 

genes from the complement system and serine protease family respectively, we can continue to 

identify biological functions/systems that are repeatedly influenced by identified genetic variants. In 

turn, we can continue to perform hypothesis-driven research into the potential mechanisms between 

specific genetic variations and known environmental contributors to disease risk to uncover novel 

points of intervention within these systems that can preserve vision and improve patient outcomes. 

While genetic factors are well-characterized as potent contributors to AMD pathogenesis, the 

disproportionate emphasis on such studies in AMD research is unlikely to catalyze future treatments 

in an efficient manner. Genetic variations are determined at birth, and while the contribution to risk is 

quite real, the person-to-person likelihood of developing AMD as a result of carrying these genetic 

risk factors is often quite minimal, and even then only later in life. As such, these findings are 

unlikely to provide value proportionate to the effort and funding invested in their acquisition unless 
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subsequently applied to hypothesis-driven studies aimed at elucidating the interplay with 

environmental or cooperative disease triggers. The in-depth understanding of the interplay between 

genetic and environmental factors leading to AMD is likely the key to discovering novel therapeutic 

interventions capable of salvaging vision in these patients. 
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