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Abstract: In tumors associated with inflammation such as inflammatory bowel disease (IBD) and 
colorectal cancer (CRC), high numbers of regulatory T cells (Tregs) are associated with both 
favorable and poor prognoses. The functions of Tregs in CRC remain elusive and have yet to be 
clearly defined. With new evidence supporting many subsets of Tregs, the research on the 
development and functions of these cells has begun to come to fruition. The sphingosine 1 phosphate 
(S1P) pathway was recently reported to regulate the development and function of regulatory T cells. 
This pathway may shine new light into the pleiotropic nature of these cells in cancer. In this review, 
we will examine current literature on the many functions of Tregs in CRC and highlight the 
significance of the S1P signaling pathway in Treg development/function with the implication of 
novel therapeutic strategies in treatment of CRC patients. 
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1. Regulatory T cell development and functions 

Regulatory T cells play a key role in maintaining the balance between health and disease and, in 
so doing, provide a system of checks and balances by: restraining asthma and allergy, preventing 
cytotoxic lymphocytes from reacting to self-antigens, and controlling inflammatory response. There 
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are two main types of regulatory T cells; natural Tregs and adaptive/induced Tregs, which function 
to suppress the immune reaction [1]. Most natural Tregs are found developed in the thymus but they 
can also be induced in the periphery or in culture [2,3,4]. The natural Treg subset constitutes 
approximately 5–10% of resident CD4+ T cells and are involved mainly in self-tolerance while 
adaptive/induced Tregs are important in oral tolerance and inflammation [5,6]. The seminal work by 
Sakaguchi et al. in 1995 [7] using CD25+ depleted thymic T cells to induce autoimmune disease in 
nude mice demonstrated that thymic derived CD25+ T cells were the key cells mediating 
self-tolerance. CD25 is an alpha chain of IL-2 receptor that is expressed in most Tregs; however, a 
subset of Tregs, such as regulatory T cells 1 (Tr1) may express low levels of CD25 [8]. Signaling 
from CD25 is required for Treg survival and function [7,9,10]. While CD25 is often used as marker 
of Tregs, other surface markers such as, CD38, CD62L (L-selectin) and CD103 are sometimes used 
to identify different subsets of Tregs [11,12,13]. 

With the discovery of a transcriptional factor Forkhead-box P3 (FoxP3) as a specific Treg 
marker about a decade ago, the research field in Tregs has exploded. The general idea that FoxP3 
regulates immuno-suppressive function of Tregs was formulated after extensive analysis of the 
scurfy mice [14] and patients with IPEX (Immunodesregulation, Polyendocrinopathy, Enteropathy, 
X-linked syndrome) [15,16] which confirmed that a loss of FoxP3 as a causative factor of 
multi-organ autoimmune disease. FoxP3 was subsequently shown to control the development and 
suppressive function of Tregs [17,18]. In the developing thymocytes, T-cell receptor (TCR) 
engagement with the peptide-MHCII [19,20,21] induces the expression of FoxP3 [22], suggesting 
that Tregs have self-antigen specificity consistent with the data by Gershon and Kondo [23], showing 
that adoptively transferred antigen-exposed T cells retain antigen-specific tolerance in naïve mice. 
FoxP3 forms a complex with nuclear factor of activated T cells (NF-AT) and inhibits the expression 
of IL-2, IL-4 and Interferon- (IFN-) cytokines which are important for adaptive immunity [24,25]. 
The FoxP3/NF-AT complex also upregulates the expression of CD25, cytotoxic T lymphocyte 
antigen 4 (CTLA4 also known as CD152) and glucocorticoid-induced TNF receptor family-related 
gene (GITR) in Tregs [24,25]. GITR signaling is necessary for Treg suppressive activity [26]. In 
conjunction with cytokines, such as IL-10 and transforming growth factor (TGF-, FoxP3+ Tregs 
dampen effective cell activity by direct contact via CTLA4, which interacts with CD80 (B7-1) and 
CD86 (B7-2) on the target cells and inhibits their cellular function [27,28,29]. With CTLA4, Tregs 
can form an aggregate around DC thereby blocking the ability of DC to interact with effective cells 
and activation of adaptive immunity [30]. Tregs can also induce DC to produce indoleamine 2, 
3-dioxygenase (IDO), an important enzyme required for peripheral tolerance [31]. In short, FoxP3 is 
a critical intracellular molecule that governs the development and functions of Tregs. 

Adaptive/induced Tregs which are generated in the periphery or in culture upon antigen 
encounter may or may not, however, express FoxP3 [32]. It appears that a suboptimal antigenic 
stimulation is required as well as signaling from TGF- to drive the development of 
adaptive/induced Tregs from conventional CD4+ or CD8+ T cells [4,33,34] (Figure 1). In the 
gastrointestinal tract, adaptive/induced Tregs are necessary to maintain oral tolerance to enteric flora 
and food antigens, thus preventing pathological inflammation [6]. FoxP3+ Tregs specific to oral 
antigens can be induced from mesenteric or enteric lamina-propria CD4+ T cells by gut associated 
CD103+ dendritic cells [35]. Interestingly, FoxP3+ expression in adaptive/induced Tregs is less 
stable than in natural Tregs and depends on TGF- to maintain FoxP3 expression [36]. 
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2. Colorectal cancer, regulatory T cells and S1P signaling 

Colorectal cancer is the second leading cause of cancer death in the United States [44]. 
Approximately 15% of all colorectal cancers are related to one of the two inherited forms: Familial 
Adenomatous Polyposis (FAP), which is caused by a mutation in the adenomatous polyposis coli 
(APC) gene and Hereditary Nonpolyposis Colorectal Cancer (HNPCC) which is caused by mutation 
in any of the DNA mismatch repair protein such as: the msh2 gene, Mut homolog 1, mlh1 gene, or 
hMSH2 gene [45-49]. Other sporadic colorectal carcinomas have been linked to mutations in p53 
genes, K-ras, SMAD4, 18q21 allelic loss associated with or without chromosomal or microsatellite 
instabilities [50]. Numerous studies have indicated that inheritance of the mutated APC gene is not 
sufficient to cause colorectal cancer; additional genetic alterations or environmental changes are 
required for tumor formation [51]. In a murine model of APC mutation known as Min mice, the 
development of polyps, a precursor to CRC development in these mice, is influenced by a mutation 
in the Mom1 (modifier of Min) gene. Mom1 encodes for a secreted phospholipase, A2, which 
catalyzes the formation of arachidonic acid, an important mediator of inflammation. Indeed, Min 
mice with mutated Mom1 gene were shown to have lower polyp and tumor numbers [52,53]. These 
data suggest that the microenvironment affects polyp development and may genetically and 
epigenetically alter tumor cell growth in inflamed/immune environments [54]. Collectively, these 
data established that multiple mutations are necessary for colorectal cancer development, and that 
inflammation is an important environmental factor modifying gene mutations and tumorigenesis. 

The function of FoxP3+ Tregs in colorectal cancer is paradoxical. On one hand, a high density 
of FoxP3+ Tregs in tumors is associated with a good prognosis [55,56]. As a strong correlation has 
been shown between inflammation and CRC outcomes [57,58] and when Treg function is to suppress 
the inflammatory response, CRC tumorigenesis develops slower and the prognosis is most likely be 
more favorable. However, other studies have shown that FoxP3+ Tregs favor colon tumor  
growth [59,60,61] consistent with reports in other tumors such as breast cancer and hepatocellular 
carcinoma where increased numbers of Tregs correlate with reduced overall survival [62-65]. This is 
particularly true if Treg function is to suppress effective T cells involved in immuno-surveillance. 
Tregs may promote tumorigenesis by suppressing the Th1 antitumorigenic response or by interfering 
with the inhibitory function of cytotoxic T cells [56,66]. An important distinction should be noted, 
however, between CRC and other epithelial cancers. In many solid tumors, infiltrating T 
lymphocytes have specificity for tumor-specific antigens or self-antigens that allow them to destroy 
cancer cells [67,68]. In the case of CRC, in addition to cytotoxic CD8+ T with specificity to tumor 
antigens, there are many inflammatory T cells with specificity to the commensal miroflora [69,70] 
which could affect the functions of Tregs and cytotoxic T lymphocytes. These data add to the 
complexity of our understanding of the roles of Tregs in CRC. 

As such, direct analysis of Tregs in tumors may not be a reliable biomarker for prognosis of  
CRC [71-74]. Instead, others have examined the ratio of CD3+ or CD4+ to FoxP3+ Tregs and have 
determined that this may be a better predictor of clinical outcome in patients with colon  
carcinoma [75,76,77]. Yet, there are still many facets to Tregs, CRC, and tumor progression that have 
not been explored in detail. For example, how significant is the ratio of CD3+/FoxP3+ in the stromal 
vs. tumor region or the ratio of CD8+/FoxP3+ in the surrounding regions of the tumor as predictive 
values of clinical outcomes? What is the predictive value of the number of FoxP3+ Tregs in 
association with metastasis? What is the relationship between Tregs and chemotherapy? What are the 
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densities of FoxP3+ and disease outcomes in other types of CRCs such as: DNA mismatch repair 
(MMR), PIK3CA mutation, and sporadic CRC? Lastly, what specific antigens do CRC-associated 
Tregs have? These questions need to be addressed further to determine the function of Tregs in CRC 
in human. 

Recent identification of a subtype of Tregs in a mouse model and in some human colon cancer 
helps to explain the paradoxical functions of these cells [78]. One differentiating factor between 
distinctive Tregs is the expression of RAR-related orphan receptors (ROR)-t, which have previously 
been shown to be vital for Th17 differentiation [79] (Figure 1). Th17 cells were shown to 
preferentially express IL17, IL-17F and IL-22, and induce inflammation [79]. Using APCmice 
containing a mutation leading to a loss of APC function that develops benign adenomatous polyps, 
Blatner et al. [78] observed a significant number of CD4+, ROR-t+, FoxP3+ Tregs surrounding the 
polyps consistent with their analysis of biopsied samples isolated from colon cancer patients. 
Interestingly, these ROR-t+ FoxP3+ Tregs share many features similar to Th17 cells, suggesting that 
these cells may be derived from either 1) Th17 cells or 2) induced/activated Tregs responding to a 
polyp-environment rich in cytokines (IL-1, IL-6 and IL-23) or 3) natural Treg homing into the 
colonic mucosal layer (Figure 1). Nevertheless, targeted deletion of ROR-t in Tregs of 
APCmice prevents the development of polyposis and increases mouse antitumor immunity 
suggesting that these pathologic ROR-t+ Tregs actively contribute to polyp and tumor growth. It 
remains necessary to examine what triggers the switch in these cells to become ROR-t+ Tregs. 
Dissecting the mechanisms of this transition state could have implications in future immunotherapy 
targeting Tregs. 

While many Tregs are observed in CRC [75,77,80], little is known about the mechanism 
regulating their entry into CRC, though cytokine-mediated regulation of Tregs in inflammation has 
been suggested [81]. Recently, several chemokine-signaling axes have been shown to mediate Treg 
recruitment to inflamed sites and tumors [82,83]. In addition to G protein coupled receptor (GPCR) 
chemokine receptors, sphingosine-1 phosphate receptors (S1P1–S1P5) are also important regulators 
of immune cells including Tregs [84,85,86]. Of the five S1P signaling receptors, signaling from S1P1 

is most studied and has been shown to regulate immune cell migration and activation of specific T 
cell subsets [87,88]. S1P, the agonist of these receptors, is a sphingolipid that is formed from 
sphingosine, a product of ceramide degradation, by two known sphingosine kinases SphK1 and 
SphK2 [89,90,91]. S1P and S1P1 regulating the differentiation of Th2, Tregs, Th17 and to some 
extent Th1 cells have been shown [88]. Moreover, experiments using transgenic mice carrying CD4+ 
T cells overexpressing S1P1 provides a first clue that this pathway may regulate Treg recruitment in 
extrathymic tissues [92]. The S1P1 transgenic mice expressed high level of IL-4, an important 
cytokine required for the selective development of CD4+ CD25+ Tregs [86]; thus, high numbers of 
CD4+CD25+FoxP3+ Tregs were observed in S1P1 transgenic compared to wild type mice [86]. 

More recent studies, have shown that S1P1 signaling restrains thymic Treg development, affects 
their peripheral numbers, and inhibits Treg suppressive functions by interfering with the function of 
TGF- [87,93]. Using transgenic mice with Treg overexpression of S1P1 signaling or transgenic 
mice with S1P1 ablation in T cells, Liu et al. demonstrated S1P1 signaling controls T cell lineage 
specification [94]. A reduced number of Tregs were observed in the lymphoid tissues and in the colon 
of mice with T cells over expressing S1P1 while Th1 subset was increased in the same mice [94]. 
Interestingly, another group had reported that there was an increase of Tregs in the periphery of 
S1P1-transgenic mice [92]. The discrepancy between these data may be due to the pleiotropic 
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that blocking this signaling pathway inhibits tumor progression [99]. However, whether S1P1 
regulates Treg development or their function in the inflamed environment remains to be determined. 
We observed a reciprocal relationship between S1P signaling (tumor progression) and the Treg 
population [99]. Interestingly, in a recent study published by Liang et al. [100] using SphK2−/− mice 
(one of the two kinases responsible for making S1P) in a colitis associated colon cancer model, 
SphK2−/− mice, exhibited severe inflammation and developed larger tumors in greater numbers after 
AOM/DSS treatment. The phenotype was shown to be due to a compensatory mechanism of 
upregulation of SphK1 after the loss of SphK2. The group also used FTY720 (Fingolimod), a 
prodrug that is converted to the active FTY720-P form, to down regulate S1P1 signaling and 
demonstrated that FTY720 alleviates colitis reducing tumor size and number [100]. While the group 
did not report on the effect of FTY720 on Treg development, others have shown that FTY720 
induces activation of CD4+CD25+ Tregs [94,103]. These findings suggest that modulation of 
S1P1/IL6/STAT3 signaling in transformed/cancer cells or in immune cells, including Tregs, may 
affect the tumor microenvironment and thereby alter CRC tumor progression. 

3. Therapeutic strategies targeting Tregs and S1P in CRC 

Among many immune cells recruited to the CRC tumor site, Tregs appear to orchestrate the 
immune reaction that affects clinical outcomes. In light of Blatner’s data [78], the identification of 
ROR-t+ Tregs provides a new immnunotherapy targeting Tregs. An important consideration should 
be noted in regards to the time of Treg recruitment during tumor development. Tregs which are 
ROR-t- tend to arrive at tumor site very early during the inflammation [104]. These Tregs have 
specificity to the non-self-antigen and would most likely function in controlling inflammation [35]. 
High number of ROR-t- Tregs, especially during early stage of tumor development, may indicate a 
good prognosis. This hypothesis is consistent with the findings that treatment targeted inflammatory 
response in CRC would have a positive clinical outcome [105]. As such, in a recent retrospective 
study of over 900 patients, those with colorectal cancer on a regular regimen of aspirin were 
significantly likely to have reduced mortality rates [105]. This study demonstrates the crucial role of 
inflammation, especially the interaction between inflammation and tumor progression, and the 
benefit of controlling some CRCs at the early stage with anti inflammatory drugs. 

As a tumor progresses, ROR-t+ Tregs were shown to be pro-tumorigenic since they suppress 
the cytotoxic T cells. Drugs targeting the ROR receptor to interfere with the function of ROR-t+ 
Tregs would most likely alter disease progression. Along this line, drugs that target the S1P pathway 
to prevent Tregs as well as other lymphocyte egression from the lymph nodes are especially 
important. In our recent paper, we demonstrated that the S1P pathway is associated with IL-6 
signaling pathway which maintains the persistently activated STAT3 and sphingosine kinases in 
tumor cells. The cycle between S1P, immune cell recruitment, IL-6, activated STAT3 and 
sphingosine kinases and S1P is required for tumor progression and has been demonstrated by other 
groups [100,101]. Interestingly, we observed that the epithelial STAT3 status in tumor cells 
correlated with the reciprocal Treg population in the tumor environment of colitis associated CRC; 
while conditional knock-out mice of epithelial STAT3 showed a significantly higher CD4+CD25+ 
Tregs [99]. We advocate the usage of FTY720 as well as other classes of drugs to perturb the S1P 
metabolism in treatment of late stage CRC [106]. 

Understanding the mechanisms by which Tregs mediated immune suppression would help in 
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designing more appropriate drugs to inhibit Treg activity. As mentioned previously, Tregs mediate 
the suppression of effective T cells by direct contact via CTLA4. Antibodies targeting the interaction 
between CTLA4 and CD80 have been developed to inhibit the suppression function of Tregs on 
cytotoxic T cells; thereby allowing those cells to destroy tumors [107,108,109]. In an animal model 
of colitis using adoptively transferred of CD4+CD25− T cells into SCID mice infected with the 
protozoan parasite Leishmania, transferring CD4+CD25+ T cells can reverse colitis. The effect of 
CD4+CD25+ was blocked if anti-CTLA4 antibody was used [110]. These data suggest that antibody 
against CTLA4 can block the function of Tregs. Antibodies against CD25 targeting Tregs have also 
been used to improve immunotherapy responses in cancer [111,112]. In short, different modalities 
targeting Tregs in CRC should be considered as an additional strategy to the current treatment 
options. 

4. Conclusion 

Since the discovery of FoxP3+, many subsets of regulatory T cells have been identified. Their 
main function is to suppress the immune system thus preventing the innate and adaptive immune 
responses from going awry. Functions of Tregs in CRC are beginning to unfold with the 
identification of non-pathological and pathological Tregs (ROR-t+). Understanding the 
development of these cells is pivotal in CRC treatment. Several mechanisms have been proposed for 
their presence in CRC: 1) they could represent pre-existing Tregs 2) arise from CD4+ effective cells 
and 3) be recruited from natural Tregs. The general consensus of pathological Tregs in CRC is 
pro-tumorigenic since they suppress immunosurveillence and antitumor immunity. As such, 
regulation of these cellular functions with antibodies against CTLA-4 antibodies would provide an 
attractive alternative to CRC treatment. Another strategy would be to block lymphocytes recruitment 
to mucosal layer of the colon by FTY720, prodrug of FTY720-P that binds to S1P1. Prolonged 
exposure of the cells to FTY720-P prevents the recycling of S1P1 to the surface after internalization. 
Hence, S1P signaling is blocked in the presence of FTY720 and FTY720-P. S1P pathway is unique in 
that it is not only involved in lymphocyte egression, but also that its intracellular signaling regulates 
the differentiation of CD4+ T cells into one type of immune cells that favor adaptive immunity, or 
another type (Tregs) that dampens it. The S1P pathway is also a critical component of the interaction 
between colon cancer cells and stromal cells. The IL-6/STAT3/SphK/S1P pathway promotes the 
persistent activation of STAT3 in tumors, which upregulates S1P to recruit immune cells which 
secrete IL-6. Thus, the development of Treg-centric therapeutics with S1P signaling inhibitor is 
likely to affect multiple cells and would add a novel and more effective therapeutic strategy against 
colorectal cancer especially those cancers associated with inflammation. 
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