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Abstract: In this study, we used 16S rRNA gene sequence analysis to describe the diversity of 

cultivable endophytic bacteria associated with fennel (Foeniculum vulgare Mill.) and determined their 

plant-beneficial traits. The bacterial isolates from the roots of fennel belonged to four phyla: Firmicutes 

(BRN1 and BRN3), Proteobacteria (BRN5, BRN6, and BRN7), Gammaproteobacteria (BRN2), and 

Actinobacteria (BRN4). The bacterial isolates from the shoot of fennel represented the phyla 

Proteobacteria (BSN1, BSN2, BSN3, BSN5, BSN6, BSN7, and BSN8), Firmicutes (BSN4, BRN1, 

and BRN3), and Actinobacteria (BRN4). The bacterial species Bacillus megaterium, Bacillus 

aryabhattai, and Brevibacterium frigoritolerans were found both in the roots and shoots of fennel. The 

bacterial isolates were found to produce siderophores, HCN, and indole-3-acetic acid (IAA), as well 

as hydrolytic enzymes such as chitinase, protease, glucanase, and lipase. Seven bacterial isolates 

showed antagonistic activity against Fusarium culmorum, Fusarium solani, and Rhizoctonia. solani. 

Our findings show that medicinal plants with antibacterial activity may serve as a source for the 

selection of microorganisms that exhibit antagonistic activity against plant fungal infections and may 



450 

AIMS Microbiology  Volume 10, Issue 2, 449–467. 

be considered as a viable option for the management of fungal diseases. They can also serve as an 

active part of biopreparation, improving plant growth. 

Keywords: medicinal plant; plant beneficial; antagonism; endophytes 

 

1. Introduction  

Fennel (Foeniculum vulgare Mill.) is an annual herbaceous plant belonging to the family 

Umbelliferae (Apiaceae) and cultivated in many countries [1]. Fennel’s fruits contain highly valuable 

volatiles and fatty oils, which are used in the food industry, cosmetics, and medicine [2]. Moreover, 

fennel exhibits antioxidant [3], antimicrobial [4–6], anti-inflammatory [7], antithrombotic [8], 

antidiabetic [9], cytoprotection antitumor [10], anti-diarrheic, and anti-spasmodic activities [11].  

Fennel is commercially cultivated in many countries; however, this crop is attacked by several 

fungal diseases such as collar rot (Sclerotium rolfsii), damping off and root rot (Pythium spp.), vascular  

wilt (Fusarium oxysporum), root and foot rot (Rhizoctonia solani) [12], brown rot and wilt (Phytophthora 

megasperma) [13], stem rot (Sclerotinia sclerotiorum) [14], and blight and leaf spot (Alternaria 

alternata) [15].  

Production of fennel through eco-friendly technology is an important approach, ensuring organic 

fennel. The application of plant-beneficial microbes is considered as an alternative eco-friendly 

approach to improving medicinal plant health [16–18]. Among these microbes, endophytic bacteria that 

colonize plant internal tissues, roots, leaves, and stems can provide beneficial effects to plants [19–21]. 

There are many reports on the diversity of endophytic bacteria associated with medicinal plants, and 

their biological activity has been reported, e.g., Ziziphora capitata, Hypericum perforatum [16], Aloe 

vera, [22], and Origanum vulgare [23]. Endophytes colonizing plant tissue are assumed to play an 

important role in the synthesis of biologically active compounds and also protect plants from soil-

borne disease [24–26]. Several mechanisms underlying plant beneficial effects have been reported, 

including the production of phytohormones, cell wall–degrading enzymes, hydrogen cyanide (HCN), 

and ACC deaminase [27,28]. Moreover, there is evidence that the chemical composition of the exudate 

affects the microbial diversity and activity associated with plants [29]. For example, bacteria associated 

with medicinal plants such as Matricaria chamomilla, Baccharoides anthelmintica, and Calendula 

officinalis exhibit antimicrobial activity similar to that of the host plant [30–32]. 

To date, there have been only a few reports of endophytes associated with fennel and their 

beneficial effects on plants, despite numerous studies reporting on the phytochemical contents and 

biological activity of fennel (Foeniculum vulgare Mill.). To enhance our understanding of the function 

of endophytes in plant growth and development, it is crucial to gain knowledge about the physiological 

activities of endophytic bacteria associated with medicinal plants. In the current study, we aim (1) to 

isolate and identify culturable endophytic bacteria associated with fennel by using 16S rRNA gene 

analysis, and (2) to evaluate their plant-beneficial properties. 
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2. Materials and methods 

2.1. Plant sample collection 

In June 2019, fennel (Foeniculum vulgare Mill.) was harvested from Ugam-Chatkal State 

Biosphere Reserve, Uzbekistan (41°15'27.7"N, 69°54'41.4"E), a remote and forested region situated 

in the Western Tien Shan province. Ten individual plants with their root systems were collected using 

sterile gloves at a distance of 12–15 m. They were then stored in zip-lock plastic bags and brought to 

the lab for additional analysis.  

2.2. Isolation of endophytic bacteria 

For sterilization of plant roots and leaves, 10% NaClO and 70% ethanol were used. Then, they 

were rinsed in 2 L of sterile water (2 min) five times. The root and leaves (10 g each) were squeezed 

out with a sterile mortar and mixed with 90 mL of phosphate buffer solution [33]. The mixtures 

resulting from dilutions (101–105) were spread out in 100 µL of tryptic soy agar (TSA) (BD, Difco 

Laboratories, USA) with an addition of 50 µg/mL of nystatin and stored in a thermostat for 96 h at 28 °C. 

Every single colony that had a distinct color, shape, surface, and consistency was the source of the new 

isolates, and the plates were examined for bacterial growth.  

2.3. Identification of bacteria 

The heat treatment method was used to isolate bacterial DNA [34] as follows: The bacterial 

isolates were cultivated on Petri plates with TSA at 28 °C for 72 h. Subsequently, the colonies were 

transferred into Eppendorf tubes with 300 µL of sterile Milli-Q water, incubated at 90 °C for 20 min 

in a dry block heater (IKA Works, Inc., Wilmington, USA), and centrifuged at 12,000 rpm for 5 min. 

The presence of DNA in the tubes was tested using gel electrophoresis and quantified with 

NanoDrop™ One (Thermo Fisher Scientific Inc., Waltham, USA). 

The 16S rRNA gene sequences were amplified from the isolated DNA during polymerase chain 

reaction (PCR) using the following primers: 27F 5′-GAGTTTGATCCTGGCTCAG-3′ (Sigma-

Aldrich, St. Louis, Missouri, USA) and 1492R 5′-GAAAGGAGGTGATCCAGCC-3' (Sigma-

Aldrich, St. Louis, Missouri, USA) [35]. The bacterial isolates were differentiated using restriction 

fragment length polymorphism (RFLP) analysis of the obtained 16S rRNA gene products, as described 

by Jinneman et al. [36]. The digested DNA fragments were examined using gel electrophoresis (1% 

agarose gel). The gel was visualized using a digital gel imaging system (Gel-Doc XR TM+, Bio-Rad 

Laboratories, USA). Identical isolates were eliminated, and the rest were sequenced. The ABI PRISM 

BigDye 3.1 Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems) was used for the 

sequencing of PCR products. The Chromas (v. 2.6.5) and EMBOSS                                                         

Explorer (http://emboss.bioinformatics.nl/) software were used for the evaluation, correction, and 

alignment of the nucleotide sequences.  

The 16S rRNA gene sequences were checked for identity with the relative sequences from the 

GenBank of NCBI (http://www.ncbi.nlm.nih.gov/) using the Basic Local Alignment Search Tool (BLAST). 

The Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) online software was used for multiple 

alignments of all obtained and relative 16S rRNA gene sequences. The maximum composite likelihood 

http://emboss.bioinformatics.nl/
http://www.ncbi.nlm.nih.gov/


452 

AIMS Microbiology  Volume 10, Issue 2, 449–467. 

method [37] was used for counting the evolutionary distances. The percentage of replicate trees in 

which the associated taxa clustered together in the bootstrap test (500 replicates) are shown next to the 

branches of a phylogenetic tree, which was built using MEGA X software [38]. 

Upon the deposition of the obtained 16S rRNA gene sequences to GenBank, they were assigned 

the following accession numbers: MT310821-MT310835. 

2.4. Antifungal activity of endophytes 

The ability of cell-free solutions of endophytic bacterial isolates and plant extracts to inhibit plant 

pathogenic fungi Rhizoctonia solani, Fusarium culmorum (Wm.G.Sm.) Sacc., and F. solani (Mart.) 

Sacc. J.G. Kühn was investigated in the way detailed by Egamberdieva et al. [39].  

The bacterial isolates were grown in TSB broth for three days, and 50 μL of bacterial cultures 

were dropped into a hole in PDA plates (4 mm in diameter). Fungal strains were obtained from the 

culture collection of microorganisms at the National University of Uzbekistan, and they were grown 

in PDA plates at 28 °C for five days. Disks of fresh fungus cultures (5 mm in diameter) were cut out 

and placed 2 cm away from the hole filled with bacterial filtrate. The plates were sealed with 

Parafilm®M and incubated at 28 °C in darkness until the fungi had grown over the control plates 

without bacteria. Antifungal activity was recorded as the width of the growth-inhibition zone between 

the fungus and the test bacterium. 

2.5. Plant-beneficial traits of endophytes 

On TSA media, the ability of bacterial isolates to produce hydrogen cyanide (HCN) was examined. 

The color change of filter paper immersed in a 1% picric acid and 2% sodium carbonate solution and 

put on Petri plates was measured [40]. The bacterial isolates' ability to produce siderophores was 

determined using the following method described by Schwyn and Neilands [41]. Protease secretion 

was revealed by growing strains on TSA plates (20 times diluted) amended with skimmed milk to a 

final concentration of 5%. The halo appearing on the first to the second day of cultivation around 

colonies indicated the presence of extracellular protease [42]. Furthermore, β-1,3 and β-1,4glucanase 

activity was tested using the substrate lichenan (Sigma-Aldrich, St. Louis, MO) in top agar                

plates (Walsh et al. 1995). The production of chitinase by bacterial isolates was determined on colloidal 

chitin medium using the Malleswari and Bagyanarayana [44] method. The lipase activity of bacterial 

strains was determined by the Tween lipase indicator assay. Bacterial strains were grown in LC           

agar (LB agar containing 10 mM MgSO4 and 5 mM CaCI2) containing 2% Tween 80 at 28 °C [45]. 

After five days, the degradation of Tween was taken as a clear halo around the bacterial inoculum. 

Using the technique outlined by Bano and Musarrat [46], the synthesis of IAA (indole 3-acetic acid) 

by endophytic isolates was investigated. The IAA concentration in culture was calculated by using a 

calibration curve of pure IAA as a standard (Sigma-Aldrich, Merck). According to Egamberdieva and 

Kucharova's description [47], ACC deaminase synthesis was investigated with 1-aminociclopropane-

1-carboxylacid (ACC) as the only N source. The P-solubilization ability of bacterial isolates was 

performed as previously described by Chen et al. [48]. 
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2.6. Plant growth promotion 

After being cultured for 72 h in tryptic soy broth (TSB; Sigma-Aldrich), the bacterial cultures were 

adjusted to an optical density of 0.1 (OD620 = 0.1) at 620 nm, which corresponds to approximately 108 

cells/mL. The fennel seeds were dipped into bacterial solutions and, after 5 min, inoculated seeds with 

bacteria were sown in pots (two seeds per pot) (12 cm in diameter and 16 cm in depth) filled with 500 g of 

soil. After germination, one seedling was kept per pot. In the experiment, a randomized design was 

employed, with each treatment consisting of 10 pots. There were two treatments in the pot experiment: 

pots with the plant uninoculated with bacteria and pots with plants inoculated with bacteria. The plants 

were grown for two weeks at 24–26 °C during the day and 17–18 °C at night, with 40% humidity. The 

shoot and root lengths as well as the dry weight were measured [47]. 

2.7. Statistical analyses 

Using Microsoft Excel 2010's analysis of variance software, the data were examined for statistical 

significance. Data obtained from the plant growth test were subjected to analysis of variance (ANOVA) 

with SPSS software (version 15) at p < 0.05. The results are presented as average means and standard 

error (SE). The difference between means was compared by a high-range statistical domain (HSD) 

using Tukey’s test. The treatment means were separated by the least significant difference (LSD) test 

at p < 0.05.  

3. Results 

3.1. Isolation and identification of cultivable endophytic bacteria 

In total, 60 bacterial isolates were obtained from the plant tissues of fennel. The RFLP analysis 

was utilized for the selection of similar isolates. After RFLP analysis, 18 bacterial isolates were 

selected (7 from roots and 11 from shoots) and siblings were removed. The colonies of some isolates 

with plant-beneficial traits are shown in Figure 1. 

All isolates were determined using the BLAST basic local alignment search tool and matched 

with correlative strains from the NCBI GenBank. The isolates were 98.95%–99.93% identical to their 

closest relatives registered in GenBank®. Sequence similarities of endophyte bacteria isolated from 

the root and shoot systems of fennel are given in Tables 1 and 2. The length of the identified nucleotide 

sequences of 16S rRNA gene in the isolates varied from 1408 to 1470 bp and was noted as adequate 

for confidential identification based on 16S rRNA gene analysis using the BLAST tool. All isolated 

strains got their accession numbers (Tables 1 and 2). As shown in Table 1, the roots of fennel harbored 

seven species belonging to four phyla: Firmicutes (BRN1 and BRN3), Proteobacteria (BRN5, BRN6, 

and BRN7), Gammaproteobacteria (BRN2), and Actinobacteria (BRN4). Table 2 comprises 11 strains 

isolated from shoots of fennel and represents the phyla Proteobacteria (BSN1, BSN2, BSN3, BSN5, 

BSN6, BSN7, and BSN8), Firmicutes (BSN4, BRN1, and BRN3) and Actinobacteria (BRN4) (Figure 

2). Above all, Bacillus megaterium, Bacillus aryabhattai, and Brevibacterium frigoritolerans were 

found both in the roots and shoots of fennel. 

 



454 

AIMS Microbiology  Volume 10, Issue 2, 449–467. 

 

Figure 1. Colonies of some isolated bacteria. A. BRN3. B. BRN1. C. BRN6. D. BRN7. E. 

BRN2. F. BSN6. 

Table 1. Sequence similarities of endophyte bacteria isolated from the root system of 

fennel (Foeniculum vulgare Mill.) with sequences registered in GenBank. 

Isolated strains deposited to GenBank Closest match 

(16S ribosomal RNA genes) (GenBank) 

Strain Length 

(bp) 

Accession 

number 

Reference strains Accession 

number 

Percent 

identity, % 

BRN1 1457 MT310821 Bacillus megaterium KY660610.1 99.93 

BRN2 1408 MT310822 Pseudomonas reinekei NR_042541.1 99.50 

BRN3 1454 MT310823 Bacillus aryabhattai KU179345.1 99.79 

BRN4 1459 MT310824 [Brevibacterium] frigoritolerans MN710434.1 99.79 

BRN5 1450 MT310825 Pseudomonas lini MH165352.1 99.24 

BRN6 1421 MT310826 Pseudomonas jessenii EU019982.1 99.43 

BRN7 1444 MT310827 Pseudomonas plecoglossicida MH165359.1 99.93 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/nucleotide/KY660610.1?report=genbank&log$=nucltop&blast_rank=1&RID=8CDHYB4S014
https://www.ncbi.nlm.nih.gov/nucleotide/NR_042541.1?report=genbank&log$=nucltop&blast_rank=4&RID=8CEP1KBZ016
https://www.ncbi.nlm.nih.gov/nucleotide/KU179345.1?report=genbank&log$=nucltop&blast_rank=1&RID=8CF7015J016
https://www.ncbi.nlm.nih.gov/nucleotide/MN710434.1?report=genbank&log$=nucltop&blast_rank=1&RID=8CFMAVPH01R
https://www.ncbi.nlm.nih.gov/nucleotide/MH165352.1?report=genbank&log$=nucltop&blast_rank=15&RID=8CG4CZ3B014
https://www.ncbi.nlm.nih.gov/nucleotide/EU019982.1?report=genbank&log$=nucltop&blast_rank=12&RID=8CH6CGVM01R
https://www.ncbi.nlm.nih.gov/nucleotide/MH165359.1?report=genbank&log$=nucltop&blast_rank=1&RID=8CHRTW4M016
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Table 2. Sequence similarities of endophyte bacteria isolated from shoots of fennel 

(Foeniculum vulgare Mill.) with sequences registered in GenBank. 

Isolated strains deposited to GenBank Closest match 

(16S ribosomal RNA genes) (GenBank) 

Strain Length 

(bp) 

Accession  

number 

Reference strains Accession  

number 

Percent 

identity, % 

BSN1 1439 MT310828 Enterobacter mori MH101421.1 99.31 

BSN2 1438 MT310829  Klebsiella pneumoniae KU254764.1 99.24 

BSN3 1428 MT310830 Enterobacter cloacae MG557804.1 98.95 

BSN4 1470 MT310831 Bacillus simplex KX301311.1 99.59 

BSN5 1443 MT310832 Klebsiella pasteurii MN104667.1 99.17 

BSN6 1431 MT310833 Stenotrophomonas maltophilia GU391033.1 99.93 

BSN7 1448 MT310834 Pseudomonas putida MK680517.1 99.65 

BSN8 1444 MT310835 Pseudomonas chlororaphis GU947817.1 99.79 

BRN1 1455 MT310821 Bacillus megaterium KY660610.1 99.66 

BRN3 1463 MT310823 Bacillus aryabhattai KU179345.1 99.73 

BRN4 1458 MT310824 [Brevibacterium] frigoritolerans MN710434.1 99.73 

 

Figure 2. Neighbor-joining phylogenetic tree based on 16S rRNA gene sequences isolated 

from endophytic bacteria of fennel (Foeniculum vulgare Mill.), showing the relationship 

of isolated strains to their closest relatives in GenBank. 
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https://www.ncbi.nlm.nih.gov/nucleotide/MH101421.1?report=genbank&log$=nucltop&blast_rank=6&RID=8K5R7RM0014
https://www.ncbi.nlm.nih.gov/nucleotide/KU254764.1?report=genbank&log$=nucltop&blast_rank=18&RID=8K6YYGE801R
https://www.ncbi.nlm.nih.gov/nucleotide/MG557804.1?report=genbank&log$=nucltop&blast_rank=1&RID=8K79PV94014
https://www.ncbi.nlm.nih.gov/nucleotide/KX301311.1?report=genbank&log$=nucltop&blast_rank=11&RID=8K8HN9T101R
https://www.ncbi.nlm.nih.gov/nucleotide/MN104667.1?report=genbank&log$=nucltop&blast_rank=2&RID=8K8YSGKU014
https://www.ncbi.nlm.nih.gov/nucleotide/GU391033.1?report=genbank&log$=nucltop&blast_rank=5&RID=8K99DNHN014
https://www.ncbi.nlm.nih.gov/nucleotide/MK680517.1?report=genbank&log$=nucltop&blast_rank=37&RID=8K9P824301R
https://www.ncbi.nlm.nih.gov/nucleotide/GU947817.1?report=genbank&log$=nucltop&blast_rank=10&RID=8KD9E7EM016
https://www.ncbi.nlm.nih.gov/nucleotide/KY660610.1?report=genbank&log$=nucltop&blast_rank=1&RID=8K51RYN8016
https://www.ncbi.nlm.nih.gov/nucleotide/KU179345.1?report=genbank&log$=nucltop&blast_rank=1&RID=8K7SGK8V016
https://www.ncbi.nlm.nih.gov/nucleotide/MN710434.1?report=genbank&log$=nucltop&blast_rank=1&RID=8K87NPEA01R
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3.2. Antifungal activity of endophytic bacteria 

The antifungal activity of the isolated endophytic bacteria was evaluated using three plant 

pathogenic fungi: F. culmorum, F. solani, and R. solani (Table 3, Figure 3). Among all tested 

endophytic bacteria, P. reinekei BRN2, P. jessenii BRN6, S. maltophilia BSN6, and P. chlororaphis 

BSN8 exhibited strong inhibition against three tested plant pathogenic fungi. P. lini BRN5, P. 

plecoglossicida BRN7, and B. simplex BSN4 showed antifungal activity against two tested fungal 

plant pathogens: F. culmorum and F. solani. B. megaterium BRN1 and B. aryabhattai BRN3 

demonstrated antifungal activity against only one fungus R. solani. 

Table 3. Antifungal activity of bacterial endophytes from fennel (Foeniculum vulgare Mill.) 

against plant pathogenic fungi. 

Treatments Inhibition zone in diameter (mm) 

F. culmorum 

(Wm.G.Sm.) Sacc. 

F. solani 

(Mart.) Sacc. 

R. solani 

J.G. Kühn 

Bacillus megaterium BRN1 - - 5 ± 1 

Pseudomonas reinekei BRN2 8 ± 1 7 ± 1 11 ± 1 

Bacillus aryabhattai BRN3 - - 6 ± 1 

[Brevibacterium] frigoritolerans BRN4 - - - 

Pseudomonas lini BRN5 7 ± 1 6 ± 1 - 

Pseudomonas jessenii BRN6 10 ± 1 10 ± 1 13 ± 1 

Pseudomonas plecoglossicida BRN7 5 ± 1 4 ± 1 - 

Enterobacter mori BSN1 - - - 

 Klebsiella pneumoniae BSN2 - - - 

Enterobacter cloacae BSN3 - - - 

Bacillus simplex BSN4 5 ± 1 6 ± 1 - 

Klebsiella pasteurii BSN5 - - - 

Stenotrophomonas maltophilia BSN6 7 ± 1 7 ± 1 9 ± 1 

Pseudomonas putida BSN7 - - 7 ± 1 

Pseudomonas chlororaphis BSN8 10 ± 1 9 ± 1 11 ± 1 

Plant extract 4 ± 1 3 ± 1 4 ± 1 

“-“ no formation of inhibition zone 

 

Figure 3. Antagonistic activity of bacterial strains against the plant pathogenic fungi 

Fusarium culmorum. 1. P. reinekei BRN2; 2. B. megaterium BRN1; 3. P. putida BSN7; 4. 

B. aryabhattai BRN3; 5. P. plecoglossicida BRN7; 6. E. mori BSN1; 7. K. pneumoniae 

BSN2; 8. E. cloacae BSN3; 9. B. simplex BSN4; 10. P. jessenii BRN6; 11. B. 

frigoritolerans BRN4; 12. K. pasteurii BSN5. 
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3.3. Plant growth–promoting activity of endophytic bacteria 

The isolated endophytes were tested for their ability to stimulate the growth of fennel         

seedlings (Table 4). Some of the tested bacteria showed high plant-growth promotion in fennel 

seedlings. Seed inoculation with strain B. aryabhattai BRN3 resulted in a 21.5% and 24.5% increase 

in shoot and root length, respectively as compared to the control. The shoot and root dry mass also 

rose to 25.2% and 24.6%, respectively, as compared to the control. The strains B. megaterium BRN1, 

P. reinekei BRN2, P. jessenii BRN6, P. plecoglossicida BRN7, K. pneumoniae BSN2, and S. 

maltophilia BSN6 were less effective, and increased shoot length up to 7.6%–17.7% and root length 

up to 6.1%–18.4% in comparison with control. The strains P. chlororaphis BSN8, P. lini BRN5, B. 

simplex BSN4, K. pasteurii BSN5, P. putida BSN7, and B. frigoritolerans BRN4 did not exhibit, or 

showed very low, plant growth–promoting activity. Two strains (E. mori BSN1 and E. cloacae BSN3) 

inhibited the growth of fennel seedlings and reduced shoot and root length and dry weight.  

Table 4. Length and dry weight of shoot and root of fennel (Foeniculum vulgare Mill.) 

when seeds were inoculated with endophytic bacteria. Plants were grown in pots for two 

weeks. 

Treatment Shoot length (cm) Root length (cm) Shoot dry weight (g) Root dry weight (g) 

Control 7.9 ± 0.65bc 9.8 ± 0.67bc 1.43 ± 0.04bc 0.434 ± 0.01bc 

B. megaterium BRN1 9.0 ± 0.81a 11.1 ± 0.83ab 1.65 ± 0.07ab 0.495 ± 0.01ab 

P. reinekei BRN2 8.7 ± 0.91ab 10.8 ± 0.66ab 1.58 ± 0.07ab 0.473 ± 0.02ab 

B. aryabhattai BRN3 9.6 ± 0.72 a 12.2 ± 0.82a 1.79 ± 0.06a 0.541 ± 0.01a 

B. frigoritolerans BRN4 7.9 ± 0.60bc 9.8 ± 0.77bc 1.43 ± 0.08bc 0.434 ± 0.02bc 

P. lini BRN5 8.1 ± 0.72bc 9.8 ± 0.92bc 1.47 ± 0.06bc 0.437 ± 0.01bc 

P. jessenii BRN6 9.3 ± 0.61a 11.6 ± 0.78a 1.71 ± 0.08a 0.516 ± 0.01a 

P. plecoglossicida 

BRN7 

8.6 ± 0.92ab 10.5 ± 0.56b 1.61 ± 0.05ab 0.459 ± 0.02b 

E. mori BSN1 7.7 ± 0.55c 9.5 ± 0.88c 1.39 ± 0.08c 0.427 ± 0.01c 

K. pneumoniae BSN2 8.5 ± 0.77b 10.7 ± 0.93ab 1.53 ± 0.08b 0.466 ± 0.03ab 

E. cloacae BSN3 7.5 ± 0.66c 9.3 ± 0.78c 1.34 ± 0.07c 0.422 ± 0.01c 

B. simplex BSN4 8.2 ± 0.51bc 9.8 ± 0.81bc 1.48 ± 0.06bc 0.434 ± 0.01bc 

K. pasteurii BSN5 8.0 ± 0.56bc 9.8 ± 0.78bc 1.46 ± 0.09bc 0.435 ± 0.02bc 

S. maltophilia BSN6 8.7 ± 0.62ab 10.4 ± 0.94b 1.56 ± 0.04ab 0.451 ± 0.02ab 

P. putida BSN7 8.3 ± 0.59b 10.2 ± 0.88bc 1.50 ± 0.04b 0.445 ± 0.01b 

P. chlororaphis BSN8 8.2 ± 0.70bc 10.0 ± 0.76bc 1.48 ± 0.04bc 0.441 ± 0.02b 

*different letters indicate significant differences based on Turkey’s HSD test at p < 0.05. 

3.4. Plant-beneficial traits 

Detailed results of plant-beneficial traits of endophytic bacteria isolated from fennel (Foeniculum 

vulgare Mill.) are given in Table 5. According to the results, B. megaterium BRN1, P. reinekei BRN2, 

B. aryabhattai BRN3, P. jessenii BRN6, P. plecoglossicida BRN7, K. pneumoniae BSN2, S. 
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maltophilia BSN6, and P. putida BSN7 produced IAA. Among these bacterial strains, the highest IAA 

synthesis was demonstrated in the root- and shoot-associated bacteria B. aryabhattai BRN3. 

Siderophore production was observed in 8 out of 15 bacterial isolates. Seven isolates out of 15 showed 

ACC deaminase production and phosphate solubilization. Nine of the strains also showed hydrogen 

cyanide (HCN) production. The strains were also tested for fungi cell wall–degrading enzymes (chitinase, 

glucanase, protease, and lipase) production. It was revealed that strains S. maltophilia BSN6, P. jessenii 

BRN6, B. simplex BSN4, and P. reinekei BRN2 produced three out of four tested enzymes. The strains 

P. chlororaphis BSN8, P. plecoglossicida BRN7, P. putida BSN7, and P. lini BRN5 showed production 

of two enzymes. The strains E. cloacae BSN3, K. pneumoniae BSN2, and B. aryabhattai BRN3 

produced only one of the tested enzymes. The strains K. pasteurii BSN5, B. frigoritolerans BRN4, E. 

mori BSN1, and B. megaterium BRN1 did not produce any of the tested enzymes. 

Table 5. Plant-beneficial traits of endophytic bacteria isolated from fennel (Foeniculum vulgare Mill.). 

Bacterial strains 
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B. megaterium BRN1 RS - + + 6.3 ± 0.3 + -  - - - 

P. reinekei BRN2 R + - + 5.5 ± 0.3 - + + + - 

B. aryabhattai BRN3 RS - + - 7.8 ± 0.3 + - - + - 

B. frigoritolerans BRN4 RS - - - 0 - - - - - 

P. lini BRN5 R + - + 0 + - + + - 

P. jessenii BRN6 R + + + 6.8 ± 0.3 - + + - + 

P. plecoglossicida BRN7 R + - + 4.5 ± 0.2 - - + + - 

E. mori BSN1 S - - - 0 + - - - - 

 K. pneumoniae BSN2 S - - - 5.6 ± 0.3 - - - + - 

E. cloacae BSN3 S - - - 0 - - - - + 

B. simplex BSN4 S + + + 0 - - + + + 

K. pasteurii BSN5 S - - - 0 + - - - - 

S. maltophilia BSN6 S + + + 4.3 ± 0.3 - + - + + 

P. putida BSN7 S + + + 2.8 ± 0.3 + + - - + 

P. chlororaphis BSN8 S + + + - + - + + - 

 “+” positive, “-“ negative”, R: bacteria isolated from root; S: bacteria isolated from shoot. 

4. Discussion 

Plant-associated endophytic bacteria are vital to the health of plants. They have been thought to 

be a valuable source of physiologically active chemicals because they create a variety of beneficial 

metabolites [19,27,49]. Furthermore, some genetic explanations for the endophytic lifestyle of this 

bacterium have been offered by the whole-genome gene content study of plant-associated bacteria. 

The gene content analysis identified genes involved in motility, biofilm production, siderophore 

biosynthesis, chemotaxis, and osmoprotectant production, indicating their potential benefit for plant 

performance [50,51].  
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This research is the first analysis of endophytic bacteria found in fennel (Foeniculum vulgare 

Mill.) growing in the desert Ugam-Chatkal State Biosphere Reserve in Uzbekistan. Profiling of 

endophytic bacteria isolated from the roots and shoots of fennel demonstrated that these included 18 

isolates belonging to the genera Bacillus (5), Pseudomonas (6), Brevibacterium (2), Enterobacter (2), 

Klebsiella (2), and Stenotrophomonas (1). Similar bacterial species were isolated from the tissues of 

other medicinal plants, e.g., Bacillus megaterium from Lonicera japonica [52], Enterobacter cloacae 

from Tridax procumbens Linn. [53], Bacillus aryabhattai from Pterocarpus santalinus [54], 

Brevibacterium frigoritolerans from Ferula songorica [55], or Stenotrophomonas maltophilia from 

Armoracia rusticana [20]. Notably, we observed Bacillus megaterium, Bacillus aryabhattai,                

and [Brevibacterium] frigoritolerans both in the roots and the shoots of fennel, which can be the result 

of the chemotactic movement of bacteria toward plant roots in response to exudates released by the 

plant. [56]. The number of diverse isolates from shoots was higher than from roots. However, the 

diversity of culturable bacteria in plants represents only a fraction of the total microbial diversity. 

Advanced techniques like metagenomics and high-throughput sequencing are essential to capture a 

more comprehensive picture of the microbial communities associated with plants. Our study focused 

on the plant-beneficial traits of culturable bacteria associated with plants. Shi et al. [57] studied the 

total microbial community in potato tissues using Illumina MiSeq sequencing and found a higher 

diversity of bacteria species in roots than in shoots. The higher microbial diversity in roots compared 

to shoots is a result of the nutrient-rich environment, direct soil contact, favorable microenvironmental 

conditions, symbiotic relationships, and constant exposure to a diverse soil microbiome.  

Endophytes support plant health by enhancing nutrient acquisition, promoting growth, 

suppressing diseases, increasing abiotic stress tolerance, and providing disease control. They exhibit 

several traits that help plants thrive. In our study, several bacterial endophytes showed antagonistic 

action against the plant pathogenic fungi F. oxysporum, F. solani, and R. solani. The antagonistic 

activity of endophytes reduces pathogen load and contributes to overall plant health. We did not find 

any correlation between the source of bacteria isolation (roots or shoots) and their antifungal activity. 

There were four isolates from roots and four from shoots with antifungal activity against F. culmorum 

and F. solani, and four isolates from roots and six from shoots with antifungal activity against R. solani. 

The different number of isolates from roots and shoots with activity against R. solani is due to two 

active isolates (BRN1 and BRN3) being found both in roots and shoots. Higher percentages of endophytes 

with antifungal characteristics were observed in previous studies on Chelidonium majus L. [58] and 

Hypericum perforatum–associated bacteria [16,32]. There is evidence that the physiological processes 

of endophytic bacteria residing inside plant tissue may be influenced by the biologically active 

components of medicinal plants [27,39,59]. Mehanni and Safwat [59] argued that endophytic bacteria 

may exhibit comparable biological activity and metabolite production to those of their hosts. The claim 

was validated by the research conducted by Koberl et al. [27] concerning endophytic bacteria extracted 

from the medicinal herbs Solanum distichum, Matricaria chamomilla, and Calendula officinalis, as 

well as endophytic bacteria isolated from Hypericum perforatum, which exhibited antifungal 

properties as their host. Furthermore, research revealed that fungal pathogens might be effectively 

suppressed without seriously harming the host by utilizing antagonistic characteristics of endophytic 

bacteria [60–62]. Endophytes associated with Monarda citriodora, for instance, demonstrated 

antagonistic action against Fusarium oxysporum, while F. redolens demonstrated potential for 

biocontrol [28].  

The antagonism of endophytes against plant pathogens is mediated through several well-defined 
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mechanisms such as the synthesis of siderophores, enzymes that break down fungal cell walls, and 

hydrogen cyanide (HCN) [63–65]. Chitinase, protease, glucanase, and lipase are the four tested 

enzymes that break down fungal cell walls. For example, chitinase can break down the essential 

component of the fungal cell wall, protease can break down fungal proteins, lipase can break down 

some lipids associated with the fungal cell wall, and β-1,3-glucanase can break down cell wall 

carbohydrates [16]. Of the fifteen bacterial strains, eleven produced at least one of these enzymes. Our 

findings on the antagonistic activity of endophytes against plant pathogens are well-supported by 

various studies. In our previous study, the bacterial strains S. plymuthica RR2-5-10 and P. 

extremorientalis TSAU20 were able to produce the cell wall–degrading enzyme protease and showed 

biological control of cucumber root rot caused by Fusarium solani [60]. Nineteen of the bacterial strains 

showed evidence of producing hydrogen cyanide (HCN), a process that also inhibits soil-borne 

pathogens [66]. According to Michelsen and Stougaar [67], isolates of Pseudomonas fluorescens that 

produced hydrogen cyanide (HCN) impeded Rhizoctonia solani and Pythium aphanidermatum's 

hyphal development.  

It is known that beneficial bacteria can produce phytohormones such as auxins (e.g., indole-3-

acetic acid), gibberellins, and cytokinins, which promote plant growth and development. Eight of the 

fifteen bacterial strains we studied produced IAA and induced the growth of the fennel seedlings' roots 

or shoots. Several studies have documented the synthesis of indole-3-acetic acid (IAA) by endophytic 

bacteria linked to different medicinal plants, including Thymus vulgaris, Majorana hortensis, Ocimum 

basilicum, Melissa officinalis, Marrubium vulgare, Solidago virgaurea, Melilotus officinalis, and 

Matricaria chamomilla [68]. In pot trials, the endophytic bacteria isolated from Cassia occidentalis 

promoted mung bean plant growth by producing IAA [69]. Phytohormones play crucial roles in 

regulating plant growth and development processes such as cell elongation, division, and 

differentiation. The modest increases in fennel growth parameters observed in this study could be 

attributed to the endogenous production of such hormones by the endophytic bacteria, which might 

have influenced root and shoot development [70–73].  

Ethylene regulates plant responses to abiotic stresses such as high salinity, extreme temperatures, 

and heavy metals. The enzyme ACC deaminase is produced by plant-associated bacteria and has the 

ability to reduce levels of the ethylene precursor, ACC (1-aminocyclopropane-1-carboxylic acid), 

within plant tissues. By lowering ACC levels, ACC deaminase effectively decreases ethylene 

production in plants [74]. Seven of the fifteen endophytic bacteria studied were capable of producing 

ACC deaminase. By reducing ethylene levels, ACC deaminase can help plants better tolerate these 

stresses. Although this study did not specifically measure stress parameters, the presence of endophytes 

might have contributed to a more robust stress response, allowing fennel plants to allocate resources 

more efficiently toward growth. In our previous study, the ACC deaminase-producing bacterial strains 

P. putida TSAU1 and P. aureantiaca TSAU22 stimulated the wheat root system in saline soils [47].  

Eight out of fifteen bacterial strains produced siderophores. Microbial siderophores play an 

important role as determinants of biocontrol activity and influence the iron nutrition of plants [75,76]. 

Seven out of fifteen bacterial strains possessed phosphate-solubilizing activity. Phosphate-solubilizing 

bacteria improve plants’ phosphate nutrition by solubilizing insoluble phosphates in the soil and 

increasing the amount of phosphorus available for plants [77].  

These traits, often exhibited by beneficial bacteria, can improve the nutrient availability in the 

rhizosphere, thereby promoting better growth and development of the plant. In the case of fennel, the 

observed increase in shoot and root length and dry weight suggests a potential improvement in nutrient 
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uptake efficiency facilitated by the introduced endophytes. In this study, the introduction of endophytic 

bacteria into fennel seeds demonstrated positive, albeit modest, effects on the growth parameters of 

the plant.  

Numerous papers have documented how endophyte inoculation improves plant growth. For 

example, Sudarshna and Sharma [78] reported that endophytic bacteria isolated from the medicinal 

plant Trillium govanianum increased plant growth and nutrient uptake of the plant under field 

conditions. The bacterial isolates demonstrated P solubilization activity and production of IAA, 

siderophore, and ACC deaminase. Similar results were obtained by Deepa et al. [79], whereas bacterial 

endophytes from Pelargonium graveolens demonstrated plant-beneficial traits and increased plant 

biomass and content of the essential oils geraniol and citronellol.  

Conclusions 

For the first time, endophytic bacteria from fennel (Foeniculum vulgare Mill.) samples taken from 

Uzbekistan's Ugam-Chatkal State Biosphere Reserve have been isolated, identified, and characterized 

in this work. Species belonging to Bacillus, Pseudomonas, Brevibacterium, Enterobacter, Klebsiella, 

and Stenotrophomonas were isolated and identified. In addition to demonstrating antifungal action 

against plant pathogenic fungi, the bacterial strains associated with fennel were found to be capable of 

synthesizing chitinase, protease, glucanase, lipase, HCN, siderophores, IAA, and ACC deaminase. 

According to our research, antimicrobial-rich medicinal plants may serve as a reservoir for 

microorganisms that exhibit antagonistic action against plant fungal pathogens, making them attractive 

options for the management of fungal diseases. They can also serve as an active part of biopreparation 

improving plant growth. These results also indicate that more investigation is required to determine 

how endophytic bacteria with particular plant growth promoting properties affect plant development 

and fungal disease control in field and pot studies. Further research should aim to optimize the use of 

endophytes to maximize their benefits and better understand their interactions with medicinal plants. 
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