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Abstract: The gut microbiota (GM), as a forgotten organ, refers to the microbial community that 

resides in the gastrointestinal tract and plays a critical role in a variety of physiological activities in 

different body organs. The GM affects its targets through neurological, metabolic, immune, and 

endocrine pathways. The GM is a dynamic system for which exogenous and endogenous factors have 

negative or positive effects on its density and composition. Since the mid-twentieth century, laboratory 

animals are known as the major tools for preclinical research; however, each model has its own 

limitations. So far, two main models have been used to explore the effects of the GM under normal 

and abnormal conditions: the isolated germ-free and antibiotic-treated models. Both methods have 

strengths and weaknesses. In many fields of host-microbe interactions, research on these animal 

models are known as appropriate experimental subjects that enable investigators to directly assess the 

role of the microbiota on all features of physiology. These animal models present biological model 

systems to either study outcomes of the absence of microbes, or to verify the effects of colonization 

with specific and known microbial species. This paper reviews these current approaches and gives 

advantages and disadvantages of both models.  

Keywords: Antibiotic–treated animal model; isolated germ-free animal model; gut microbiota; 

eubiosis; dysbiosis 
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1. Introduction 

For a long time it was thought that the contents of the bowel are simply waste products, 

disregarding a huge and vital community inhabiting in different organs of the body [1]. The role of gut 

microbes to human health was first appreciated by Elie Metchnikov in the early 20th century [2]. Now, 

after several decades, it seems that not only, can we not ignore our intestinal guests, but we also 

intensively need these microorganisms for a healthy life [3,4]. This population of microorganisms is 

named the "gut microbiota" (GM). For a long time, it was assumed that the microorganisms could 

affect only the gastrointestinal tract. However, it is now well known that the GM profoundly display 

regulatory roles in different body systems [5].  

The human GM contains approximately more than 100 trillion bacteria from more than 100 

bacterial phyla and about 1000 different species. The GM encodes about 4,000,000 genes [6,7], and 

the entire genome of the GM is called the “gut microbiome,” [8]. The GM also contains additional 

large numbers of some other microorganisms, including viruses, fungi, protozoa, and archaea [9–11]. 

Two phyla Firmicutes and Bacteroidetes constitute 70% of the total microbiota [12]. Other common 

bacteria in the human gut are proteobacteria, veromicrobiota, fusobacteria, cyanobacteria, 

actinobacteria, and spirochetes [13], which mostly reside in the colon. It is of noteworthy to point out 

that the microbial composition differs between different parts of the gut [14], as well as the lumen and 

the intestinal mucosa layer [15]. The human gut is extensively innervated, with neurons from the 

extrinsic and intrinsic plexuses [16,17], which functionally have close relations to the GM. 

Accumulating evidence suggests the GM plays a basic role in different physiological activities, 

such as the stimulation of the growth of microvilli, food digestion, maintenance of intestinal barrier 

integrity, improvement of the immune system, fermentation of dietary fibers, and inhibition of 

colonization of the digestive tract by harmful pathogens. Further, the GM plays a role in protecting 

against pathogenic organisms, metabolizing vital substances including (sterols, bile acids, and drugs), 

generating short-chain fatty acids (SCFAs), energy harvest and storage, synthesis of vitamins, neuronal 

activities, proliferation of neurons, brain functions, behaviors, social cognition, emotion, neurogenesis, 

neurotransmission, protection against oxidative stress, gastrointestinal motility, absorption of nutrients 

and the production of bioactive molecules [18–20]. Therefore, we should accept the opinion that, 

without the regulatory effects of GM on various systems, our body would be the target of many 

disorders [21–24]. 

1.1. Effects of postnatal factors on development of the GM 

In the initial postnatal days, the GM is unstable and of low diversity [25]. By age 3, the GM 

composition stabilizes into an adult composition [26]. The GM is a highly dynamic system such that 

its density and composition can be affected by many postnatal factors including diet, lifestyle, 

treatment with drugs (particularly antibiotics), infections, mode of delivery at birth, stress, geography, 

genetic features, metabolism, immunity, hormones, age, and sex [27]. 

1.2. Eubiosis versus dysbiosis 

The GM is shown to be involved in many physiological properties and body functions. Clinical 

reports support this hypothesis that a eubiotic GM composition is necessary for the maintenance of 
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health. Eubiosis is characterized by the status in which beneficial species are predominant. They 

mainly belong to the two bacterial phyla, Firmicutes and Bacteroides, and a very small percentage of 

pathogenic species belonging to the phyla Proteobacteria [28]. On the other hand, decreased intestinal 

biodiversity or increased pathogenic bacteria, referred to as “dysbiosis”, leads to the development, 

prevalence, or prevention of numerous human disorders [29–31]. The majority of the GM alterations 

appear to be disease-specific, supporting the hypothesis that the GM can be used as a biomarker for 

the diagnosis of at least some disorders. A range of animal models in different investigation fields 

show that there is a correlation of more than 70% the between composition of the GM and disease 

parameters [32]. 

2. Purpose of using germ-free animal models  

In many fields of host-microbe, interactions investigating germ-free (GF) animal models are 

appropriate experimental subjects. The use of GF animals facilitates the assessment of the role of the 

GM in all aspects of physiology, normal aging, and the nervous, digestive, immune systems, and 

metabolic function [33].  

GF animal models provide biological model systems for studying either the complete absence of 

microbes, or colonized selected, and known microbes [34]. Experimental models using GF animals 

are valuable subjects to assess how the GM may affect host physiology [35–38]. In this regard, early 

studies show that the GM affects vascular remodeling in the intestine and increases vascular 

endothelial growth factor receptor 1 expression and vessel density [39]. Also, GM suppresses tonic 

Hedgehog (Hh) signaling in the small intestine, thus regulating intestinal barrier function. Hh pathway 

activity is mainly suppressed through Toll-like receptor (TLR2/TLR6) signaling in the intestinal 

epithelium, identifying intestinal epithelial neuropilin-1 (NRP1) as a microbiota-dependent Hh 

regulator that contributes to the stabilization of the intestinal epithelium barrier [40]. 

GF animal models are considerably used in evaluating the mechanistic understanding of microbe-

induced changes in disease models [41–50], linking the GM dysbiosis with intestinal (irritable bowel 

syndrome, inflammatory bowel disease, etc.) and non-intestinal (metabolic syndrome, cancers, brain 

diseases, etc.) disorders. The GF animals can help us to elucidate the role of commensal microbiota in 

the development and function of the organism.  

It is worth noting that, since those early models, advances in the knowledge of nutritional 

differences, intestinal morphology, intestinal epithelial properties, intestinal function, metabolic 

characteristics, and mucosal immunity [51,52] have significantly developed GF animal models. 

3. History of GF animal modeling 

To test whether GF life of an animal host is possible, Nuttall and Thierfelder (1896) were the first 

to generate and manage to have them survive for 13 days [53]. They raised the first GF animals (guinea 

pigs), which were generated by aseptic caesarean section at the University of Berlin and kept them for 2 

weeks [53]. However, because of the lack of knowledge concerning appropriate nutrition and adequate 

equipment, rearing and maintenance of healthy GF animals was a challenging task due to technological 

constraints until the mid-1900s when the first GF rat colony was established [54]. Nevertheless, GF 

research programs were developed independently at 3 different institutions and proved conclusively 

that life without microbes is possible, though not desirable. Systematic studies with GF animals started 
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when, in the mid-twentieth century, a group headed by James Reyniers at the University of Notre 

Dame was the first to rear successive generations of GF rodents [55,56]. Reyniers and his colleagues 

established academic organizations in the mid-1940s [55] and early 1950s devoted to understanding 

host–microbial interactions [57]. Almost simultaneously, Bengt Gustafsson at Lund University in 

Sweden also produced GF animals with a new isolation breeding system [58,59]. Then, a third GF program 

started at Nagoya University under the leadership of Masasumi Miyakawa [60]. Pleasants (1959) 

developed the first GF mouse colony in the United States [61]. By the late 1950s, researchers were 

successful in rearing GF guinea pigs, mice, and chickens [56]. In the 1960s, life without GM was 

featured prominently in the medical, scientific, and public press, often reported as a compound of fact 

and fiction in the future. Then, after World War II, following the appearance of antibiotics, GF living 

became an interesting topic [62]. The concept of humans living in sterile worlds was realized as early 

as 1971, perhaps most notably with David Vetter, a patient with severe combined immunodeficiency 

who grew up in GF conditions as an infant and became known as "Bubble Boy"[62]. 

In industrial agriculture, GF animals are bred to make pathogen-free animals to help in veterinary 

work [62,63]. Also, GF technology has been used to protect GF immunocompromised                  

newborn [62,64–67]. In spite of many applications of GF technology, it has not been widely 

implemented outside the laboratory yet. The main reason is that GF modeling is a labor-intensive 

technology that requires constant control to manage the state of cleanliness [68–70]. However, the 

existing methodology underlying the production of GF animals has remained essentially unchanged.  

With the advent of next generation sequencing and developments in microbial ecology, the use 

of gnotobiotic models is now a valuable resource for understanding host-microbe interactions in health 

and disease. Different methods are used in the study of GM, including isolated GF animals, antibiotic-

treated animals, probiotic feeding, fecal microbiota transplantation, and mouse humanization. 

Methodologically, isolated GF and antibiotic-treated models are known as the main approaches by 

which exploring the effects of the microbiota on physiology and disease in mice is established (Figure 1). 

Both approaches have strengths and weaknesses [71,72].  

The colonization of GF animals with a minimal microbiome offers an attractive method to 

evaluate the etiology of disease-associated microbial changes [73]. In fact, the production of minimal 

microbiomes and their application in gnotobiotic models allow mechanistic studies of host-microbe 

interactions under controlled conditions [73]. 
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Figure 1. The processes involved in the generation of isolated GF and antibiotic-treated models . 

3.1. Why mouse  

Mice and rats are two of the most routine experiment rodents for GF animals; although, there are 

differences between the two rodents [74]. However, studies of host-microbe interactions are mostly 

focused on different species of laboratory mice. In addition to the characterization of the genotypes of 

mice [75], from the view of gene function, there is a very high similarity (99%) between genomes of 

mice and humans [76]. Furthermore, transgenic mice help us to induce genetic changes in an organism 

and evaluate the effects of these changes [77]. 

Different strains of mice can be used as GF models. For example, C57BL/ mice and 6 Swiss-Webster 

mice are used in GF models for study on type 2 diabetes mellitus and anxiety, respectively [32]. Moreover, 

the GM of GF mice can be “humanized” by transplantation of microbiota from feces of human patients 

or from animal models of diseases [78–87]. 

4. Isolated GF animal model  

Isolated GF animals are born, bred, and raised for their whole lifetime in sterile isolators to 

prevent their exposure to microorganisms including bacteria, viruses, fungi, parasites, and protozoa, 

throughout its lifetime [88–90]. The key principle supporting the creation of  isolated GF animals is 

the fact that the environment of uterine is sterile and colonization of the GI tract takes place after birth 

in normal humans and rodents [91]. Nevertheless, it is worth noting that researches on the potential for 

bacterial transfer across the placenta have also detected bacteria in placental tissue [92], umbilical cord 

blood [93], amniotic fluid [94–96], and fetal membranes [96,97].  

The production and transformation of isolated GF animals is difficult and expensive; however, 

environmental circumstances, isolator technology, and necessary equipment including feed, water, 

cages, and bedding have been improved, resulting in cost-effective systems [98–100].  
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To establish an initial isolated GF colony, newborns are carefully delivered by caesarean section 

to avoid contamination with microbes residing in the mother's vagina and skin [56,59,101–105]. The 

fetus is then delivered from the uterus in the isolator, and the neonate can be reared by a GF foster 

mother or artificially fed with formula milk [98]. Over the postnatal period of life, colonies are 

maintained in aseptic isolators in a GF unit where the food, water, and bedding are sterile, therefore 

eradicating the opportunity for postnatal colonization of their GI tract, allowing a direct comparison 

with the normal colonized gut of their counterparts. 

Early isolated GF animals were housed in stainless steel isolators [59], then replaced by light, 

cheaper, more flexible, plastic polyvinyl chloride isolators [98,106]. Figure 2 show the different stages 

of isolated GF animal production. 

Isolated GF mice can also be reproduced by embryo transfer to axenic mice and then be kept in a 

GF isolator. The embryos are then removed from the uterus in the GF isolator and place on heating 

pads. These pups will be adopted by a foster mother [107]. A substitute method could be the transfer 

of an embryo at the 2-cell stage into a pseudo pregnant GF mother [102–104]. 

Although the creation of new strains of isolated GF animals requires that the fetus remains sterile 

in the uterus, however, the later descendents of isolated GF animals produce through a much simpler 

process. Isolated GF animals are mated and mothers can give birth naturally in the isolator without 

exposure to any microorganisms in the new litter [56,59,101–103]. The majority of commercially 

present isolated GF animals produced with this method can be transported in a sterile container to local 

GF facilities. 

Methodologically, the use of first-generation isolated GF animals in experiments is imprudent 

because their mothers are not GF and some microbes or bacterial metabolites may be transferred from 

mother to the fetus through the placenta [52]. 

  

Figure 2. Overview of the procedures involved in establishing the isolated GF mice model. 
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5. Antibiotic-treated animal model 

Whereas isolated GF mouse models are mostly considered the gold standard for microbiota 

studies, the production and working with isolated GF animals, with strictly controlled identified 

microbes, is very difficult and expensive due to the use of isolators and rigid gnotobiotic working 

procedures.  

As a result, depletion of the GM by antibiotic treatment, as a rapid, inexpensive, and accessible 

alternative has been considered for GF animals [108]. Actually, the antibiotic-induced short-term 

disruption of the GM in this model has been thought to be a less intrusive model to probe causality in 

microbiota-dependent effects [80,109,110]. As an alternative to isolated GF technology, treatment of 

mice with antibiotics is considered to be more practical and a potentially relevant alternative to GF 

mice [111].  

5.1. Generation of antibiotic-treated GF animals 

Broad-spectrum antibiotics are often used to deplete the existing microbiota, which can reduce 

the bacterial load by several orders of magnitude [112–114]. Researchers have used different regimens 

that differ in terms of antibiotic composition, dose, concentration, and duration of use. Common 

combinations of antibiotics usually do not surpass a mixture of five antibiotics at different doses, and 

may include penicillin, ampicillin, streptomycin, ciprofloxacin, vancomycin, neomycin, and 

metronidazole [85,115–120]. All of these compounds broadly target Gram-negative, Gram-positive, 

and anaerobic bacteria [71]. The duration of antibiotic treatment is usually between 3 and 35 days, and 

the usual treatment time is 1 to 2 weeks [115,119–121].  

Table 1 summarizes different methods for the generation of antibiotic-treated animal model. In 

addition to antibiotics, some protocols include antifungals in the cocktail to avoid fungal overgrowth 

during treatment [122–124]. Sweeteners such as sugar, Kool-Aid, or Splenda may also be added to 

mask the bitterness and ensure that the animals drink the water containing antibiotics [112,125,126]. 

It is worth noting that there may be different findings based on the combination and dose of antibiotics, 

duration of treatment, the route of administration, and the age of the animals being tested. 

Often, antibiotics are diluted in drinking water and animals are allowed to drink freely during the 

treatment period. Therefore, actual delivered doses may vary. Daily oral gavage can prevent 

dehydration and allow precise antibiotic dose delivery. Hence, this method is sometimes used alone or 

in combination with delivery in drinking water, although it is more labor intensive [122,127]. It must 

be noted that, due to instability of antibiotics in solution, antibiotics mixtures must be freshly prepared 

daily.  
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Table 1. A summary of characteristics of studies on microbiota disrupted animals using the different regimens of antibiotics in the antibiotic-

treated model. 

Ref Age Sex Animal Additions Duration Antibiotics concentration Antibiotic 

administration 

[171] Young (8–12 W) 

Aged (18–20 

months) 

M C57BL/6 mouse  2 days streptomycin (500 g/L) Gavage 

[172] 5 W M C57BL/6JNarl mouse  2 days metronidazole (1 g/L) and ciprofloxacin (0.2 g/L)  Drinking water 

[173] 8–12 W 

 

M C57Bl/6J mouse  3 days neomycin (0.3 g), vancomycin (0.15 g) and aspartame 

(1.125 g) in 300 mL 

Drinking water 

[174] 4 W M Dahl rat Omeprazole (50 

mg/kg/day) 

3 days meropenem and vancomycin (50 mg/kg/day of each 

antibiotic)  

Gavage 

[175] 9–16 W M C57BL/6 mouse  3 days bacitracin, streptomycin and neomycin (200 mg/kg /day 

each antibiotic) 

Gavage 

[176] 12–15 W M Swiss Webster mouse  3 days Streptomycin, neomycin, and bacitracin (200 mg/kg of each 

antibiotic) 

Gavage 

[177] 8–12 W M and  

F 

Wild-type C57BL/6J  3 days Neomycin, bacitracin, and streptomycin (200 mg/Kg of 

each antibiotic) 

Gavage 

[178] 8–12 W M And 

F 

C57Bl/6 mouse  3 days metronidazole, ampicillin, neomycin, gentamicin (1 mg/mL 

of each antibiotic), and vancomycin (0.5 mg/mL) 

Gavage 

[179] 6 W F BALB/c mouse  3 days aspartame (1g/mL), vancomycin (0.1 mg/mL) and 

neomycin sulfate (0.2 mg/mL) 

Drinking water 

Continued on next page 
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Ref Age Sex Animal Additions Duration Antibiotics concentration Antibiotic 

administration 

[180] 6–8 W M And 

 F 

C57BL/6N mouse  3 days 

 

metronidazole, ampicillin (1 g/L of each antibiotic), 

vancomycin, and neomycin (0.5 g/L of each antibiotic) 

Gavage 

[181] 6 W M and  

F 

C57BL/6 mouse  3 days 

 

Neomycin, ampicillin (500 mg of each antibiotic), 

vancomycin, and metronidazole (250 mg of each antibiotic) 

Gavage 

[182] 7–12 W F C57BL/6 and BALB/c 

mouse 

 3 days streptomycin (5 g/L), vancomycin (0.25 g/L), ampicillin, 

and colistin (1 g/L of each antibiotic)   

Gavage 

[183] Young (~3 

months) and 

aged (20~24 

months) 

M Sprague-Dawley rat  3 days metronidazole, imipenem (90 mg/kg/day of each antibiotic), 

vancomycin (72 mg/kg/day), and ampicillin (180 

mg/kg/day) 

Gavage 

[184] 6–10 W F C57BL/6 Jax mouse   5 days 

 

ampicillin (0.5 g/L), and ciprofloxacin (0.1 g/L)  Gavage 

[185] 6–12 W M C57BL/6 mouse  5 days 

 

Ampicillin, neomycin, metronidazole sulfate (200 mg/kg of 

each antibiotic), and vancomycin (100 mg/kg) 

Gavage 

[186] 6–8 W F C57BL/6J mouse  5 days ampicillin (0.5 g/L) Drinking water 

[187] 6–8 W M Wistar rat  6 days Neomycin, ampicillin (100 mg/kg of each antibiotic), and 

metronidazole (50 mg/kg) 

Gavage 

[188] 7 W M C57BL/6J mouse  1 W ampicillin (1 g/L) Drinking water 

[189] 6–8 W F C57BL/6 mouse  1 W clindamycin hydrochloride, ampicillin, ertapenem sodium, 

cefoperazone sodium salt, vancomycin hydrochloride, and 

neomycin sulfate (1 mg/ml of each antibiotic) 

Drinking water 

[190] 8–10 W M C57BL/6J mouse  1 W Metronidazole, ampicillin, and neomycin (0.01 g/L Kg of 

each antibiotic) 

Drinking water 

Continued on next page 
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Ref Age Sex Animal Additions Duration Antibiotics concentration Antibiotic 

administration 

[191] 6–8 W M C57BL/6 mouse  1 W vancomycin, metronidazole (1 g/L of each antibiotic), and 

neomycin sulfate (0.5 g/L)  

Drinking water 

[192 ] 

 

3 W F Sprague Dawley rat  1 W ampicillin sodium, metronidazole, neomycin sulfate (1 

mg/ml Kg of each antibiotic)), and vancomycin 

hydrochloride (0.5 mg/ml) 

Drinking water 

[193] 5–6 W M and  

F 

C57BL/6J mouse  1 W Ampicillin, clindamycin hydrochloride, cefoperazone 

sodium salt, neomycin sulfate, ertapenem sodium, and 

vancomycin hydrochloride. (1 mg/ml of each antibiotic) 

Drinking water 

[194] 8–12 W M And 

 F 

C57BL/6 Il10 -/- mouse  1 W nalidixic acid (200 mg/kg) OR 

clindamycin (67 mg/kg)  

 

Gavage 

[195] 8–10 W M Sprague-Dawley rat  1 W neomycin sulfate and streptomycin sulfate (100 mg/kg/L of 

each antibiotic) 

Drinking water 

[196] 16 W M Wistar rat  1 W Bacitracin, neomycin (5 mg/ml of each antibiotic), and 

natamycin (2 mg/ml) 

Gavage 

[197] 6 W F SJL mouse Sucrose (3%), 

Glucose (1%) 

 OR Kool-Aid 

1 W ampicillin, neomycin sulfate, metronidazole (1 g/ml of each 

antibiotic) and vancomycin (0.5 g/ml) 

Gavage OR 

Intraperitoneal 

injection 

[198] 3–4 W M and  

F 

wildtype Swiss 

Webster mouse  

 

 1 W 

 

Gavage: vancomycin (50 mg/kg), metronidazole neomycin 

and (100 mg/kg of each antibiotic) 

Drinking water: ampicillin (1 g/L) 

Gavage and 

Drinking water 

[199] 3 and 8 W M C57BL/6J mouse  1 W vancomycin (100 mg/kg), ampicillin, metronidazole and 

neomycin (200 mg/kg of each antibiotic)  

Gavage 

[200] 7–8 W F C57BL/6 mouse   

8 days 

vancomycin (0.5 g/kg), neomycin trisulfate, and 

metronidazole (1 g/kg of each antibiotic)  

Drinking water 

Continued on next page 
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Ref Age Sex Animal Additions Duration Antibiotics concentration Antibiotic 

administration 

[201] 9 W M and 

F 

Swiss-Webster and 

C57BL/6 mouse 

Sucrose (2%)  10 days Metronidazole, vancomycin (1 g/L of each antibiotic) and 

neomycin (0.5 g/L)  

Drinking water 

[202] 6–8 W F C57BL/6 mouse  10 days ampicillin, metronidazole neomycin, gentamicin (1 mg/mL 

of each antibiotic) and vancomycin (0.5 mg/mL) 

Gavage 

[203] 10–12 W F Ldlr−/− mouse  10 days metronidazole (0.1 mg/g bodyweight), neomycin, 

ampicillin (0.26 mg/g bodyweight of each antibiotic), and 

vancomycin (0.13 mg/g bodyweight) 

Gavage 

[204]  M C57BL/6 mouse  10 days 

 

vancomycin, polymyxin B, metronidazole (1 g/L of each 

antibiotic), and cefotaxime (2 g/L) 

Drinking water 

[205] 6–16 W M C57BL/6 mouse  10 days ampicillin, neomycin, metronidazole (1 g/L of each 

antibiotic) and vancomycin (500 mg/L) 

Drinking water 

[206] 12 W M C57BL/6 mouse  10 days Gavage: vancomycin (50 mg/kg), metronidazole, neomycin 

(100 mg/kg of each antibiotic), and amphotericin-B (1 

mg/kg) 

Drinking water: ampicillin (1 mg/mL) 

Gavage and 

Drinking water 

[207] 7–8 W M C57BL/6 mouse   1–2 W amoxicillin-clavulanic acid (1 g/L) Drinking water 

[208] 6–12 W M and  

F 

C57BL/6 mouse  1–2 W Gavage: single dose of streptomycin (20 mg)  

Drinking water: ampicillin (1 g/L) 

Gavage and 

Drinking water 

[209] 6–16 W M And 

F 

C57BL/6 mouse  1–2 W ampicillin (1mg/ml) and neomycin (0.5 mg/mL)   Drinking water 

[210] 6–10 W F Wild-type C57BL/6 

and Swiss mouse 

 1–2 W ampicillin, metronidazole, neomycin sulfate (1 g/L of each 

antibiotic) and vancomycin (0.5 g/L) 

Drinking water 

Continued on next page 
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Ref Age Sex Animal Additions Duration Antibiotics concentration Antibiotic 

administration 

[152] 8–11 W M C57BL/6N mouse  1–2 W ampicillin (43.2 mg), meropenem (21.6 mg), vancomycin 

(6.48 mg), bacitracin and neomycin (108.0 mg of each 

antibiotic) in 4.5 mL of distilled water 

Gavage 

[211] 8 W M C57BL/6J mouse  2 W ampicillin, metronidazole and neomycin sulfate (1 g/L of 

each antibiotic) 

Gavage 

[212] 4 W M NOD/ShiLtJ mouse  2 W ampicillin, metronidazole and neomycin sulfate (1 g/L of 

each antibiotic) 

Gavage 

[213] 6 W M C57BL/6 mouse  2 W ampicillin, metronidazole, neomycin (0.2 g/L of each 

antibiotic), and vancomycin (0.1 g/L) 

Drinking water 

[214] 6–15 W M CD45.1 OR CD45.2 

C57BL/6 mouse 

Grape flavored 

Kool-Aid (20 

g/L) 

2 W 

 

ampicillin, neomycin, ciprofloxacin, metronidazole (1 g/L 

of each antibiotic) and vancomycin (0.5 g/L) 

Drinking water 

[215] 7 W M C57BL/6J mouse  2 W 

 

ampicillin, neomycin, metronidazole, gentamicin (0.25 

mg/day of each antibiotic), and vancomycin (0.125 mg/day) 

Gavage 

[216] 14–15 W M C57BL/6 mouse  2 W 

 

ampicillin, neomycin, metronidazole (2.5 g/L of each 

antibiotic), and vancomycin (1.0 g/L) 

Gavage 

[217] 8–10 W M C57BL/6J mouse  2 W ampicillin, metronidazole, and neomycin sulfate (1 g/L of 

each antibiotic) 

Drinking water 

[218]  M C57BL/6J mouse  2 W Vancomycin, ampicillin, neomycin, metronidazole (1 g/L of 

each antibiotic), erythromycin (10 mg/L), and gentamycin 

(100 mg/L)  

Gavage 

[219] 8 W M Fischer rat  2 W Neomycin, ampicillin, metronidazole gentamicin (100 

mg/kg of each antibiotic), and vancomycin (50 mg/kg)  

Gavage 

[196]  M C57BL/6J mouse  2 W neomycin, bacitracin (5 mg/mL of each antibiotic) and 

natamycin (2 mg/mL) 

Gavage 

Continued on next page 
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Ref Age Sex Animal Additions Duration Antibiotics concentration Antibiotic 

administration 

[220] 6–8 W M Sprague-Dawley rat  2 W ampicillin, metronidazole, and neomycin sulfate (1 g/L of 

each antibiotic)  

Drinking water 

[221] 7–9 W M BALB/c and C57BL/6 

mouse 

 2 W  Drinking water: kanamycin (40 mg/L), metronidazole 

(21.5 mg/L), colistin (4.2 mg/L), and gentamicin (3.5 mg/L) 

intraperitoneal injections: vancomycin (200 μL of 0.5 

mg/mL) only OR neomycin sulfate (500 mg/L), polymyxin 

B (1 g/L) in drinking water 

Drinking water  

and  

Intraperitoneal 

injection 

[222] 4 W M C57BL/6N mouse  2 W ampicillin (1 g/L), neomycin, vancomycin (0.5 g/L of each 

antibiotic), gentamycin (100 mg/L), and erythromycin (10 

mg/L)  

Drinking water 

[223] 8–10 W M C57BL/6 mouse and 

CXCR6-EGFP/+ 

mouse 

 2 W neomycin, metronidazole, ampicillin (1 g/L of each 

antibiotic), and vancomycin (0.5 g/L)  

Drinking water 

[224] 6–14 W M C57BL/6 mouse  2 W ampicillin, metronidazole, neomycin (1 g/L), and 

vancomycin (0.5 g/L) 

Drinking water 

[225] 8–16 W M C57BL/6J mouse  2 W ampicillin, metronidazole, neomycin (1 mg/mL of each 

antibiotic), and vancomycin (0.5 mg/mL)  

Drinking water 

[226] 10–11 W M and 

 F 

C57BL/6J wild-type 

mouse 

Grape Kool-Aid 

(Kraft Foods) 

(25 g/L) OR 

Kool-Aid alone 

2 W Ampicillin, metronidazole, neomycin (1 g/L of each 

antibiotic), and vancomycin (0.35 g/L)  

Drinking water 

[227] 8 W M C57BL/6 mouse  2 W ampicillin, metronidazole, and neomycin sulfate (1 g/L of 

each antibiotic)  

Drinking water 

Continued on next page 

 

 



120 

AIMS Microbiology                                                                                                                                                            Volume 10, Issue 1, 107–147. 

Ref Age Sex Animal Additions Duration Antibiotics concentration Antibiotic 

administration 

[228] 8–12 W M C57Bl/6 wild-type Glucose (1% 

w/v)  

2 W ampicillin, neomycin metronidazole (1 g/L of each 

antibiotic), and vancomycin (0.5 g/L) 

Drinking water 

[229] 48 W M Wistar rat  2 W vancomycin (0.5 g/L), metronidazole, neomycin and 

ampicillin (1 g/L of each antibiotic) 

Drinking water 

[230] 8 W M C57BL/6 mouse  2 W ampicillin, metronidazole, and neomycin sulfate (1 g/L of 

each antibiotic)  

Drinking water 

[231]  M C57BL/6 mouse 

 

 2 W Metronidazole, vancomycin (1 g/L of each antibiotic), 

neomycin sulphate (500 mg/L), Alternatively clindamycin, 

and enrofloxacin (400 mg/L of each antibiotic)  

Drinking water 

[232] 6–7 W M and 

 F 

Sprague-Dawley rat 

 

Omeprazole (50 

mg/ kg) 

 

2 W 

 

Gavage: amphotericin B (0.1 g/L), vancomycin (5 g/L), 

neomycin, metronidazole (10 g/L), and Drinking water: 

ampicillin (1 g/L)  

Gavage and 

Drinking water 

[122] 6–10 weeks M BALB/c mouse  2 weeks 

 

Gavage: amphotericin-B (1 mg/kg)  

Drinking water: ampicillin (1 g/L)  

Gavage and 

Drinking water 

[233] 8–12 W M and  

F 

mouse Kool-Aid (10 g) 2 W Gavage: Vancomycin (250 mg), ampicillin, neomycin-

sulfate, and metronidazole (500 mg of each antibiotic) in 

500 mL water  

Drinking water: ampicillin (1 g/L) 

Gavage and 

Drinking water 

[234] 8–12 W M and  

F 

C57BL6/J mouse  2 W ampicillin, neomycin sulfate, metronidazole (1 g/L of each 

antibiotic), and vancomycin (500 mg/L) 

Drinking water 

[235] 10–15 W M C57BL/6 mouse  2 W ampicillin, neomycin, gentamicin, metronidazole 

(2 mg/mL of each antibiotic), and vancomycin (1 mg/mL) 

Gavage 

[236] 3–4 W M C57BL/6 mouse  2 W Ampicillin, neomycin, metronidazole (1g/L of each 

antibiotic), and vancomycin (0.5g/L) 

Drinking water 

[237] 6 W F C57BL/6 mouse  2 W clindamycin (0.1 mg/mL), and streptomycin (5 mg/mL)  Drinking water 

Continued on next page 
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Ref Age Sex Animal Additions Duration Antibiotics concentration Antibiotic 

administration 

[238] 6 W M C57BL/6mouse  1–2 W Gavage: ampicillin, metronidazole, neomycin and 

vancomycin (10 mg of each antibiotic per mouse per day) 

Drinking water: ampicillin, metronidazole, neomycin and 

(1 g/L of each antibiotic), and vancomycin (500 mg/L) 

Gavage and 

Drinking water 

[239] 7 W M A/J strain mouse  2–3 W 

 

Gavage: 3 days of amphotericinB (1 mg/kg) every 12 h + 

from day 3 Drinking water: ampicillin (1 g/L)  

Oral Gavage: every 12 h metronidazole, neomycin (100 

mg/kg of each antibiotic), vancomycin (50 mg/kg), and 

amphotericin-B (1 mg/kg) 

Gavage and 

Drinking water 

[240] 6–8 W F C57BL/6 mouse  2–4 W ampicillin (1 mg/mL), and enrofloxacin (0.575 mg/mL) Drinking water 

[240] 6–8 W F C57BL/6 mouse Medi Drop 

Sucralose 

2–4 W ampicillin, metronidazole, neomycin (1mg/mL of each 

antibiotic), and vancomycin (0.5 mg/mL) 

Drinking water 

[241] 7–14 W F C57BL/6J and BALB/c 

mouse 

 2–3 W Ampicillin, colistin (1 mg/mL of each antibiotic), and 

streptomycin (5 mg/mL) OR imipenem alone (0.25 mg/mL) 

OR vancomycin alone (0.25 mg/mL) OR colistin alone 

(2.103 U/mL) 

Drinking water 

[242] 6–14 W M and  

F 

29X1SvJ mouse  2–4 W Ampicillin, metronidazole, neomycin (1 g/L of each 

antibiotic), and vancomycin (0.5 g/L) 

Drinking water 

[243] 4–10 W M Swiss Webster mouse  2–7 W Ampicillin, neomycin, metronidazole (1 g/L of each 

antibiotic), and vancomycin (0.5 g/L) 

Drinking water 

[244] 6 W F C57BL/6J mouse  3 W vancomycin (100 mg/kg), metronidazole, neomycin sulfate, 

and ampicillin (200 mg/kg of each antibiotic) 

Drinking water 

[245] 3 W F C3H/HeJ and wild-type 

C3HeB/FeJ mouse 

 3 W kanamycin (4 mg/mL), colistin (8500 U/mL), gentamicin 

(0.35 mg/mL), vancomycin (0.45 mg/mL), and 

metronidazole (2.15 mg/mL) 

Gavage and 

Drinking water 

Continued on next page 
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Ref Age Sex Animal Additions Duration Antibiotics concentration Antibiotic 

administration 

[246]  M C57BL/6 mouse  3 W ampicillin (1 mg/mL), neomycin (10 mg/mL), and 

vancomycin (5 mg/mL)  

Drinking water 

[246] 4 and 10 W M C57BL/6 mouse  3 W Metronidazole, ampicillin (1 mg/mL of each antibiotic), 

ciprofloxacin hydrochloride (0.2 mg/mL), vancomycin (5 

mg/mL), and imipenem (0.25 mg/mL)  

Drinking water 

[247] 6–8 W M C57BL/6 mouse  3 W ampicillin, kanamycin, neomycin, streptomycin, and (1 g/L 

of each antibiotic) AND/OR anti-fungal cocktail 

amphotericin (0.2 g/L), 5-fluorocytosine, and fluconazole 

(0.5 g/L of each antibiotic) 

Drinking water 

[248] 10 and 12 W M and  

F 

C57BL/6 mouse  3 W Ampicillin, metronidazole, neomycin sulfate (1 g/L of each 

antibiotic), and vancomycin (0.5 g/L) 

Drinking water 

[249] 8–9 W  C57Bl/6 RORc-GFP 

mouse 

 3 W vancomycin (0.5 g/L), kanamycin, ampicillin, and 

metronidazole (1 g/L of each antibiotic) 

Drinking water 

[250 ] 6–10 W M and  

F 

C57BL/6 mouse  3 W Ampicillin, metronidazole, gentamicin, neomycin (0.5 

mg/mL of each antibiotic) and vancomycin (0.25 mg/mL) 

Drinking water 

[251] 8–16 W F C57BL/6 mouse  3 W Ampicillin, neomycin trisulfate, metronidazole (1 g/L of 

each antibiotic), and vancomycin (0.5 g/L)  

Drinking water 

[252]  M B10RIII mouse  3 W ampicillin, metronidazole, neomycin (1 mg/mL of each 

antibiotic) and vancomycin (0.5 mg/mL) 

Drinking water 

[253] 2 W M C57BL/6mouse  3 W 

 

ampicillin, neomycin, metronidazole (1 g/L of each 

antibiotic), and vancomycin (0.5 g/L) 

Gavage 

Continued on next page 
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Ref Age Sex Animal Additions Duration Antibiotics concentration Antibiotic 

administration 

[254] 2 W M C57BL/6 or C57BL/6F 

mouse 

 Gavage: 1 

W 

followed 

by 

administrat

ion in 

water for 2 

W 

Gavage: kanamycin (4 mg/mL), colistin (8500 U/mL), 

gentamicin (0.35 mg/mL), vancomycin (0.45 mg/mL), and 

metronidazole (2.15 mg/mL) 

Drinking water: the antibiotics were administered in the 

Drinking water at 50-fold dilution except for vancomycin, 

which was maintained at (0.5 mg/mL). 

Gavage and 

Drinking water 

[255] 6 W M C57BL/6J mouse  3 W 

 

vancomycin (0.5 g/L), metronidazole, ampicillin, and 

kanamycin (1 g/L of each antibiotic) 

Drinking water 

[256] 8–12 W F C57BL/6 and 

BALB/c mouse 

 3-4 W vancomycin (125 mg/kg), metronidazole, ampicillin, and 

kanamycin (250 mg/kg of each antibiotic) 

Gavage 

[256] 8–12 W M C57BL/6 mouse Sucrose (1% 

w/v)   

3–4 W Vancomycin, metronidazole (0.5 g/L of each antibiotic), 

ampicillin, and neomycin (1 g/L of each antibiotic)  

Drinking water 

[257] 6–12 W M C57Bl/6 mouse  3-4 W Metronidazol (0.5 g/mL), vancomycin, ampicillin, and 

streptomycin (1g/L of each antibiotic) 

Drinking water 

[258]  M C57BL/6 mouse Polymixn B 

Sulfate (0.1 g/L) 

4 W vancomycin (0.5 g/L), ampicillin, neomycin, and 

metronidazole (1 g/L of each antibiotic) 

Drinking water 

[259] 5 W M C57BL/6 mouse  4 W vancomycin (500 mg/L), ampicillin, metronidazole, and 

neomycin sulfate (1 g/L of each antibiotic) 

Drinking water 

[260] 3–4 W F C57BL/6 mouse Grape Kool-Aid 

(20 g/L) 

4 W vancomycin (0.5 g/L) ampicillin, metronidazole, and 

neomycin (1 g/L of each antibiotic), together or separately 

Drinking water 

[261] 6–7 W M C57BL/6 mouse  4 W vancomycin (500 mg/L), metronidazole, ampicillin, and 

neomycin sulfate (1 g/L of each antibiotic)  

Drinking water 

Continued on next page 
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Ref Age Sex Animal Additions Duration Antibiotics concentration Antibiotic 

administration 

[262] 6–10 W M C57BL/6 mouse  4 W vancomycin (0.5 g/L), metronidazole, ampicillin, and 

neomycin sulfate (1 g/L of each antibiotic)  

Drinking water 

[263] 6–12 W F C57BL/6 mouse  4 W ampicillin, metronidazole, neomycin sulfate, (1 g/L of each 

antibiotic) and vancomycin hydrochloride (0.5 g/L) 

Drinking water 

[264] 3 W F C57BL/6J mouse  4 W ampicillin, neomycin, metronidazole, and vancomycin (1 

g/L of each antibiotic) 

Drinking water 

[265 ] 10–13 W M C57BL/6J mouse  4 W neomycin (0.5 g/L), and ampicillin (1 g/L) Drinking water 

[266]  M C57BL/6 mouse  4 W vancomycin (500 mg/L), ampicillin, neomycin sulfate, and 

metronidazole (1 g/L of each antibiotic) 

Drinking water 

[267] 16 W M C57BL/6 mouse  4 W vancomycin hydrochloride, metronidazole (0.5 g/L of each 

antibiotic), ampicillin, and neomycin sulfate (1 g/L of each 

antibiotic) 

Drinking water 

[268]  M BALB/c, and C57BL/6 

mouse 

 4 W vancomycin (0.5 g/L), ampicillin, and polymyxin (0.1 g/L 

of each antibiotic)  

Drinking water 

[269] 6 W M C57BL/6 mouse  4 W vancomycin (500 mg/L), neomycin sulfate, ampicillin, and 

metronidazole (1 g/L of each antibiotic) 

Drinking water 

[270] 6–8 W M C57BL/6 mouse  4 W neomycin sulfate (0.5 mg/mL), ampicillin, metronidazole, 

and vancomycin (1 mg/mL of each antibiotic) 

Drinking water 

[271] 4 W M C57BL/6J mouse)  4 W vancomycin (0.5 g/L), ampicillin, metronidazole, and 

neomycin (1 g/L of each antibiotic)  

Drinking water 

[272]  M C57B/6 mouse  4 W vancomycin (500 mg/L), neomycin sulfate, ampicillin, and 

metronidazole (1 g/L of each antibiotic) 

Drinking water 

[273]  M C57BL/6 mouse  4 W vancomycin (500 mg/L), neomycin sulfate, ampicillin, and 

metronidazole (1 g/L of each antibiotic) 

Drinking water 

Continued on next page 
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administration 

[274]  M C57BL/6 mouse  4 W vancomycin (0.50 mg/mL), neomycin sulfate, ampicillin, 

and metronidazole (1 mg/mL of each antibiotic) 

Drinking water 

[275] 4–6 W F And 

M 

C57BL/6J mouse  4 W Cefoxitin, metronidazole, gentamycin sulfate, and 

vancomycin (1 mg/mL of each antibiotic) 

Drinking water 

[276] 4 W M C57BL/6J mouse  4 W vancomycin (500 mg/L), neomycin sulfate, ampicillin and 

metronidazole (1 g/L of each antibiotic) 

Drinking water 

[277] 8 W 

 

F BALB/c mouse  4 W vancomycin (0.5 mg/mL), metronidazole, ampicillin and 

neomycin (1 mg/ml of each antibiotic) OR vancomycin 

(0.5mg/mL) alone 

Drinking water 

[278] 6 W M Apc Min/+ mouse  4 W Vancomycin (0.5 mg/mL), metronidazole, ampicillin, and 

neomycin (1 mg/mL of each antibiotic) 

Drinking water 

[279] 4 W M C57BL/6J mouse  4 W vancomycin, ampicillin, and neomycin Drinking water 

[280] 8–12 W M C57BL/6 mouse  4-5 W Vancomycin (0.5 mg/mL), ampicillin, streptomycin, and 

neomycin sulfate (1 mg/mL of each antibiotic)  

Drinking water 

[281] 6–8 W M C57BL/6 mouse  4-6 W Ampicillin, metronidazole, streptomycin, and vancomycin 

(1g/L of each antibiotic) 

Drinking water 

[282] 3 W F C57BL/6 mouse  4-8 weeks vancomycin (500 mg/L), ampicillin, metronidazole, and 

neomycin trisulfate (1 g/L of each antibiotic) 

Drinking water 

[283] 6–8 W M 

 

Sprague-Dawley rat  5 W vancomycin (0.045 mg/mL), kanamycin (0.4 mg/mL), 

colistin (850 U/mL), gentamicin (0.035 mg/mL), and 

metronidazole (0.215 mg/mL)  

Drinking water 

[284] 7–10 W F BALB/c or C57BL/6 

mouse 

Amphotericin-B 

(20 μg) 

5 W Gavage: metronidazol (0.4 mg), streptomycin (2 mg), and 

colistin (0.3 mg)  

Drinking water: vancomycin (0.25 mg/ml)  

Gavage and 

Drinking water 

Continued on next page 
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administration 

[285] 4 W M C57BL/6 mouse  5–6 W Gavage: ampicillin, metronidazole, neomycin, and 

vancomycin (10 mg/day) for 5 days 

Drinking water: vancomycin (0.5 g/L), ampicillin, 

metronidazole, and neomycin (1 g/L of each antibiotic) 

Gavage and 

Drinking water 

 

[286] 26 W F NZBWF1 mouse Sucrose 6 W vancomycin (0.5 g/L), metronidazole, ampicillin, and 

neomycin (1 g/L of each antibiotic) 

Drinking water 

[287] 6 W M Rorc-GFP mouse Sucrose (2.5% 

w/v)  

6–7 W ampicillin, colistin (1 g/L of each antibiotic), and 

streptomycin (5 g/L) 

Drinking water 

[288] 6–8 W M C57BL/6J mouse  7 W ciprofloxacin (200 mg/L), imipenem, cilastatin (250 mg/L 

of each antibiotic), vancomycin (500 mg/L), ampicillin, and 

metronidazole (1 g/L of each antibiotic) 

Drinking water 

[289]  M C57BL/6J mouse  10 W Metronidazole and vancomycin (0.5–1.0 g/L) Drinking water 

[290] 8–9 W F C57Bl/6 and outbred 

Swiss Webster mouse 

  vancomycin, kanamycin, metronidazole, and ampicillin (1 

g/L of each antibiotic) 

Drinking water 

[291] 6–8 W M And 

 F 

C57BL/6J mouse Sucrose (1%)  More than 

1 W 

Gavage: streptomycin (100 mg) 

Drinking water: vancomycin (0.5 g/L), ampicillin, 

metronidazole, and neomycin (1 g/L of each antibiotic)  

Gavage and 

Drinking water 

M: male, F: female, W: week 
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6. Validation of bacterial depletion 

An important aspect of working with GF animals is to confirm that the animals are without any 

microbes. Three screening methods are commonly used to access GF status. These include 

anaerobic/aerobic liquid culture, Gram-stain, and polymerase chain reaction (PCR) using universal 

and specific 16S rRNA bacterial primers [36]. 

In fact, the fastest way to confirm the presence of any microbes is culture-based methods by 

evaluating colony-forming units (CFUs) from fecal samples placed in aerobic and/or anaerobic 

conditions on non-selective media, or alternatively by making Gram-stained fecal smears and assessing 

them under a light microscope [71]. The technician swabs the cages and, using bacterial culture 

methods, analyzes stool samples to confirm that the GF unit is truly sterile [104,128]. These methods 

ensure that the GF mice do not have a contact with any bacteria in the gut and on any other surface. 

Furthermore, they only consider cultivable microbes.  

Recent studies show that, in practice, bacterial culture and Gram-stain are sufficient to screen for 

GF status because both have high sensitivity and specificity, while PCR shows high specificity but less 

sensitivity [129]. However, each technique has limitations. Cultivating GM outside the intestine 

requires an anaerobic environment, such as an anaerobic chamber, which is costly. Hence, the GF 

status of mice must be frequently monitored by fecal sample culturing for aerobic/anaerobic bacteria 

and fungi. Here, performing molecular techniques, such as PCR amplification, is a good alternative 

for bacteria that cannot be cultured [52,102]. Quantitative PCR of the gene encoding 16S rRNA also 

allows for culture-independent evaluation of the bacterial load of the gastrointestinal tract [71]. 

However, it should be noted that bacterial 16S rRNA gene contamination in the breeding diet can 

occur, thus, PCR-based control should not be considered as the only sterility test for PCR-based 

sterility controls. 

7. Advantages of isolated GF animal model 

Isolated GF animals seem to be the best controlled models for microbial transplantation, and this 

model has been subject of the most experimental research on the GM so far. As previously described, 

fecal microbiota transplantation is a method in which selected bacteria can be transfered from a donor 

subject to a recipient one. Because isolated GF animals are free of microorganisms, they are a good 

model system for the response to bacterial introduction; indicating that they are suitable for studying 

the effects of microbes on host development and function. On the other hand, in vivo experimental 

models show a reduction or absence of several inflammatory and complex diseases in isolated GF 

animals; suggesting that the GM is associated with the development of these diseases [130]. Therefore, 

it is not surprising that isolated GF mice live longer than normally colonized control animals [131–133]. It 

is probably due to the absence of pathological infections. Therefore, this animal model provides 

conditions through which the positive and negative role of the GM on lifespan can be evaluated.  

8. Disadvantages of isolated GF animal model 

Despite the many advantages that the isolated GF model has, some disadvantages can limit their 

use. First of all, since these animals are never exposed to microorganisms, they display impaired 

physiology and immune development from birth. Technically, the production and maintenance of 

isolated GF animals need particular facilities, and the cost, labor, and skills necessary to preserve them 

can make these models inaccessible to many investigators [71].  
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Isolated GF mice should be regularly monitored for contamination using a combination of culture, 

microscopy, serology, gross morphology, and sequence-based diagnostic techniques [34,129] and this 

limits the number of different genotypes that can be studied. Additionally, keeping animals in isolators 

may make some studies (e.g., behavioral testing or pathogen infections) impractical or challenging [71].  

Growing evidence shows that isolated GF animals have some biochemical and physiological 

abnormalities such as altered immune systems [43], mild chronic diarrhea [134] and impaired 

metabolism [135], and reduced reproduction [136]. Particularly, immune system is known to be primed 

by the GM in early life [42,137–140]. The immune response to fecal microbiota transplantation in 

isolated GF mice, which have never previously encountered the bacteria, must be expected to be 

important for at least some disease models [108].  

9. Advantages of antibiotic-treated animal model 

The advantage of antibiotic-treated over isolated GF studies is the timing of the GM changes or 

reductions and translatability to humans [141]. Treatment with broad-spectrum antibiotics is 

commonly used to eliminate the GM in mice and can be easily applied to any mouse genotype or 

condition [71]. Because of differences in their action mechanism, antibiotics are able to selectively 

exhaust different types of microbes. 

Individual antibiotics can be used to alter the GM composition in order to identify bacterial classes 

associated with different phenotypes [142,143]. A cocktail of different classes of antibiotics can be 

used to broadly deplete the GM [71]. Antibiotics also have the advantage of allowing the examination 

of the consequences of intestinal microbial depletion at different stages of life [144]. In fact, by 

targeting different groups of bacteria through different classes of antibiotics, it is possible to develop 

hypotheses about which bacteria are responsible for disease manifestations. For instance, while both 

clindamycin and metronidazole target anaerobes, polymyxin B specifically targets Gram-negative 

bacteria and vancomycin is only effective against Gram-positive bacteria. [142,145]. It is also possible 

to transfer host phenotypes with normal GM to antibiotic-treated animals through fecal microbiota 

transplantation, however problems related to reproducibility and antibiotic resistance genes must be 

considered [108] (Figure 3). 

  

10. Disadvantages of antibiotic-treated animal model  

Antibiotic-induced dysbiosis presents several challenges, especially when used for fecal 

microbiota transplantation studies. Although a broad-spectrum antibiotic approach significantly 

reduces most bacterial species, bacteria will still remain in the gut, as demonstrated by denaturing 

gradient gel electrophoresis [111] or cultivation [146]. It is difficult to precisely control the effect of 

an antibiotic administration in terms of species are completely eradicated and which species are only 

reduced, and the residual microbiota from antibiotic-treated mice may also influence colonization over 

time [108]. Because the immune system is primed by the GM at early postnatal age [42,137–139], 

exposure to microbes prior to elimination with antibiotics can have long-term effects on the physiology 

of the host. An important potential drawback of eliminating microbiota with antibiotics using broad-

spectrum antibiotics can cause the evolution or development of antibiotic-resistant bacteria and the 

selection and overgrowth of resistant bacterial species [147–149]. It may play a significant dominant 

role in the microbial profile after recolonization [146] or may be detrimental to animal health. 

Although oral administration of antibiotics decreases the GM, other microbial communities, for 

instance the skin and lung microbiota, are not ever directly affected. It depends on the pharmacokinetics of 
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the antibiotic substance and may also developmentally affect the immune system [150,151]. Also, if 

antibiotics are administered through drinking water, the possible disadvantages of antibiotic-induced 

intestinal dysbiosis could be the systemic or even central effects of the antibiotics themselves as well 

as changes in consumption [152]. Antibiotics may even directly affect the brain. There is evidence that 

they can modulate the vagus nerve [153] and the enteric nervous system [154]. Mounting evidence 

indicates that bacteriophages, fungi, and eukaryotic viruses, which are not directly targeted by 

antibacterial antibiotics, cannot be discounted in GM homeostasis and immune priming [155,156]. In 

addition, antibiotic therapy can allow the overgrowth of common fungal species, possibly confusing 

results because these organisms can modify immune function [157,158] (Figure 3). 

 

Figure3. Illustration of advantages and disadvantages of antibiotic-treated animal model. 

11. Effects of dysbiosis on other organs  

Microbiota disruption affects the anatomy and function of various organs, such as the liver and 

gastrointestinal tract [159,160]. One of the most obvious anatomical changes is the enlargement of the 

cecum, due to mucus and undigested fiber accumulation, which is observed in both isolated GF and 

antibiotic-treated mice [34,122]. In addition, GF mice have elongated villus structures, reduced villus 

width, and weakened capillary networks in small intestinal villi [133,161,162]. The immune cell 

populations are also influenced by antibiotic treatment [163–165]. Oral antibiotic regimens have been 

shown to reduce cultivable bacteria in the respiratory system tract [114,125,166] and vagina of mice [167] 

with no effect on skin bacterial communities [168].  

12. Conclusion 

The importance of the GM in physiology of almost all body organs has encouraged research in 

this field. However, there are numerous problems in research strategies in the human GM. Therefore, 
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animal models take a major role in many aspects of GM investigations. There are two very often used 

animal models: the isolated GF and antibiotic-treated models. Each of these models display advantages 

and disadvantages. Whereas both models are currently used by researchers, there are numerous 

differences between the two models such that, it is suggested that they should be viewed as distinct 

models for the GM manipulation. Consequently, it is very important to apply appropriate models when 

working on the GM. On one hand, because isolated GF animals are not exposed to bacteria from 

conception onwards, their use for experimental questions about the impact of altered microbiota 

composition in postnatal life may be limited [169]. On the other hand, given the experimental variables 

and several side effects of antibiotic- treated protocols, it is increasingly evident that the interpretation 

of data collected from experiments on microbiota disrupted by antibiotics should be approached with 

caution. A possible approach to circumvent the uncontrolled situation of antibiotic-treated animals and the 

effect of GF early in life is to use the generation of GF parents and use succeeding generations [108].  

Accordingly, it is believed that findings obtained from GF animal models should be used with 

caution to develop strategies for the disease treatment and/or prevention [170]. Taken together, 

laboratory animals are currently the major models for the study of the GM, and each model has its own 

limitations; nevertheless, reproducibility must always be emphasized as an undisputed essential feature 

of the system. 
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