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Abstract: The phyllosphere supports a large and complex bacterial community that varies both 
across plant species and geographical locations. Phyllosphere bacteria can have important effects on 
plant health. The sweet chestnut (Castanea sativa Mill.) is an economically important tree species 
affected worldwide by the fungal pathogens Cryphonectria parasitica and Phytophthora cinnamomi. 
We examined the culturable phyllosphere bacterial community of the sweet chestnut at two nearby 
locations in Central Spain in order to know its geographical variability and to explore its potential as 
source of biological control agents against these two pathogenic fungi. The bacterial diversity at 
strain level was high but it varied significantly between locations; however, phylotype richness and 
diversity were more comparable. The isolates were affiliated with the phyla Actinobacteria, 
Firmicutes and Proteobacteria. Most of them were members of recognized bacterial species, with a 
notable proportion of representative of the genera Dietzia and Lonsdalea, but a small fraction of the 
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strains revealed the existence of several potential novel species or even genera. Antagonism tests 
showed the occurrence in the chestnut phyllosphere of bacterial strains potentially useful as 
biological control agents against the two pathogenic fungi, some of which belong to species never 
before described as fungal antagonists. Chestnut phyllosphere, therefore, contains a great diversity of 
culturable bacteria and may represent an untapped source of potential biocontrol agents against the 
fungi causing blight and ink diseases of this tree species. 

Keywords: Castanea sativa; Cryphonectria parasitica; Phytophthora cinnamomi; phyllosphere; 
bacterial diversity; bacterial-fungal antagonism 
 

1. Introduction 

The sweet chestnut (Castanea sativa Mill.) has been systematically cultivated since the Middle 
Age throughout southern Europe [1], from the Caspian Sea to the Atlantic Ocean. It covers more 
than 1.7 million ha in a discontinuous, scattered range, occupying coppices and orchards on acid 
soils [2]. Chestnut is an economically important species used for both nut and wood production, but 
its by-products has also a good profile of bioactive compounds with antioxidant, anticarcinogenic 
and cardioprotective properties [3], as well as it is a good contributor to carbon sequestration and a 
valuable source of biomass. Furthermore, the chestnut landscape offers great benefits in terms of 
social welfare [4]. 

The principal sanitary threats to chestnut trees in Europe are of fungal origin. Cryphonectria 
parasitica is the ascomycete responsible for chestnut blight, causing cankers that kill branches and 
trunks. The oomycete Phytophthora cinnamomi causes the ink disease of chestnut that is 
characterized by obstruction of the xylem vessels and exudation of blackish sap (due to air oxidation of 
tannins), resulting in a progressive decline of the uppermost shoots and finally of the whole crown [5]. 
Chestnut blight is currently present in Central and South Europe, East and West Coasts of North 
America, East Asia, and Tunisia [6]. Phytophthoras have been found to be widespread in Southern 
Europe and England [7,8]. Drought and heat stresses seem to exacerbate the progress of both 
diseases [9,10]. Moreover, the predicted global climate warming would be favourable for these two 
pathogenic fungal species [11], thus worsening the perspectives for chestnut forestry worldwide. 

The aerial leaf surface or phyllosphere is colonized by variety of different organisms, including 
many different genera of bacteria, filamentous fungi, yeasts, algae, and, less frequently, protozoa and 
nematodes. Bacteria are by far the most abundant inhabitants of the phyllosphere, often being found 
in numbers averaging 106 to 107 cells/cm2 (up to 108 cells/cm2) of leaf [12,13]. Historically, many of 
the studies on phyllosphere microbial communities have focused on bacteria known to be plant 
pathogens [14,15]. Much less is understood about the identity or properties of the numerous non-
pathogenic microbes that inhabit the phyllosphere. It is known that many phyllosphere bacteria 
produce phytohormones that have the potential to affect plant development and productivity [16], fix 
nitrogen [17,18] or can degrade organic pollutants [19]. Also, such colonists apparently play 
important roles in modulating population sizes of deleterious organisms [20,21,22], and some are 
potential source of pharmacological agents [23] or are being exploited as biological control agents 
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(BCAs) for plant diseases [24]. In this sense, there is optimism concerning future prospects of 
application of bacteria for biological control of foliar plant pathogens and, in fact, some bacterial 
strains are already marketed in products for use in many crops, including tree species [25]. 

Although the phyllosphere of a few representative species of Mediterranean forest have been 
investigated as natural habitats for epiphytic microorganisms in general, and bacteria in  
particular [17,26,27], there is very scarce information regarding the phyllosphere of sweet  
chestnut [28]. In this study, we therefore aimed at identifying the culturable bacterial community of 
the chestnut phyllosphere and at exploring its potential as source of biological control agents against 
C. parasitica and P. cinnamomi, the most important fungal pathogens of such an economically 
essential tree. 

2. Materials and Methods 

2.1. Site description, leaf sampling and isolation of phyllosphere bacteria 

Leaf samples were taken from chestnut trees growing at two locations in the mountain range of 
“Sierra de Tamames-Las Quilamas”, Salamanca province, Spain. These two sampling sites, here 
termed C and CH, occupy opposite slopes of a hill, at an altitude of approximately 1100 m above sea 
level. The site C (40º 35.13’ N; 5º 56.41’ W) is a chestnut orchard for fruit located on the north side 
of the hill. The site CH (40º 34.35’ N; 5º 57.06’ W) corresponds to a forest stand for wood 
production, which is predominantly oriented towards the southeast. At the time of sampling, chestnut 
trees at both locations were free of fungal diseases. The soil in this area is an Umbric Regosol with a 
pH of 5.35–5.26 and an organic matter content of 5.8–4.5%. This region has a humid Mediterranean 
climate with mean annual temperature of around 10 °C and mean annual precipitation of around 
1300 mm [29]. 

At each stand, 100 individual leaves were taken randomly from 10 different chestnut trees (10 
leaves per tree) and pooled together to form a sample. Each pooled leaf sample was placed in a 
sterile plastic bag and transported to the laboratory on ice for immediate processing. The leaves 
samples were weighed and placed in 1000 ml of sterile prechilled buffer [0.1 M potassium phosphate 
(pH 7.0), 0.1% peptone], following which bacterial cells were removed by 7 min of sonication in an 
ultrasonic bath. Samples (0.1 ml) from appropriate dilutions of the sonicate were plated on Tryptic 
Soy Agar (TSA) amended with 0.15 mg of cycloheximide per ml to inhibit fungal growth. Bacterial 
colonies were counted following 72 to 96 h of incubation at 28 °C. Numbers of viable bacteria were 
determined by counting the number of colonies on appropriate plates, with three replicate plates per 
dilution. 

Selection of bacterial isolates was performed randomly following the methodology described in 
Jacobs and Sundin [30]. Briefly, the plates were placed on a numbered grid (0 to 50), three numbers 
were randomly chosen and two or three colonies in the chosen grids were selected from the dilution 
plates used to make the bacterial counts. Isolates were subcultured through two rounds of single-
colony purification and subsequently stored at –80 °C in 25% glycerol. 
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2.2. Total DNA fingerprinting and 16S rRNA gene partial sequence analyses 

Isolated colonies were subjected to two primers random amplified polymorphic DNA (TP-
RAPD) analysis and accordingly to TP-RAPD profiles “phylotypes” were defined. TP-RAPD 
patterns were analyzed according to the method described by Rivas et al. [31] using the primers 879F 
(5’-GCCTGGGGAGTACGGCCGCA-3’) and 1522R (5’-AAGGAGGTGATCCANCCRCA-3’). 
The diversity of strains within each TP-RAPD group was then assessed by random amplified 
polymorphic DNA (RAPD) fingerprinting using the primer M13 (5’-GAGGGTGGCGGTTCT-3’) as 
described previously [32]. 

One representative strain from each TP-RAPD group was selected for taxonomic identification 
through 16S rDNA sequencing. Amplification of 16S rRNA genes was performed as specified by 
Rivas et al. [31]. The first 600–800 bp of these amplified 16S rDNA fragments were sequenced. The 
identification of phylogenetic neighbors was initially carried out by the BLAST [33] and FASTA [34] 
programs. The 50 sequences with the highest scores were then selected for the calculation of 
pairwise sequence similarity using global alignment algorithm, which was implemented at the 
EzBioCloud server [35]. For phylogenetic analysis, sequences were aligned using the Clustal X 
software [36]. The phylogenetic tree was inferred using the neighbour-joining method [37]. The 
distances were calculated according to Kimura’s two-parameter method [38]. Bootstrap analysis was 
based on 1000 resamplings. The MEGA4 package [39] was used for all analyses. 

2.3. Inhibition of fungal growth by bacteria 

All bacterial isolates were screened for their ability to inhibit the growth of the phytopathogenic 
fungi Cryphonectria parasitica and Phytophthora cinnamomi. The strain of C. parasitica used in this 
study was SA1, kindly provided by Prof. Díez-Casero, ETSIIA, University of Valladolid, Spain. This 
strain belongs to the vegetative compatibility group EU11 and was isolated from infected chestnut 
trees in the vicinity of the sampling site of this study. The strain of P. cinnamomi was obtained from 
the Spanish Type Culture Collection (http://www.cect.org) under accession number CECT 2965 
(=IMI 077375). This strain was isolated from Castanea sativa in France. 

The antifungal activity of the bacterial isolates was assayed on potato dextrose agar (PDA) 
plates according to the method described by Ansari and co-workers [40]. In brief, a loopful of a log 
phase bacterial culture was spread on a line 3-cm away from the edge of the PDA Petri plates (9-cm 
diameter). The plates were inoculated with one mycelial plug (0.5-cm diameter) of C. parasitica or 
P. cinnamomi taken with the help of a sterilized cork borer from the margins of 7-day old cultures 
grown on PDA. The plug was placed 3-cm away from the bacterial strike and 3-cm from the wall of 
the dish. Control plates were inoculated with mycelial plugs (3 cm from the Petri dish wall) only. 
Each test had three replications. The dishes were incubated in the dark at 26 °C for five to seven days 
until the fungal growth reached the edge of the plate. Antifungal activity was monitored at regular 
intervals of time by measuring fungal growth radii along three axes: one axis perpendicular to the 
bacterial streak and one another axis at both left and right sides forming 45º with the first one (45º, 
90º and 135º from the center of the fungal plug towards the bacterial streak). 
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2.4. IAA production by bacteria 

Bacterial cultures were tested on TSA plates amended with 5 mM L-tryptophan as described by 
Bric et al. [41]. Briefly, agar plates (9-cm diameter) were inoculated with toothpicks into a grid 
pattern from TSA cultures. Each inoculated plate was overlaid with an 82-mm diameter 
nitrocellulose membrane. Grid plates were overlaid immediately after inoculation and incubated at 
28 °C until colonies reached 0.5 to 2 mm in diameter. After an appropriate incubation period, the 
membrane was removed from the plate and treated with Salkowski reagent. Membranes were 
saturated by overlaying on a reagent-saturated Whatman no. 2 filter paper. The reaction was allowed 
to proceed until adequate color development. Bacteria producing IAA were identified by the 
formation of a characteristic red halo within the membrane immediately surrounding the colony. 
Colonies were assayed in triplicate and the experiment was repeated two times. 

2.5. Statistical analysis 

Data from antifungal activity assays were statistically analyzed by repeated measures two-way 
ANOVA and Bonferroni-adjusted post-hoc test for pairwise comparisons, using SPSS software 
(v21.0). The estimated species richness was determined through ACE and Chao1 non-parametric 
estimators, using SPADE [42]. SPADE was also used for the determination of Shannon’s and the 
reciprocal of Simpson’s indices (maximum likelihood estimators) and estimated sample coverage. 
Rarefaction curves were computed using the EstimateS program [43]. 

2.6. Nucleotide sequence accession numbers 

One sequence for each phylotype (31 in total) reported in this study has been deposited in 
GenBank under accession numbers EU099594, GQ183833–GQ183862. 

3. Results  

3.1. Culturable bacterial community structure on the phyllosphere of chestnut trees 

The number of total culturable bacteria ranged 1.7–3.2 × 106 CFU g–1 fresh weight. After 
isolation a total of 2.1% of the isolates failed to grow during the subculturing process or could not be 
cultured following storage at –80 °C; these isolates were removed from further analysis. Thus, a final 
total of 227 isolates were studied, 117 from the sampling site C and 110 from the CH site.  

TP-RAPD fingerprinting was used as shortcut technique for grouping the phyllosphere isolates 
in a taxonomically meaningful way. The diversity of strains within each TP-RAPD group was then 
assessed by RAPD fingerprinting using a primer derived from the M13 bacteriophage (M13-RAPD). 
Therefore, these two genetic fingerprinting techniques were used to define OTUs (operational 
taxonomic units) at two levels of phylogenetic resolution, sub-phylotype or strain level (M13-RAPD 
patterns) and phylotype level (TP-RAPD patterns). 
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Figure 1. TP-RAPD (a) and M13-RAPD (b) profiles separated on ethidium bromide 
stained agarose gel (inverse display) of representative bacterial strains isolated from the 
chestnut phyllosphere. TP-RAPD patterns are noted in roman numerals. Representative 
strains and their taxonomic designations are given in Table 2. The DNA molecular 
weight marker (lane M) is Standard VI (Boehringer-Roche, Indianapolis, IN, USA) with 
2176, 1766, 1230, 1033, 653, 517, 453, 394, 298, 234, and 154 bp. 

Among the 227 bacterial isolates, there were observed 31 TP-RAPD patterns (Figure 1a) and 53 
M13-RAPD patterns (Figure 1b), indicating the presence of genetically different strains (different 
M13-RAPD patterns) within the same bacterial phylotype (same TP-RAPD pattern). For instance, 
among the isolates showing the TP-RAPD patterns V, XVII and XXVI there were observed 7, 6 and 
4 different M13-RAPD patterns, respectively (Figure 1b). Broken down by sampling site, 44 and 34 
different bacterial strains were distinguished among the isolates from sites C and CH, respectively. 
These strains distributed into 26 (site C) and 23 (site CH) phylotypes. After 117 (site C) and 110 (site 
CH) sampling events, rarefaction curves did not reach an asymptote either for strains or phylotypes 
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(Figure 2a, 2b), but they were far beyond the linear range. Moreover, Good’s coverage values (Table 1) 
were high at both the strain (M13-RAPD patterns) and phylotype (TP-RAPD patterns) resolution 
levels. The estimated OTU richness in the samples was determined through Chao1 and ACE non-
parametric estimators. Chao1 estimates a mean phylotype number (TP-RAPD patterns) of 27–28 and 
28–36, and a mean strain number (M13-RAPD patterns) of 50–51 and 42–44 for the bacterial 
assemblages C and CH, respectively. ACE estimators were roughly comparable to Chao1 estimators 
(Table 1). 

 

Figure 2. Observed and estimated OTU richness of culturable bacterial populations from 
the chestnut phyllosphere at the C and CH locations versus sampling size. OTUs as 
defined by M13-RAPD (a) and TP-RAPD (b) fingerprinting. The Chao1 estimated OTU 
richness (C    ; CH    ) and rarefaction curves (C —— ; CH – – – –) averaged over 50 
simulations are shown. 
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Table 1. Comparison of the OTUs richness from the culturable bacterial community in 
the phyllosphere of Castanea sativa Mill. at the two studied locations. 

    Estimated OTUs b 

DNA 

fingerprinting 
Location 

No. of 

OTUs 

Good’s 

coverage a 
Chao1 Chao1 b-c c ACE ACE-1 d 

TP-RAPD C 26 0.949 28 ± 2 (26–37) 27 ± 2 (26–35) 31 ± 4 (27–44) 32 ± 5 (27–49)

 CH 23 0.955 36 ± 17 (25–117) 28 ± 6 (24–55) 26 ± 3 (24–37) 26 ± 3 (24–40)

M13-RAPD C 44 0.889 51 ± 5 (46–68) 50 ± 4 (46–65) 51 ± 4 (46–66) 52 ± 5 (46–69)

 CH 34 0.909 44 ± 8 (36–76) 42 ± 6 (36–66) 41 ± 5 (36–57) 43 ± 6 (37–65)

a Good’s Coverage = [1 – (n/N)]; where n is the number of OTUs represented by one bacterial strain and N is the total number of bacterial strains. 

b Estimators of species richness. Mean values (±SE) are shown, with lower and upper 95% confidence intervals given in parentheses. 

c A bias-corrected form for the Chao1. 

d A modified ACE for highly-heterogeneous communities. 

From all the strains and phylotypes detected in this study, only 47% of the strains (25 out of 53) 
and 58% of the phylotypes (18 out of 31) were found at both sampling sites. Both in the bacterial 
assemblage C and in the bacterial assemblage CH, isolate richness was not equally distributed either 
among genotypes (M13-RAPD patterns) or phylotypes (TP-RAPD patterns). Thus, approximately 
50% of the isolates were contained in only about a third of the genotypes (27–35%) (Figure 3a, 3b) 
and a fifth of the phylotypes (15–22%) (Figure 3c, 3d), while around another third of both the 
genotypes (30–38%) and the phylotypes (38–39%) accounted for only 10% of all isolates.  

Table 2. Estimated diversity indices for the culturable bacterial community in the 
phyllosphere of Castanea sativa Mill. at the two studied locations. Mean values (±SE) 
are shown, with lower and upper 95% confidence intervals given in parentheses. 

  Shannon a 1/D b 

DNA 

fingerprinting 
Location MLE MLE b-c Jackknife MVUE MLE 

TP-RAPD C 
2.83 ± 0.08 

(2.67–2.99) 

2.96 ± 0.11 

(2.75–3.16) 

2.97 ± 0.10 

(2.78–3.17) 

13.91 ± 0.13 

(13.65–14.16) 

12.52 ± 0.13 

(12.27–12.77) 

 CH 
2.85 ± 0.07 

(2.71–2.98) 

2.96 ± 0.10 

(2.77–3.15) 

2.98 ± 0.08 

(2.81–3.14) 

15.73 ± 0.15 

(15.45–16.02) 

13.88 ± 0.13 

(13.62–14.14) 

M13-RAPD C 
3.61 ± 0.05 

(3.51–3.71) 

3.83 ± 0.06 

(3.70–3.95) 

3.87 ± 0.08 

(3.72–4.02) 

44.35 ± 0.08 

(44.19–44.51) 

32.36 ± 0.07 

(32.22–32.50) 

 CH 
3.29 ± 0.06 

(3.17–3.41) 

3.47 ± 0.08 

(3.31–3.64) 

3.50 ± 0.09 

(3.33–3.67) 

27.63 ± 0.11 

(27.41–27.85) 

22.24 ± 0.10 

(22.05–22.44) 
a MLE: maximum likelihood estimator; MLE bc: bias-corrected maximum likelihood estimator. 

b Reciprocal of Simpson’s index. MVUE: minimum variance unbiased estimator; MLE: maximum likelihood estimator. 
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Figure 3. Rank-order plot showing the relative frequency of each OTU as defined by 
M13-RAPD (a, b) and TP-RAPD (c, d) patterns in the phyllosphere of chestnut trees 
growing at locations C (a, c) and CH (b, d). 
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Figure 4. Phylogenetic neighbor-joining tree based on partial 16S rRNA gene sequences 
showing the relationship between representative strains of each TP-RAPD pattern (in 
bold types) and closely related type strains. GenBank accession numbers are in 
parentheses. The significance of each branch is indicated by a bootstrap value calculated 
for 1000 subsets; only boostrap values greater than 50% are shown. Bar, 2 substitutions 
per 100 nt. 
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Statistical estimates of bacterial diversity were obtained for each bacterial assemblage using the 
Shannon and Simpson diversity indices (Table 2). Both indices indicated that the diversity at 
genotype level (M13-RAPD patterns) was significantly greater in the C assemblage than in the CH 
assemblage. 

3.2. Taxonomic diversity of phyllospheric bacteria 

One strain representative of each distinct TP-RAPD pattern was identified after partial 16S 
rRNA gene sequencing using the EzBioCloud server (http://www.ezbiocloud.net) [35]. Analysis of 
the sequences indicated that the majority of isolates matched members of recognized bacterial 
species (16S rDNA sequence similarities of ≥99%) (Table 3). However, a small fraction of the 
strains (Table 3) has 16S rRNA gene sequence similarities lower than 98.7% to any of the currently 
recognized bacterial species. As that is the threshold value to differentiate bacterial species [44], it 
likely indicates the existence in the chestnut phyllosphere of several potential novel species, although 
a polyphasic characterization and full-length sequencing of 16S rRNA genes still have to be carried 
out to fully clarify their taxonomic status [45]. 

The majority of the isolates (58%) were affiliated with the two Gram-positive phyla, the 
Actinobacteria with 110 strains (48%) and the Firmicutes with 21 strains (10%). From the phylum 
Actinobacteria there were representative strains of the genera Dietzia (34 strains), Micrococcus (33 
strains), Arthrobacter (13 strains), Kocuria (9 strains), Knoellia (4 strains), Cellulomonas (4 strains), 
Brevibacterium (3 strains), Cellulosimicrobium (3 strains), Gordonia (3 strains), Microbacterium (3 
strains) and Agrococcus (1 strain). From the phylum Firmicutes, there were isolates belonging to the 
genera Paenibacillus (11 strains), Bacillus (2 strains), Psychrobacillus (5 strains) and 
Staphylococcus (3 strains). After the Actinobacteria, γ-Proteobacteria were the next most abundant 
group (36%), with representatives of the genera Pseudomonas (44 strains), Lonsdalea (25 strains), 
Luteimonas (7 cepas) and Erwinia (4 strains) and Acinetobacter (2 strains). Finally, the  
α-Proteobacteria were found to be the less abundant bacterial group in the chestnut phyllosphere 
(6%), which included isolates belonging to the genera Phyllobacterium (5 strains), Sphingomonas  
(4 strains), Paracoccus (3 strains) and Commensalibacter (2 strains). If we should focus on site of 
sampling in terms of incidence, four genera were well represented at both sampling locations, 
namely Micrococcus, Dietzia, Lonsdalea and Pseudomonas; while isolates representative of genera 
such as Brevibacterium, Agrococcus, Paracoccus, Commensalibacter and Staphylococcus were 
much less numerous and only found in one of the two locations. 

3.3. Antifungal activities of the phyllosphere bacteria 

All the bacterial strains isolated in this work from chestnut phyllosphere were prescreened for 
antagonism against the fungal pathogens causing chestnut blight (C. parasitica) and ink (P. 
cinnamomi) diseases by dual-plate assay on PDA plates. Most of the bacterial isolates showed little 
to no inhibition of fungal growth, sometimes fungal mycelia even grew over the bacterial colonies, 
which suggest that these strains did not produce any diffusible amensalistic substance that could 
influence the fungal growth. Only four and six out of the 227 bacterial strains showed substantial 
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antifungal activity against C. parasitica and P. cinnamomi, respectively. In such cases, antagonism 
on agar was probably limited to amensalism, because competition for nutrients rarely, if ever, occurs 
on media with high nutrient levels like PDA. These strains were selected for further detailed 
analysis. 

Table 3. Taxonomic identification of representative strains of each TP-RAPD pattern. 
Identification based on the 16S rRNA gene sequence using EzBioCloud server 
(http://www.ezbiocloud.net). 

     RAPD group  

Strain 
Closest related  

type strain 

Accession  

no. 

Identity 

(%) 

Taxonomic  

group 
TP- M13- 

No.  

strains 

C-39 Agrococcus jenensis DSM 9580T X92492 99.5 Actinobacteria 15 25 1 

C-01 Arthrobacter agilis KCTC 3200T X80748 99.8 Actinobacteria 1 1 2 

C-23 Arthrobacter crystallopoietes DSM 20117T X80738 98.8 Actinobacteria 12 22 6 

C-45 Arthrobacter enclensis NIO-1008T JF421614 99.7 Actinobacteria 16 26 3 

C-14 Arthrobacter parietis LMG 22281T AJ639830 100.0 Actinobacteria 8 15 2 

C-37 Brevibacterium frigoritolerans DSM8801T AM747813 100.0 Firmicutes 14 24 3 

C-47 Cellulomonas xylanilytica XIL11T AY303668 99.4 Actinobacteria 18 33 4 

C-48 Cellulosimicrobium cellulans LMG16121T CAOI01000359 99.5 Actinobacteria 19 34 3 

C-19 Dietzia cercidiphylli YIM65002T EU375846 99.7 Actinobacteria 10 17,18 15 

C-22 Dietzia kunjamensis K30-10T AY972480 100.0 Actinobacteria 11 19,20,21 19 

C-32 Gordonia polyisoprenivorans NBRC16320T Y18310 99.2 Actinobacteria 13 23 3 

CH-06 Knoellia locipacati DMZ1T HQ171909 98.9 Actinobacteria 24 40 4 

CH-49 Kocuria rosea DSM20447T X87756 99.5 Actinobacteria 20 35.36 9 

C-08 Microbacterium maritypicum DSM12512T AJ853910 99.7 Actinobacteria 4 5 3 

C-09 Micrococcus aloeverae AE-6T KF524364 99.5 Actinobacteria 5 6,7,8,9,10,11,12 33 

CH-07 Commensalibacter intestini A911T AGFR01000021 100.0 α-Proteobacteria 25 41 2 

C-17 Paracoccus aminovorans DSM8537T D32240 98.2 α-Proteobacteria 9 16 3 

C-50 Phyllobacterium ifriqiyense STM370T AY785325 99.7 α-Proteobacteria 21 37 5 

CH-03 Sphingomonas zeae JM-791T KP999966 100.0 α-Proteobacteria 23 39 4 

CH-34 Bacillus aryabhattai B8W22T EF114313 100.0 Firmicutes 31 53 2 

CH-23 Psychrobacillus psychrodurans DSM11713T AJ277983 99.2 Firmicutes 29 50.51 5 

CH-32 Paenibacillus castaneae Ch-32T EU099594 100.0 Firmicutes 30 52 2 

CH-15 Paenibacillus tylopili MK2T EF206295 99.2 Firmicutes 27 46 9 

C-12 Staphylococcus epidermidis ATCC14990T L37605 99.5 Firmicutes 6 13 3 

CH-02 Acinetobacter radioresistens DSM6976T X81666 99.7 γ-Proteobacteria 22 38 2 

C-46 Lonsdalea quercina LMG26264T JF311441 99.8 γ-Proteobacteria 17 27,28,29,30,31,32 25 

C-06 Erwinia typographi DSM22678T GU166291 97.6 γ-Proteobacteria 3 4 4 

C-13 Luteimonas huabeiensis HB2T JAAN01000045 99.5 γ-Proteobacteria 7 14 7 

CH-19 Pseudomonas frederiksbergensis JAJ28T AJ249382 99.7 γ-Proteobacteria 28 47,48,49 14 

C-04 Pseudomonas putida NBRC14164T Z76667 99.9 γ-Proteobacteria 2 2,3 9 

CH-09 Pseudomonas tremae CFBP3225T AJ492826 100.0 γ-Proteobacteria 26 42,43,44,45 21 
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Figure 5. Cumulative radial growth of fungal colonies of Cryphonectria parasitica (a) 
and Phytophthora cinnamomi (b) on PDA plates in presence of different bacterial strains 
from the phyllosphere of chestnut. Data are Mean ± SD (N = 3). 

Four strains showed consistent antagonism against C. parasitica, three of them were isolated 
from the sampling site CH (CH-8, CH-14 and CH-37) and one from the sampling site C (C-44). 
After three days of coculture, these four strains significantly (p < 0.05) retarded the fungal growth 
(Figure 5a). After seven days of incubation, these strains reduced the fungal growth by 
approximately between 22% (C-44) and 33% (CH-8) in relation to growth in control plates. On the 
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other hand, six strains exhibited noticeable antagonistic activity towards P. cinnamomi. Two of them 
were isolated from the sampling site C (C-5 and C-12) and four from the sampling site CH (CH-7, 
CH-12, CH-14 and CH-37).  

With the exception of the strains C-5, CH-14 and CH-37, the other three strains significantly 
retarded the fungal growth at the third day and thereafter (p < 0.05) (Figure 5b). However, strain CH-
37 was able to completely stop the growth of P. cinnamomi after five days of coculture. At the end of 
the experimental period, the reduction of fungal growth by these isolates ranged from 29% (C-37) to 
15% (C-12). It is noteworthy to point out that strains CH-14 and CH-37 showed antagonism against 
both C. parasitica and P. cinnamomi. 

We also tested the indole-3-acetic acid (IAA) production ability of the phyllosphere isolates. It 
was seen that only a small fraction of the bacterial strains were able to produce IAA under the in 
vitro conditions used (data not shown). Noteworthy, none of the strains with antifungal activity 
exhibited IAA production. 

4. Conclusions 

From chestnut trees growing at two different stands in the mountain range of “Sierra de 
Tamames-Las Quilamas” (Salamanca province, Spain), we obtained a total of 227 phyllospheric 
bacterial isolates that grew consistently after cryopreservation and their genetic variability was 
investigated using random amplified polymorphic DNA techniques. TP-RAPD obtains fingerprints 
of bacteria using in the PCR two universal primers targeting bacterial 16S rRNA genes at an 
annealing temperature of 50 °C. TP-RAPD fingerprints have an advantage for grouping purposes 
because strain-dependent variations are minimal. Thus, strains belonging to the same bacterial taxon 
(phylotype) share a unique band pattern, which, in turn, is different from that of other bacterial  
taxa [31]. Therefore, this technique is a good tool for grouping bacteria in order to select 
representative strains for 16S rRNA gene sequencing, as it has been demonstrated with a broad range 
of eubacteria [46,47,48]. The diversity of strains within each TP-RAPD group was then assessed by 
M13-RAPD fingerprinting. Like other PCR fingerprinting techniques (i.e. ERIC-PCR, Box-PCR, 
Rep-PCR), M13-RAPD fingerprinting is an effective technique to distinguish closely related 
bacterial strains [32,49,50]. Since M13-RAPD fingerprinting reveals more subtle genetic differences 
between similar strains, it gives the possibility to define strain-level OTUs while the TP-RAPD 
fingerprinting technique does so at phylotype level (genus or species). As indicated by Good’s 
coverage values (Table 1) as well as by Chao1 estimations and rarefaction curves (Figure 2), the total 
bacterial diversity was highly represented in the samples and the most dominant members of the 
bacterial communities were likely sampled at both strain level (M13-RAPD patterns) and higher 
hierarchical levels (TP-RAPD patterns). 

According to Shannon’s and Simpson’s diversity indices (Table 2), the diversity at strain level 
was significantly greater in the C assemblage than in the CH assemblage. This is a consequence of 
that both the richness and evenness components of the diversity were higher in the C than in the CH 
assemblage. Thus, not only the assemblage C was richer in bacterial genotypes (44 vs. 34 M13-
RAPD patterns), but also the distribution of isolates amongst the different genotypes was more 
balanced in the assemblage C than in the assemblage CH (Figure 3a, 3b). At phylotype level (TP-
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RAPD patterns), however, the richness in the two bacterial assemblages was more similar (26 vs. 23 
TP-RAPD patterns) but the distribution of isolates was more equitable in the assemblage CH than in 
the assemblage C (Figure 3c, 3d). Therefore, the phylotype diversity was lower in the C assemblage 
than in the CH assemblage, although the difference only reached statistical significance if the 
diversity is calculated by the Simpson’s index (Table 2). This discrepancy between indices could be 
explained by the fact that the Shannon index stresses the richness component and rare OTUs, whilst 
the Simpson index lays greater emphasis on the evenness component and on the dominant OTUs. 

From all the strains and phylotypes, only 47% of the strains and 58% of the phylotypes were 
found at both sampling sites. This indicates that the variability in the culturable bacterial 
communities of the phyllosphere of chestnut is great, even between tree populations geographically 
close to each other, such as those here studied (approximately 1.5 km apart). It is in agreement with 
previous studies that have shown that the phyllosphere community structure can vary markedly on 
the same plant species in different places [51,52]. In contrast, it has been observed minimal 
geographic differentiation in the bacterial communities on Pinus ponderosa needles even across 
continents [53]. It should be highlighted that the diversity at strain level was higher in the bacterial 
assemblage C than in the CH assemblage, while the opposite tended to occur at phylotype level. 
Given the close proximity between the two sampling locations, the most different environmental 
factor is the amount of solar radiation received at each one. Due to their different orientations, the 
rate of insolation is higher at the sampling site CH (oriented towards the southeast) than at the site C 
(oriented towards the north). Ultraviolet radiation is known to alter the phyllosphere bacterial 
community composition and gene expression [30,54,55]. Moreover, the level of resistance to UV can 
vary between closely related bacterial strains [56,57]. Thus, UV resistance was found to be strain 
specific in Pseudomonas syringae pv. syringae, being conferred by plasmid-borne determinants 
homologous to rulAB genes for UV radiation resistance. When tested under field conditions, P. 
syringae pv. syringae strains lacking these genetic determinants showed a lower survival under direct 
solar radiation [58]. The lower diversity at strain level in the bacterial assemblage CH suggests that 
the more UV-sensitive genotypes within each phylotype could have been removed. Either way, strain 
(M13-RAPD patterns) diversity indices from both bacterial assemblages were relatively high (Table 2), 
sometime comparable to those obtained in culture-independent studies of phyllosphere bacterial 
communities [59–62]. 

The isolates from the phyllosphere of chestnut were affiliated with the phyla Actinobacteria, 
Firmicutes and Proteobacteria (Figure 4; Table 3), which are also predominant in the phyllosphere of 
other plant species [63–66]. According to their 16S rRNA gene sequences, most of the isolates 
unambiguously belong to recognized bacterial species (sequence similarities equal to or greater than 
90%), whereas some others may represent novel species (<99%) or even genera (<97%) (Table 3). 
This is in concordance with previous studies suggesting the existence of bacteria unique to the 
phyllosphere habitat [53,67–70]. In this sense, the strain CH-32 was proposed as a new member of 
the genus Paenibacillus, named P. castaneae [47]. Although our study was focused on heterotrophic 
culturable bacteria, we do know that culturing techniques recover only a minimum fraction of 
bacterial diversity in comparison with molecular approaches [71] and, therefore, the actual bacterial 
composition of the rhizosphere of chestnut can be taxonomically much richer. 

Despite generally unfavorable environmental conditions in the phyllosphere due to long- and 
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short-term fluctuations in factors such as ultraviolet radiation, nutrient availability, temperature and 
moisture content [12,72], a high diversity of bacteria colonizing this habitat has been found in 
several plant species [51,63,73]. In agreement with these and other previous works, our results 
indicate that the sweet chestnut phyllosphere can also be inhabited by a diverse range of 
heterotrophic culturable bacteria. However, some noticeable differences regarding the presence and 
relative abundance of some bacterial genera can be found with other studies. Thus, the relative 
frequency of isolates belonging to the genera Dietzia (15%) and Lonsdalea (11%) (formerly 
Brenneria [74]), in the chestnut phyllosphere is the highest in the literature to the best of our 
knowledge. On the other hand, no representative of the genus Curtobacterium was recovered in this 
study while they are among the most common in the phyllosphere of potato, tomato, resurrection 
fern, beech and oak [52,65,75]. These particularities of the bacterial community structure and 
composition of the phyllosphere of chestnut trees are consistent with increasing research 
demonstrating that different plants select for distinct microbial communities [12,51,59,66]. 

All the bacterial strains were tested for antagonism against the chestnut blight and ink fungi, C. 
parasitica and P. cinnamomi. Four strains inhibited in vitro the growth of C. parasitica, while six 
strains did inhibit the growth of P. cinnamomi (Figure 5a, 5b). Only two strains (CH-14 and CH-37) 
showed antagonism against both C. parasitica and P. cinnamomi. To the best of our knowledge, few 
bacteria have been reported to show antifungal activity against C. parasitica, among which there are 
strains from the genera Acinetobacter [76], Serratia [77], Pseudomonas [78], and a strain of the 
species Bacillus subtilis that was isolated as endophyte from the xylem sap of chestnut stems [79]. 
Bacteria showing antagonism against Phytophthoras are more numerous in the literature [80–85], 
and strains with biocontrol activity against P. cinnamomi are known in bacterial genera like Bacillus, 
Enterobacter, Serratia, Actinomadura, Micromonospora, Nostoc and Pseudomonas [78,86,87,88]. 
According to the similarity of 16S rDNA sequences (Table 3), the above-mentioned eight bacterial 
strains belong to the species Pseudomonas tremae (CH-12, CH-14 and CH-37), P. frederiksbergensis 
(CH-8), P. putida (C-5), Commensalibacter intestinis (CH-7), Staphylococcus epidermis (C-12) and 
Dietzia kunjamensis (C-44). The species P. frederiksbergensis and P. putida are known to fungal 
antagonistic strains, some of which have shown to be useful as BCA [89,90,91]; however, as far as 
we know, it is here reported for the first time strains of the species P. tremae, C. intestinis, S. 
epidermis and D. kunjamensis with antifungal activities. 

IAA synthesis and secretion is a common feature of bacterial epiphytes that has been associated 
with enhanced nutrient leakage from plant cells, and this increased nutrient availability may better 
enable IAA-producing bacteria to colonize the phyllosphere and may contribute to their epiphytic 
fitness. [72]. We found that only a small proportion of the isolates from the chestnut phyllosphere 
produces IAA in vitro. This should not be considered a surprising result if we keep in mind that IAA 
biosynthesis in bacteria differs significantly depending on the surrounding environment, as 
demonstrated in Erwinia herbicola, in which the expression of ipdC, a plant inducible gene involved 
in IAA biosynthesis, varies significantly according to the leaf microenvironments [92]. Noteworthy, 
none of the strains with antifungal activity exhibited IAA production in vitro. Also, we found these 
two features to be strain specific. Thus, among the strains affiliated as P. tremae there were IAA 
producers without antifungal activities (strains CH-13 and CH-36), and also a strain with antifungal 
activities but without IAA production ability (CH-37). 
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As conclusion, our results demonstrate that the chestnut phyllosphere harbours a great diversity 
of culturable bacteria and might be a source of valuable biological agents for the control of the main 
fungal diseases of this economically important tree species. 
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