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Abstract: The aim of the present study was to assess the expression of key virulence genes during 
co-culture of L. monocytogenes with a bacteriocinogenic E. faecium strain in liquid growth medium. 
For that purpose, BHI broth was inoculated with 7 log CFU·mL–1 L. monocytogenes and 4, 5 or 6 log 
CFU·mL–1 E. faecium. Sampling took place after 8 and 24 h of incubation, corresponding to the 
maximum and minimum of enterocin production, respectively. The RNA was extracted, stabilized 
and expression of prfA, sigB, hly, plcA, plcB, inlA, inlB, inlC and inlJ, was assessed by RT-qPCR. 
Most of the genes were downregulated during co-culture at 5 °C. Moreover, a statistically significant 
effect of the inoculum level was evident in most of the cases. On the contrary, no effect on the 
transcription level of most of the genes was observed during co-culture at 37 °C. 
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1. Introduction 

L. monocytogenes is a pathogenic microorganism whose ubiquitous nature has been well 
characterized. Indeed, a large amount of studies are currently available reporting prevalence values 
that may range from 3.6 to 30.2% in meat and meat products [1–5], 3.5 to 39.6% in dairy products [2,6], 
0.8 to 80.3% in raw and processed seafood [7] and 0.3 to 36.8% in raw or processed fruits and 
vegetables [8–13]. 

Moreover, L. monocytogenes has the ability to survive and even proliferate in the human 
gastrointestinal tract. This intracellular lifestyle requires the coordinated expression of a series of 
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genes in order to activate an infection cycle that includes a series of stages, namely adhesion, 
invasion, escape from vacuole, intracellular multiplication and cell-to-cell spread [14]. Most of these 
genes, namely prfA, plcA, hly, mpl, actA and plcB are physically clustered in the Listeria 
Pathogenicity Island 1 (LIPI-1) [15]. Transcription of these genes is principally controlled by the 
transcriptional activator PrfA that is encoded by prfA [16,17,18]. plcA and plcB encode two 
phospholipases, namely phosphatidylinositol phospholipase C (PI-PLC) and phosphatidylcholine 
phospholipase C (PC-PLC). Both phospholipases in collaboration with listeriolysin O, a cholesterol-
binding, pore-forming toxin that is encoded by hly, promote lysis of the phagocytic vacuole that 
engulfs the cells of the pathogen [19,20]. mpl encodes a zinc-metalloprotease involved in pro-PlcB 
maturation [21,22] and actA encodes for a surface protein that is essential for intra- and inter-cellular 
motility, having thus a major role in cell-to-cell spread and in epithelial cell  
invasion [23,24,25]. In addition, a family of surface proteins collectively referred to as internalins are 
necessary for the active invasion in the host cells. As many as 25 internalins have been so far 
identified [26]; among them only InlA and InlB have been associated with internalization of 
normally nonphagocytic cells. The role of the remaining is yet to be discovered; only for some of 
them, such as InlC and InlJ the importance in virulence has been reported [27]. 

Application of bioprotective cultures has been in the epicenter of intensive research over the last 
decades. Bioprotection is achieved through antagonistic interactions with the undesired spoilage or 
pathogenic microbiota and through the production of antimicrobial compounds. Regarding the latter, 
bacteriocin production is by far the most widely studied property. Bacteriocinogenic enterococci are 
very attractive because they are quite widespread in nature and because bactericidal activity against 
the major foodborne pathogen L. monocytogenes is a common property due to their phylogenetic 
proximity [28]. However, compliance with the EFSA requirements regarding the Qualified 
Presumption for Safety assessment [29] is still necessary. Thus, the capability of various 
Enterococcus spp. strains as adjunct cultures with bioprotective role has been adequately  
highlighted [30–34]. 

Several response strategies to environmental stimuli have been described for L. monocytogenes 
and significantly increased our understanding regarding the physiology of the pathogen. More 
accurately, the effect of pH, temperature and carbon sources [35–40], interventions associated with 
food, such as heat treatment, high hydrostatic pressure processing, addition of nisin or disinfectants [41–45], 
as well as growth in various food-related substrates [46–52] on the expression of the above key 
virulence genes have been studied to some extent. However, to the best of our knowledge, no studies 
currently exist addressing the transcriptomic response of L. monocytogenes key virulence genes to 
the co-culture with a bacteriocinogenic E. faecium strain. Thus, the aim of the present study was to 
assess the expression of key virulence genes, namely prfA, sigB, hly, plcA, plcB, inlA, inlB, inlC and 
inlJ, during co-culture of L. monocytogenes with a bacteriocinogenic E. faecium strain in liquid 
growth medium.  

2. Materials and Methods 

2.1. Bacterial isolates 

L. monocytogenes strain NCTC 10527, serotype 4b, and E. faecium strain LQC 20005, isolated 
from spontaneously fermented sausages were used throughout this study. Long term storage took 
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place at –20 °C in Nutrient Broth (Biolife, Milan, Italy) supplemented with 50% glycerol. Before 
experimental use, each strain was grown twice in Brain Heart Infusion broth (Lab M, Lancashire, 
UK) at 37 °C for 24 h.  

2.2. Co-culture conditions, sampling and microbiological analyses 

Co-culture took place in test tubes containing BHI broth, and incubation at 5 and 37 °C. Three 
different inoculum combinations were studied. Co-cultures 1, 2 and 3 consisted of 7 log CFU·mL–1 L. 
monocytogenes and 4, 5 or 6 log CFU·mL–1 E. faecium, respectively. Sampling took place after 8 and 
24 h of incubation, corresponding to the maximum and minimum of enterocin production, 
respectively [53]. One mL from each test tube was used for microbiological analyses; the remaining 
9 mL were centrifuged (12,000 × g; 1 min; 5 °C or room temperature when incubation took place at 
5 or 37 °C, respectively). The supernatant was discarded; the pellet was mixed with 200 uL of 
RNAlater® solution (Ambion, Whaltham, MA, USA) and stored at –20 °C. L. monocytogenes and  
E. faecium populations were enumerated in each sampling time using Chromogenic Listeria Agar 
(Oxoid, Whaltham, MA, USA) and Kanamycin Aesculin Azide Agar (Lab M), respectively, 
according to the instructions of the manufacturer. The experiment was performed in triplicate. 

2.3. Gene expression assay 

RNA extraction was performed with the PureLink RNA Mini Kit (Ambion) and cDNA 
synthesis took place using the SuperScript First-Strand Synthesis System for RT-PCR (Invitrogen, 
Whaltham, MA, USA) according to the instruction of the manufacturer. The KAPA SYBR qPCR kit 
Master Mix (2× ) for ABI Prism (Kapa Biosystems, Boston, MA, USA) and the Step One Plus  
Real-Time PCR System (Applied Biosystems, Whaltham, MA, USA) were used for the RT-qPCR. 
Primers and PCR conditions are presented in Table 1. IGS, rpob and 16S-rRNA gene were evaluated 
as reference genes; prfA, sigB, hly, plcA, plcB, inlA, inlB, inlC and inlJ were selected due to their 
significance in L. monocytogenes virulence potential. Two RT reactions were performed for each 
sample containing ca. 0.1 μg RNA each. The resulting cDNA was used for gene expression 
assessment.  

2.4. Statistical analysis 

Ct values were processed according to Hadjilouka et al. [52]. The stability of the reference 
genes was assessed with the NormFinder application for Excel [54]. Then, PCR efficiency correction 
and normalization with the selected reference gene took place as well as conversion to relative 
expression and log2-values (fold change) according to Kubista et al. [55]. Growth of L. monocytogenes 
in BHI broth at the same conditions (i.e. inoculum level, incubation temperature and time) was 
considered as the control for relative expression of the target genes. The effect of co-culture was 
assessed by using monocultures as control and the effect of temperature by using growth at 5 °C as 
control. One-way ANOVA was applied to investigate the effect of temperature and inoculum level 
on the relative expression of prfA, sigB, hly, plcA, plcB, inlA, inlB, inlC and inlJ. 
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Table 1. Primer sequences, amplicon sizes and PCR conditions used for the gene expression  
assay (Hadjilouka et al. 2016). 

Genes  Sequence 
Concentration 

(uM) 
Amplicon  
size (bp) 

PCR 
efficiency

reference     
IGS IGS_f GGCCTATAGCTCAGCTGGTTA 1.2 135 2.03 
 IGS_r GCTGAGCTAAGGCCCCGTAAA 1.2   
rpob rpob_f CCGCGATGCGAAAACAAT 0.9 69 2.04 
 rpob_r CCWACAGAGATACGGTTATCRAATGC 0.9   
16S 16S_f GATGCATAGCCGACCTGAGA 0.9 114 2.05 
 16S_r CTCCGTCAGACTTTCGTCCA 0.9   
virulence-associated     
hly hly_f TACATTAGTGGAAAGATGG 1.2 153 1.98 
 hly_r ACATTCAAGCTATTATTTACA 1.2   
plcA plcA_f CTAGAAGCAGGAATACGGTACA 1.2 115 1.94 
 plcA_r ATTGAGTAATCGTTTCTAAT 1.2   
plcB plcB_f CAGGCTACCACTGTGCATATGAA 0.9 72 2.00 
 plcB_r CCATGTCTTCYGTTGCTTGATAATTG 0.9   
sigB sigB_f CCAAGAAAATGGCGATCAAGAC 1.2 166 2.13 
 sigB_r CGTTGCATCATATCTTCTAATAGCT 1.2   
inlA inlA_f AATGCTCAGGCAGCTACAMTTACA 0.9 114 2.12 
 inlA_r CGTGTCTGTTACRTTCGTTTTTCC 0.9   
inlB inlB_f AAGCAMGATTTCATGGGAGAGT 0.9 78 2.04 
 inlB_r TTACCGTTCCATCAACATCATAACTT 0.9   
inlC inlC_f ACTGGTCAGAAATGTGTGAATGA 0.9 80 2.06 
 inlC_r CCATCTGGGTCTTTGACAGT 0.9   
inlJ inlJ_f TGCGTAAATGCTCACATCCAAG 0.9 81 2.03 
 inlJ_r TTGCCCTTCAGCATCCAAGT 0.9   

Thermocycling conditions: initial denaturation at 95 °C for 20 sec and then 40× (95 °C for 10 sec, 60 °C for 30 sec, 

72 °C for 30 sec). Melting curve analysis: 95 °C for 15 sec then 60 °C for 1 min and raise to 95 °C at 0.3 oC/sec. 

3. Results and Discussion 

In Table 2, the population dynamics of L. monocytogenes and E. faecium during their co-culture 
at 5 and 37 °C is shown. Populations remained stable in all cases at 5 °C; when growth was noticed it 
did not exceed 1.0 log CFU·mL–1 for both microorganisms. E. faecium growth was evident in all 
sampling points at 37 °C; only in co-culture 1 E. faecium population was less than the respective of  
L. monocytogenes. In the latter case, the population of the pathogen remained below 9 log CFU·mL–1 

that was the population reached in monoculture (data not shown). Moreover, L. monocytogenes 
population in co-culture 2 grew only marginally and diminished below 4 log CFU·mL–1 in  
co-culture 3.  

The optimum growth temperature for both species under study is 37 °C. During monocultures at 
37 °C, both strains reached late exponential growth phase after 8 h and stationary phase after 24 h 
(data not shown). On the contrary, growth at 5 °C was much slower; during the 24 h of the current 
experiment, only marginal population increase was observed, i.e. less than 1 log CFU·mL–1.  
Co-culture of enterocinogenic strains with L. monocytogenes has been studied to some extent, both in 
vitro and in situ [31,56,57]. Regarding the former, Izquierdo et al. [57] inoculated both species at 4 
log CFU·mL–1 and incubated at 37 °C for 48 h. The population of L. monocytogenes strain reached 7 
log CFU·mL–1 and then decreased to 2 log CFU·mL–1, due to the bacteriocin production. Then, 
growth reinitiated and the population reached 7 log CFU·mL–1 by the end of incubation period, 
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probably due to the detrimental effect of the neutral pH value on the stability of the antibacterial 
activity [57]. In the present study, no conclusions can be drawn regarding the kinetics of  
L. monocytogenes inactivation since only two sampling times were assessed. However, the effect of 
E. faecium inoculum level on the extent of L. monocytogenes inactivation was evident. Growth of the 
pathogen’s population was only observed when E. faecium inoculum was 4 log CFU·mL–1. 

Table 2. Population dynamics of L. monocytogenes and E. faecium during their co-culture at 5 
and 37 °C. 

 5 °C 37 °C 

Co-culture  0 h 8 h 24 h 0 h 8 h 24 h 

1 E. faecium 4.10 (0.22) 4.68 (0.16) 5.04 (0.21) 4.02 (0.05) 7.68 (0.27) 7.78 (0.24)

 L. monocytogenes 7.13 (0.14) 7.15 (0.20) 7.45 (0.25) 7.07 (0.11) 8.07 (0.20) 8.32 (0.22)

2 E. faecium 5.03 (0.14) 5.30 (0.32) 5.60 (0.27) 5.05 (0.06) 8.42 (0.30) 8.37 (0.26)

 L. monocytogenes 7.08 (0.07) 7.10 (0.18) 7.41 (0.34) 7.08 (0.06) 7.39 (0.18) 7. 34 (0.16)

3 E. faecium 6.12 (0.14) 6.39 (0.15) 6.32 (0.24) 6.10 (0.08) 8.41 (0.30) 8.44 (0.28)

 L. monocytogenes 7.10 (0.12) 7.25 (0.27) 7.07 (0.35) 7.12 (0.10) < 4.00 < 4.00 

Co-culture of enterocinogenic E. faecium strain with L. monocytogenes at 4 °C was studied by 
Huang et al. [58]. In that study, reduction of L. monocytogenes population was already visible from 
the first day on incubation opposing the results obtained in the current study, in which L. 
monocytogenes population was stable during the 24 h of incubation at 5 °C. This may be due to the 
lower E. faecium inoculum level used and the fact that enterocin production is  
growth-associated [59]. 

Based on the above, L. monocytogenes virulence gene expression could be assessed in all cases 
at 5 °C but only in co-culture 1 at 37 °C. Assessment of gene expression in co-cultures may be 
reliably performed when the extracted RNA originates mainly from the microorganism under study. 
This can be achieved when the population of the microorganism under study is higher than the 
background microbiota [51] and the RNA extraction efficiencies are comparable [60]. 

In Figure 1 the effect of co-culture with enterocinogenic E. faecium strain LQC 20005 on  
L. monocytogenes key virulence gene expression after 8 h at 5 and 37 °C is shown. Regarding  
co-cultures at 5 °C, sigB expression exhibited no regulation and concomitantly was not affected by 
the inoculum level. Downregulation without any effect of the inoculum level was observed for plcA 
and plcB. Similarly, the rest of the genes under study were also downregulated but a statistically 
significant effect (P < 0.05) of the inoculum level was recognized. In the case of hly, inlB and inlJ, 
no regulation in the 1st co-culture and downregulation in the remaining ones were noticed. As far as 
co-culture at 37 °C was concerned, prfA, sigB, plcA, plcB, inlA, inlB and inlJ were not regulated 
while an increase in the transcription level was observed for hly and inlC.  

The effect of co-culture with enterocinogenic E. faecium strain LQC 20005 on  
L. monocytogenes key virulence gene expression after 24 h at 5 and 37 °C is exhibited in Figure 2. 
As in the previous case, during co-culture at 5 °C, sigB exhibited no regulation whereas the rest of 
the genes under study were downregulated. Moreover, a statistically significant effect of the 
inoculum level was observed for hly, inlA, inlB and inlJ. On the contrary, no such was noticed for 
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prfA, plcA, plcB and inlC. Regulation was not observed for plcA, plcB, inlA, inlB and inlC, whereas 
upregulation for sigB, hly and inlJ and downregulation for prfA were detected during co-culture at 37 °C. 

 

Figure 1. Effect of co-culture with enterotoxigenic E. faecium strain LQC 20005 on the 
relative expression of prfA, sigB, hly, plcA, plcB, inlA, inlB, inlC and inlJ of  
L. monocytogenes strain NCTC 10527 during co-cultures 1, 2 and 3 at 5 °C depicted with 
white, light grey and dark grey bars, respectively and co-culture 1 at 37 °C (black bars) 
after 8 h incubation. Error bars represent the standard deviation of the mean value. The 
asterisk indicates that expression of each gene during co-cultures 2 and 3 at 5 °C and  
co-culture 1 at 37 oC is significantly (P < 0.05) different from co-culture 1 at 5 °C. 

The effect of temperature on L. monocytogenes key virulence gene expression during 
monoculture and co-culture with E. faecium strain LQC 20005 is given in Figure 3. Transcription of 
prfA and sigB was not affected by temperature, in both mono- and co-culture. On the contrary, 
temperature affected expression of inlA, inlB, inlC and inlJ in both cases, plcA and plcB only in 
monoculture and hly only in co-culture. More accurately, all internalins under study were 
downregulated after both 8 and 24 h of monoculture at 37 °C compared to the respective at 5 °C. On 
the contrary, the internalins were upregulated during co-culture with the exception of inlB and inlJ 
after 8 h. Downregulation of plcA and plcB was evident during monoculture and upregulation of hly 
was only observed during co-culture at 37 °C compared to the respective at 5 °C.  

The expression of key virulence genes during growth in various food-related substrates has been 
studied to some extent. sigB and prfA possess central role in cellular homeostasis under stressful 
conditions and virulence [18,61–69]. Regarding their regulation in food-associated matrices, a rather 
mixed response has been reported [47,48,49,51,52]. In the present study, no regulation of sigB was 
observed during co-culture at 5 °C but an upregulation at 37 °C was evident. On the contrary, prfA 
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was downregulated during co-culture at both temperatures. Interestingly, no effect of the temperature 
itself on the expression of these genes was noticed. Regarding sigB, a differential regulation in 
various substrates according to temperature has already been reported [48,49,52].  

 

Figure 2. Effect of co-culture with enterotoxigenic E. faecium strain LQC 20005 on the 
relative expression of prfA, sigB, hly, plcA, plcB, inlA, inlB, inlC and inlJ of  
L. monocytogenes strain NCTC 10527 during co-cultures 1, 2 and 3 at 5 °C depicted with 
white, light grey and dark grey bars, respectively and co-culture 1 at 37 °C (black bars) 
after 24 h incubation. Error bars represent the standard deviation of the mean value. The 
asterisk indicates that expression of each gene during co-cultures 2 and 3 at 5 °C and  
co-culture 1 at 37 °C is significantly (P < 0.05) different from co-culture 1 at 5 °C. 

Transcription of prfA is initiated by the P1prfA and P2prfA promoters as well as the plcA promoter 
through the synthesis of bicistronic plcA-prfA mRNA. The latter is thermoregulated; it has been 
reported that below 37 °C the bicistronic message is absent, prfA transcription carries on through 
P2prfA promoter that is not thermoregulated and therefore the total amount of PrfA is reduced [35]. 
Thus, regarding the effect of temperature, an upregulation could be expected. Moreover, the 
downregulation of plcA that was observed during monoculture at 37 °C compared to 5 °C indicates 
that the mechanisms governing regulation, at least regarding LIPI-1, are not yet fully  
explored [52,70,71]. plcB regulation exhibited identical trend to the plcA one, i.e. downregulation 
during co-culture at 5 °C, no regulation during co-culture at 37 °C and downregulation of the 
monoculture at 37 compared to 5 °C. However, regulation of the two genes can hardly be correlated 
since the transcription of the latter is initiated through PactA. 
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Transcription of hly is initiated by three promoter sites, namely P1hly, P2hly and P3hly. According 
to Domann et al. [21], the two former are PrfA-dependent whereas the latter is not. Thus, the 
downregulation during co-culture at 5 °C may be assigned to any promoter since prfA was also 
downregulated. On the contrary, upregulation of hly during co-culture at 37 °C may only be assigned 
to P3hly since prfA was downregulated. To the same promoter the upregulation during co-culture at  
37 °C compared to 5 °C may be assigned since prfA was not regulated.  

 

Figure 3. Effect of temperature on the relative expression of prfA, sigB, hly, plcA, plcB, 
inlA, inlB, inlC and inlJ of L. monocytogenes strain NCTC 10527 during growth of 
monoculture (8 h white bars; 24 h light gray bars) or co-culture with enterotoxigenic  
E. faecium strain LQC 20005 (8 h dark grey bars; 24 h black bars) Error bars represent 
the standard deviation of the mean value. The asterisk indicates that expression of each 
gene in co-culture is significantly (P < 0.05) different from the expression in 
monoculture during the same sampling time. 

Transcription of internalins was uniform in most of the cases, i.e. with the exception of  
co-culture at 37 °C, in which inlC and inlJ were downregulated. Their downregulation during  
co-culture at 5 °C may be explained by the partial PrfA-dependence of their expression [72]. 
However, in the rest of the cases, existence of PrfA-independent regulation is suggested [52]. 

4. Conclusion 

The transciptomic response of L. monocytogenes key virulence genes to the co-culture with a 
bacteriocinogenic strain of E. faecium at 5 and 37 °C was successfully assessed for the first time.  
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Co-culture at 5 °C resulted in the downregulation of the majority of the genes under study 
accompanied in most of the cases by a statistically significant effect of the inoculum level. On the 
contrary, co-culture at 37 °C had no effect on the transcription level of most of the genes under study.  
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