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Abstract: We studied the uptake of Ni
2+

 and Ag
+ 

by bacterial strains of Paenibacillus, Pseudomonas, 

Burkholderia and Rhodococcus isolated from an acidic nutrient-poor boreal bog. The tests were run 

in two different growth media at two temperatures; +4 °C and +20 °C. All bacterial strains removed 

Ni
2+

 and Ag
+ 

from the solution with highest efficiencies shown by one of the Pseudomonas sp. and 

one of the Paenibacillus sp. strains. Highest Ni
2+

 uptake was found in 1% Tryptone solution, whereas 

the highest removal of Ag
+
 was obtained using 1% Yeast extract. Temperature affected the uptake of 

Ni
2+

 and Ag
+
, but statistically significant difference was found only for Ni

2+
. Based on tests carried 

out for the bacteria in nutrient broths and for fresh samples taken from varying depth up to seven 

meters from the ombrotrophic bog, from which the bacteria were isolated, we estimated that in in situ 

conditions of the bog the uptake of Ni
2+

 by bacteria accounts for approximately 0.02% of the total 

sorption in the uppermost moss layer, 0.01% in the peat layer, 0.02% in the gyttja layer and 0.1% in 

the bottom clay layer of the bog. For Ag
+ 

the corresponding values were 2.3% in the moss layer,  

0.04% in the peat layer, 0.2% in the gyttja and 0.03% in the clay layer. 

Keywords: Ni; Ag; bacteria; boreal; bog; uptake; Pseudomonas; Burkholderia; Rhodococcus; 

Paenibacillus 

 

1. Introduction 

Pollution of the environment by harmful contaminants such as heavy metals and radioactive 

material results from anthropogenic, mainly industrial, activities. Heavy metals present a severe 
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threat to biota, because of their accumulation in water bodies, high toxicity and low  

biodegradability [1]. The toxic effects of heavy metals on soil microorganism activity is well known, 

and heavy metals are known to inhibit bacterial cell growth and to affect both cell division and cell 

viability [2,3]. On the other hand, long-lived radioactive nuclides originating from nuclear industry 

can pose harmful radiation risks to humans and other biota. 

Nickel (Ni) mining and industrial manufacturing of stainless steel, batteries and accumulators, 

as well as Ni-electroplating and pigment and ceramics industry give rise to wastewaters containing 

undesired amounts of Ni [4–9]. Ni is released into the atmosphere from the combustion of coal, 

diesel oil and fuel oil, from the burning of waste and sewage as well as from other miscellaneous 

sources, like tobacco smoking [10–12]. From the radioecological point of view, 
63

Ni (half-life 96 

years) is an important nuclide in the nuclear power point and decommissioning wastes and 
59

Ni is 

classified as a high priority radionuclide in the biosphere safety assessments of the disposal of spent 

nuclear fuel [13]. This is due to its long half-life of 76 000 years and dominance in the calculated 

possible overall biosphere radiation doses, resulting from hypothetical escape of spent nuclear fuel 

from the deep geosphere repository [13–15].  

Ni belongs to the essential metals and it acts as an important component in many enzymes, 

which participate in a number of important metabolic reactions [1,9]. These metabolic reactions 

include ureolysis, hydrogen metabolism, methane biogenesis and acidogenesis [1]. However, Ni 

intake succeeding tolerable levels causes many types of disease including pulmonary fibrosis, renal 

edema, skin dermatitis and gastrointestinal distress [9]. In addition, Ni has been suspected to be an 

embryotoxin and teratogen [16]. 

Ni can occur in several different oxidation states, but under environmental conditions Ni(II) is 

prevalent [12]. In soils Ni exists in several forms including inorganic crystalline minerals or 

precipitates [17]. It also occurs complexed or adsorbed on different organic or inorganic cation 

exchange surfaces, or as a water-soluble free-ion or chelated to metal complexes in soil solution 

where a decrease in soil pH increases its mobility [17,18]. 

Silver (Ag) has been released to the environment through various industrial applications, such 

as photographic and imaging industry [19]. Ag is a non-essential metal and it can be highly toxic to a 

number of organisms, even at very low trace concentrations [20]. The Ag(I) ion also acts as an 

effective bactericide [21]. Ag compounds accumulate through food chains and they cause several 

diseases and disorders including corrosive damage of the gastrointestinal tract, diarrhea, respiratory 

irritation, discoloration of skin, vomiting, shock, convulsions and even death [22,23]. 

Ag(I) forms moderately insoluble compounds with sulphate (SO4
2-

) and sulphide, as well as 

with halides (Cl
-
, Br

-
, I

−
) [20]. Soluble multihalide complexes of Ag are also possible [20]. Soil 

organic matter (SOM) is known to bind Ag and both humic and fulvic acids have been shown to have 

strong sorption capacities for Ag [20,24,25]. It has been estimated, that 5% of the total Ag found in 

soils is biologically available, but in contaminated soils, however, this may be enough to adversely 

affect the soil’s micro- and macrobiological populations [20]. In spent nuclear fuel, 
108m

Ag is 

contained in the Ag-In-Cd alloy of the control rods. In the biosphere safety assessment calculations 
108m

Ag is assumed to be part of the radionuclides that are instantly released if a copper canister 

containing the spent fuel is penetrated by water (so called instant release fraction, IRF) and therefore 

it can cause a significant portion of the radiation dose caused by the radionuclides potentially 

released into the biosphere from the spent nuclear fuel repository [26]. 

Two types of accumulation processes of metals can be found in microorganisms, namely 
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bioaccumulation and biosorption. Bioaccumulation is an active transport mechanism in which energy 

is required and therefore it is dependent on the metabolic activity of the cell, which in turn can be 

significantly affected by the presence of stable and radioactive ions [27]. Bioaccumulation is 

typically a relatively slow process and requires time for uptake by the microorganism [28]. In 

contrast, biosorption, which can also be reversible, is relatively fast [27]. Biosorption comprises 

physicochemical interactions between the functional groups (hydroxyl, carboxyl, sulfhydryl groups 

and phosphate groups of lipids, proteins and polysaccharides) of the cell surface and the adsorbing 

metal and involves physical adsorption, ion exchange, complexation and precipitation [29,30]. 

External factors such as pH, organic material (complexing agents), other ions in solution, cell 

metabolic products (which may cause metal precipitation) and temperature affect biosorption 

processes [30]. Among microorganisms, it is mainly the bacterial cell wall that contains chemical 

compounds with sites capable of passive binding of metals. In addition, bacteria are excellent 

biosorbents because of their high surface-to-volume ratio and a high content of potentially active 

chemisorption sites, such as teichoic acid found in the cell walls of Gram-positive bacteria [32–34]. 

In recent years, research has been focused on the use of microorganisms in the removal and 

possible recovery of heavy metals and radionuclides from various industrial wastes [1,7,30,32,35]. 

These applications typically rely on biosorption, in which the actual active biomass consists of dead 

and metabolically inactive cells of algae, fungi or bacteria [36–41]. However, microorganisms 

potentially affect the behaviour of metals and radionuclides also under environmental conditions 

using active mechanisms [42–44]. 

In the boreal region, nutrient-poor bogs represent unique ecological niches, with distinct 

microbial populations. However, so far there is only limited knowledge about the metabolism of the 

microbes inhabiting these northern areas. In the present study we used strains of Pseudomonas sp., 

Burkholderia sp., Paenibacillus sp. and Rhodococcus sp. previously isolated from the boreal 

ombrotrophic Lastensuo bog [45] to examine the uptake of Ni
2+

 and Ag
+
 by viable bacterial cells of 

these strains in different nutrient and temperature conditions. Incubation times up to 14 days were 

used to allow active bioaccumulation processes to occur, in addition to faster biosorption processes, 

in these relatively slowly growing boreal strains. For example, Ni is known to be taken up, in 

addition to biosorption onto cell walls, into prokaryotic cells by two types of high-affinity transport; 

through ABC-type transporters and by mechanism that makes use of permeases best described in 

Escherichia coli, Ralstonia eutropha, Helicobacter pylori and Rhodococcus rhodochrous J1 [43]. We 

also determined the uptake of Ni
2+

 and Ag
+
 by the peat profile, from which the bacteria were isolated, 

and used this information together with the data obtained from the bacterial uptake experiments to 

estimate the impact of isolated bacterial strains for both Ni
2+

 and Ag
+
 uptake in acidic bog 

environment in in situ conditions. 

2. Materials and Method 

2.1. Description of the site 

Our sampling site, Lastensuo bog, is located on the western coast of Finland. This raised, 

ombrotrophic bog is surrounded by hummocky till soils and has a surface area of 440 ha [46,47]. The 

maximum thickness of the peat layer in the middle part of the bog is approximately six meters and 

below the peat layers a clay layer, derived from former seabed, is found. Mainly in the middle parts 
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of the bog, gyttja is found on top of this clay layer. Our sampling site is situated on the middle part of 

the bog, on the area on which mainly four mire types are found: treeless or near-treeless Sphagnum 

fuscum bog, Sphagnum fuscum pine bog, ridge hollow pine bog and hollow bog [46]. The main peat 

types on this area include Sphagnum peat, sedge-moss peat, sedge peat and few-flowered sedge [46]. 

Based on radiocarbon dating peat accumulation on this area started 5300 years ago and the general 

average peat accumulation has been 1.08 mm/a [46]. 

2.2. Sampling 

A core sample was collected from the middle part of the Lastensuo bog (61° 17ʹ 31ʺ, 21° 50ʹ 22ʺ, 

WGS84 coordinate system) and samples from seven different bog layers: 0.5–1.0 m, 1.5–2.0 m, 2.5–

3.0 m, 3.5–4.0 m, 4.5–5.0 m, 5.5–6.0 m and 6.5–7.0 m were obtained. Peat samples were collected 

using a Russian peat corer with a nest length of 50 cm and diameter of 15 cm. Surface moss (mainly 

Sphagnum spp.) was also collected. The layers from 0.5 to 5.0 m consisted of peat with variable 

degree of decomposition. The layer from 5.5–6.0 m was gyttja and the lowest layer from 6.5–7.0 m 

was light grey clay. The samples were taken aseptically in 50 ml sterile centrifugal tubes, Parafilm 

was attached around the caps and the tubes were sealed in plastic, brought to the laboratory in 

cooling bags and stored frozen at −18 °C. The samples were thawed immediately before use and 

used as such. 

The temperature of each bog layer was recorded immediately after the core sample was taken to 

the surface in early summer, 2
nd

 of June 2015. In the surface layer a temperature of 10.3 °C was 

measured. In lower layers, the temperature was relatively constant, with average of 6.6 °C. In May 

2015 the average temperature at the west-coastal region of Finland (Seinäjoki Pelmaa region) was 

approximately 9 °C and in June 12 °C [48]. Typical average temperature in this region in July is 

around 16–20 °C [48]. 

2.3. Bacterial isolates 

The isolation and identification of the bacterial isolates used in this study has been described in 

detail in Lusa et al. [45]. Shortly, the bacterial strains were isolated from the peat of Lastensuo Bog 

in June 2013 [45]. The strains were identified by 16S rRNA gene sequencing to belong to the genera 

Pseudomonas (isolates PS-O-L and T5-6-I), Rhodococcus (isolate B6-7-CB), Paenibacillus (isolates 

B6-7-W and V0-1-LW) and Burkholderia (isolate K5-6-SY) as described in [45] and the sequences 

were deposited in Genebank under accession numbers KP100420–KP100425. Three of these isolates 

(Pseudomonas T5-6-I, Pseudomonas PS-0-L and Burkholderia K5-6-SY) were stained Gram 

negative and the other three (Paenibacillus B6-7-W, Paenibacillus V0-1-LW and Rhodococcus 

B6-7-CB) Gram positive [45]. 

2.4. Bacterial culture conditions and preparation of biosorption experiments 

Isolated bacterial strains were cultured aerobically on sterile PCA growth plates (PCA, 

Merckoplate®) at 20 °C in the dark and the colonies were moved onto new plates weekly. A batch 

method using radioactive tracers was used to determine the uptake of Ni
2+

 and Ag
+
 by the bacteria. 

The uptake tests for triplicate reactions were done using 
63

Ni (carrier 2 pg Ni(II)/Bq) and 
110m

Ag 
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(Ag(I)CN form, no carrier) tracers in two different liquid media (A and B). Medium A comprised 1% 

Tryptone in which 0.5% NaCl was added and medium B 1% Yeast extract in which 0.5% NaCl was 

added. Bacterial colonies from the PCA plates were moved into sterile water using a sterile loop and 

added until the turbidity corresponded to a McFarland standard nro 6, which corresponds to an 

approximate cell density of 18 × 10
8
 CFU / mL. The suspensions were weighted and 2 mL of this 

suspension was added to 5 mL of medium A or B, after which 200 Bq of 
63

Ni or 
110m

Ag per 

suspension
 
was added. For experiments with 

63
Ni the suspensions were incubated for 1, 3, 7 or 14 

days at +4 °C or +20 °C in the dark. For 
110m

Ag an incubation period of seven days was used and the 

samples were incubated in the dark. After incubation the suspensions were filtered through a 0.2 µm 

sterile membrane filter and the activity of the resulting solutions was measured using a NaI(Tl) 

-gammaspectrometer (Wizard® automatic gammacounter, PerkinElmer). In addition, suspensions 

without added bacteria were prepared accordingly and measured to assure that no sorption of Ni
2+

 or 

Ag
+
 occurred on laboratory equipment, filters or nutrient broth solutions. The uptake of Ni

2+
 and Ag

+
 

by bacterial cells was calculated from the difference between initial and final (after filtration) Ni
2+

 

and Ag
+
 concentration in the solution and expressed as per cent (%) removed. 

2.5. Estimation of the proportion of biouptake of the total uptake of Ni
2+ 

and Ag
+
 by the bacterial 

isolates in the different layers of Lastensuo bog 

The proportion of biouptake of the total uptake by bacteria examined in this study in the 

different layers of Lastensuo bog was estimated based on the uptake of Ni
2+

 and Ag
+
 by fresh moss, 

peat, gyttja and clay samples (from now on called overburden samples) and the size of the bacterial 

communities of the Lastensuo bog [49]. For these calculation the uptake of Ni
2+

 and Ag
+
 by fresh 

overburden samples was determined using a batch method (see [50]) as follows: 0.5 g of each sample 

were weighted into a sterile 50 ml centrifuge tube and 25 ml of simulated bog water (Table 1) 

containing 200 Bq/sample of 
63

Ni or 
110m

Ag tracer was added to the tubes. The samples were 

incubated for 7 days in the dark, under constant stirring in an over-head shaker (10 rpm), which after 

the samples were filtered through a 0.2 µm syringe filter (Supor membrane filter, Pall Corp., Port 

Washington, NY, USA) and the solution was used for gamma spectrometric determination of 
63

Ni or 
110m

Ag activity. 

Table 1. Simulated bog water used in the uptake experiments with fresh overburden 

samples as well as in recolonization experiments with Ni. For more information of the 

simulated bog water see [50]. 

 Simulated bog water 

 mg/L meq/L* 

Na 3.91 0.17 

Mg 0.47 0.04 

K 2.03 0.05 

Ca 1.98 0.10 

Cl 5.34 0.15 

NO3 2.40 0.04 

SO4 8.17 0.17 

      *meq = milliequivalents 
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The uptake of Ni
2+

 or Ag
+
 was calculated as the difference between initial and final activity in 

the solution and expressed as distribution coefficients, Kd (L/kg DW) (see [50]), which were 

calculated using equation 

Kd = [(Ai–Af) / Af] × [V(L) / m(kg)]         (1) 

where Ai is the initial 
63

Ni or 
110m

Ag activity concentration (Bq/L), Af is the final activity 

concentration of the solution (Bq/L), V is the solution volume (L), and m is sample mass (kg DW). 

All calculations were performed using dry mass determined at 105 °C. In addition, the average 

biouptake of the bacterial strains was calculated in the same manner as for the uptake for overburden 

samples and expressed as Kd. In these calculations m is the bacterial dry mass at t = 0 (kg). Initial 

mass added was used in the Kd calculations, as the difference in the uptake between different bacteria 

over the same time period was to be studied. The proportion (P(%)) of Ni
2+

 and Ag
+
 uptake by 

bacteria was thereafter calculated using equation. 

P(%) = (NL × mB × Kdb) / KdL × 100%         (2) 

where NL is the bacterial number of the layer (1/kg
−1

), mB is the mass of bacteria (kg DW), Kdb is the 

average uptake of bacteria at +20 °C (L/kg DW) and KdL is the average uptake of overburden 

samples (L/kg DW). Uptake of Ni
2+

 and Ag
+
 by overburden samples was deduced from the 

experiments done using unsterilized moss, peat, gyttja and clay samples. For the calculations 

bacterial mass of 0.28 pg DW [51] was used. The bacterial numbers were previously determined 

from the moss, peat, gyttja and clay samples collected in 2013 [49], that were used in the present 

study and bacterial numbers of 2.5 × 10
10

 g
−1

 DW in the moss and gyttja layers, 5 × 10
9
 g

−1
 DW in 

the peat layer and 2 × 10
9
 g

−1
 DW in the clay layer [49] were used in the calculations. 

2.6. Uptake of Ni
2+

 in sterilized samples after recolonization with bacteria 

The effect of microbes on the uptake of Ni
2+

 in the environment was examined using bacterial 

and microbial ―inoculated‖ moss, peat, gyttja and clay (overburden) samples. These inoculated 

samples were prepared by adding isolated bacterial strains or microbial extract from peat or clay to 

the overburden samples sterilized by gamma irradiation. Change in the removal of Ni
2+

 from the bog 

water solution was compared with the sterilized overburden samples. This was done to examine 

whether Ni
2+

 uptake could be reestablished by restoring microbial activity. For these experiments 

0.25 g of each of the fresh overburden samples was weighed into a 50 ml sterile centrifuge tube and 

sent to Scandinavian Clinics Estonia OÜ for gamma irradiation. The samples were irradiated two 

times; the second irradiation was done 7 days after the initial irradiation. The total dose was 96.0 

kGy ± 5%. The microbial extract was prepared from fresh peat (0.5–1.0 m) and clay (6.5–7.0 m) 

samples by adding fresh sample to sterile MilliQ water in a mass-to-volume proportion of 1:1. The 

sample was incubated at +20 °C for five days in the dark. After incubation peat/clay was allowed to 

settle and the supernatant containing the microbes was removed by pipetting. Thereafter, 2 mL of the 

supernatant i.e. the obtained microbial extract or 2 mL of similar bacterial solution as for the 

experiments with broths A or B and 12.5 mL of sterile bog water solution (Table 1) were used for the 

recolonization experiments of sterilized peat and clay samples. 200 Bq of 
63

Ni tracer was added and 

the samples were further incubated for 7 days under constant stirring, which after the samples were 

filtered through a 0.2 µm syringe filter (Supor membrane filter, Pall Corp., Port Washington, NY, 
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USA) and the solution was used for the gamma spectrometric determination of 
63

Ni activity. The 

uptake was expressed as the uptake percentage (%) calculated from the difference between initial and 

final activity in the solution. The uptake of Ni
2+

 from the solution in the recolonized samples was 

compared to merely sterilized samples with only sterile bog water as well as to un-irradiated fresh 

samples. 

2.7. Statistical analyses 

To study the statistical difference between the different growth conditions i.e. the difference 

between nutrient broths A and B and the temperatures +4 °C and +20 °C the analysis of variance was 

performed using OriginPro 8.6 (OriginLab®) and one-way ANOVA at the p < 0.05 level. Analysis of 

variance was done for all studied bacteria separately for temperature and nutrient broth. In addition, 

the ANOVA analysis for the statistical differences in the uptake between different bacteria and 

bacterial groups (Pseudomonas, Paenibacillus and Burkholderia/Rhodococcus and Gram
+
 versus 

Gram− bacteria) was done. 

3. Results 

3.1. Uptake of Ni
2+

 by the bacterial isolates in nutrient broth 

The uptake of Ni
2+

 by the bacterial isolates of Pseudomonas (PS-0-L and T5-6-I), Rhodococcus 

(B6-7-CB), Paenibacillus (V0-1-LW and B6-7-W) and Burkholderia (K5-6-SY) varied depending on 

the incubation temperature and nutrient source (broths A and B or sterilized peat) (Figure 1. and 2.). 

For all studied bacteria Ni
2+

 uptake was found significantly higher at +20 °C, compared to the uptake 

measured at +4 °C. At the latter temperature the average Ni
2+

 uptake of all bacteria in both nutrient 

broths (A and B) after 7 days of incubation was only 2.3 ± 2.3% while at +20 °C the corresponding 

value was 16.1 ± 8.2%. 

Highest uptake for Ni
2+

 was recorded for Pseudomonas PS-0-L, for which the maximum uptake 

of 48% was seen in medium A (1% Tryptone) after 14 days incubation. Moderately high uptake for 

Pseudomonas PS-0-L was also observed in medium B (1% Yeast extract), where the uptake was 35% 

and 34% after 7 and 14 days incubation, respectively. In addition, for Paenibacillus B6-7-W and 

Rhodococcus B6-7-CB moderately high uptake of 26% and 33%, respectively, was observed in 

medium B. For Paenibacillus B6-7-W highest uptake was observed in medium B and for 

Rhodococcus B6-7-CB in medium A after 7 and 14 days of incubation, respectively. 

For Paenibacillus V0-1-LW, Pseudomonas T5-6-I and Burkholderia K5-6-SY somewhat 

weaker uptake for Ni
2+

 was observed, with uptake between 11–16%. 

Based on the analysis of variance (ANOVA), the difference in the Ni
2+

 uptake at the two 

different incubation temperatures (4 °C and 20 °C) was statistically significant (Fcrit = 4.04, F = 25.5, 

p < 0.01). For Ni
2+

 uptake no statistically significant difference between the two nutrient broths, 1% 

Tryptone and 1% Yeast extract (Fcrit = 3.99, F = 0.10, p = 0.75), nor between different bacterial 

groups (Fcrit = 3.20, F = 0.13, p = 0.87) or Gram+/Gram− bacteria (Fcrit = 4.05, F = 1.39, p = 0.25) 

were found. 
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Figure 1. Uptake (%) of Ni
2+

 from 1% Tryptone solution by isolates of Pseudomonas 

(PS-0-L, T5-6-I), Rhodococcus (B6-7-CB), Paenibacillus (V0-1-LW, B6-7-W) and 

Burkholderia (K5-6-SY). A) 4 °C, B) 20 °C. In A) the uptake of Ni
2+

by V0-1-LW was 

not determined. The error indicated is the standard deviation of three parallel 

determinations. 

 

Figure 2. Uptake (%) of Ni
2+

 from 1% Yeast solution by isolates of Pseudomonas 

(PS-0-L, T5-6-I), Rhodococcus (B6-7-CB), Paenibacillus (V0-1-LW, B6-7-W) and 

Burkholderia (K5-6-SY). A) 4 °C, B) 20 °C. In A) the uptake of Ni
2+

 after 14 days 

incubation or by V0-1-LW was not determined. The error indicated is the standard 

deviation of three parallel determinations. 

3.2. Uptake of Ni
2+

 in bacterial and microbial sterilized and inoculated bog samples 

The sterilization of overburden samples by gamma irradiation decreased total Ni
2+

 uptake in all 

studied overburden layers (moss, peat, gyttja and clay) (Figure 3) and the difference between 

unsterilized and sterilized samples was found statistically significant using ANOVA (Fcrit = 4.2, F = 

10.8, p < 0.01). It was assumed, that the difference between uptake in sterilized samples and 

unsterilized overburden samples was mainly due to the microbial interactions. In fresh, unsterilized 

overburden sample there are multiple interactions, abiotic and biotic, which can affect the total Ni
2+

 

uptake. These include biouptake as well as various oxidation/reduction type reactions, which can be 

induced by microbes. The abiotic processes include direct ion exchange and sorption on the organic 



128 

AIMS Microbiology  Volume 2, Issue 2, 120-137. 

(e.g. carboxylic groups found in soil organic matter) and inorganic materials (mineral fraction) found 

in the sample. In sterilized sample, the microbial processes are eliminated, but abiotic processes 

remain including dead biomass. Therefore, it can be assumed that this difference between sterilized 

and unsterilized samples results from the active/living microbiota. 

Adding the isolated bacterial strains or microbial extract to sterilized overburden samples 

increased the uptake of Ni
2+

 in all examined samples, although the efficiency depended on the added 

bacterial strains or microbial extracts (Figure 3). The greatest removal of Ni
2+

, compared to the 

sterilized sample, was observed after addition of microbial extract from peat to the sterilized surface 

moss sample in which case the removal increased from 56% to 88%. Similarly, as microbial extract 

from peat was added to the sterilized peat sample, the removal of Ni
2+

 increased from 66% to 88%. 

In the gyttja sample the increase in Ni
2+

 uptake induced by the microbial extract was low, from 65% 

to 74%. The microbial extract from clay had no significant effect on the Ni
2+

 removal. 

Burkholderia K5-6-SY had the most prominent effect of the bacterial strains on the Ni
2+

 

removal from simulated bog water. In all studied overburden samples this bacterium increased the 

removal of Ni
2+

 most compared to the other bacterial strains. The most significant change in the Ni
2+

 

removal was observed in the peat sample, in which Ni
2+

 removal increased (similarly to the peat 

microbial extract) from 66% to 88%. In the clay sample, a significant increase from 12% to 20% was 

also observed after addition of Burkholderia K5-6-SY. 

When Ni
2+

 uptake in sterilized overburden samples with added bacteria or microbial extract 

were compared with unsterilized, pristine overburden samples, it was found that addition of 

microbial extract from peat to the sterilized surface sample restored Ni
2+

 uptake to the level found in 

the pristine sample. As microbial extract from peat or Burkholderia K5-6-SY was added to sterilized 

peat, Ni
2+

 uptake was somewhat higher (88%) than in pristine samples (81%). 

 

Figure 3. Uptake (%) of Ni
2+

 from sterilized overburden solution after addition of 

Pseudomonas (PS-0-L, T5-6-I), Rhodococcus (B6-7-CB), Paenibacillus (V0-1-LW, 

B6-7-W) and Burkholderia (K5-6-SY) strains as well as microbial extracts from peat and 

clay layers of Lastensuo bog. 

3.3. Uptake of Ag
+ 

by the bacterial strains in different nutrient broth 

The uptake of Ag
+ 

by the bacterial isolates depended on the incubation temperature and nutrient 

source (broths A and B) (Figure 4). As for the Ni
2+

 uptake, the Ag
+
 uptake was lower at lower 
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incubation temperature although the effect was less prominent; the average uptake of Ag
+ 

at +4°C 

was 18% and at +20 °C 30% after seven days incubation. Furthermore, for all studied bacteria Ag
+ 

uptake was significantly higher than the Ni
2+

 uptake. At +4°C the Ag
+
 uptake was on average 

eight-fold that observed for Ni
2+

 uptake and at +20 °C the Ag
+ 

uptake was two times higher than the 

Ni
2+

 uptake. 

Highest Ag
+ 

uptake was observed for Paenibacillus V0-1-LW and Pseudomonas PS-0-L, where 

the maximum uptake was 73% and 49%, respectively in 1% Yeast extract at +20 °C. 

Paenibacillus B6-7-W, Pseudomonas T5-6-I, Rhodococcus B6-7-CB and Burkholderia 

K5-6-SY showed a slightly weaker uptake of Ag
+
, with a maximum uptake between 15–31% in 1% 

Tryptone at +20 °C. For Pseudomonas T5-6-I there was no difference in Ag
+ 

uptake between the two 

incubation temperatures in 1% Tryptone. For all other studied bacteria Ag
+ 

uptake was on average 

two times higher at +20 °C, compared to the uptake at +4 °C in both nutrient broths. 

The most prominent difference in the maximum Ag
+ 

uptake, was observed between the two 

Paenibacillus sp. strains V0-1-LW and B6-7-W. The maximum uptake in the former (73%) was four 

times higher than the maximum uptake observed in the latter (17%). A particularly clear difference 

between these two strains of Paenibacillus was observed at +4 °C in 1% Yeast extract, where the Ag
+ 

uptake for Paenibacillus V0-1-LW was 54%, but for B6-7-W only 3.5%. 

For Ag
+ 

uptake, no statistically significant differences were found between different incubation 

temperatures (Fcrit = 4.30, F = 3.06, p = 0.09), nutrient broths (Fcrit = 4.30, F = 0.16, p = 0.69), 

bacterial groups (Fcrit = 3.47, F = 2.00, p = 0.16) or Gram+/Gram− bacteria (Fcrit = 4.30, F = 0.12, p = 

0.73). 

 

Figure 4. Uptake (%) of Ag
+ 

from A) 1% Tryptone and B) 1% Yeast extract solutions by 

isolates of Pseudomonas (PS-0-L, T5-6-I), Rhodococcus (B6-7-CB), Paenibacillus 

(V0-1-LW, B6-7-W) and Burkholderia (K5-6-SY) at +4°C and +20 °C. The error 

indicated is a standard deviation of three parallel determinations. 

3.4. Estimation of the total biouptake proportion of Ni
2+

 and Ag
+ 

by Pseudomonas, Rhodococcus, 

Paenibacillus and Burkholderia in the different layers of Lastensuo bog 

Ni
2+

 uptake by the fresh bog samples was highest in the gyttja sample. In this layer the 

distribution coefficient (Kd value) for Ni
2+

 uptake was 19 900 L/kg DW (Table 2). In the moss and 

peat layers somewhat lower Kd values of 13 060 L/kg DW and 7800 L/kg DW, respectively, were 
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measured. The clay sample showed the lowest uptake, with Kd value of 190 L/kg DW. For Ag
+ 

the Kd 

values in moss, peat, gyttja and clay layers were 1700 L/kg DW, 21 800 L/kg DW, 17 800 L/kg DW 

and 10 700 L/kg DW, respectively. For the bacteria the average uptake at +20°C, expressed as Kdb 

were 440 L/kg DW for Ni
2+ 

and 5620 L/kg DW for
 
Ag

+
. 

Using equation 2, we estimated that the proportion of Ni
2+

 uptake by the added Pseudomonas 

(PS-0-L, T5-6-I), Rhodococcus (B6-7-CB), Paenibacillus (V0-1-LW, B6-7-W) and Burkholderia 

(K5-6-SY) accounted for approximately 0.02% of the total sorption in the moss layer, 0.01% in the 

peat layer, 0.02% in the gyttja layer and 0.1% in the clay layer of the bog. For Ag
+ 

the corresponding 

values were 2.3% in the moss layer, 0.04% in the peat layer, 0.2% in the gyttja and 0.03% in the clay 

layer. 

Table 2. The distribution coefficients (Kd values) in fresh surface moss, peat, gyttja and 

clay samples of Lastensuo bog. 

 Ni uptake Ag uptake 

 L/kg DW L/kg DW 

Surface 13 100 1 700 

Peat 7 800 21 800 

Gyttja 19 900 17 800 

Clay 190 10 700 

4. Discussion 

59
Ni and 

108m
Ag are among the most important radionuclides in the long-term biosphere safety 

assessments of spent nuclear fuel disposal due to their long half-life, rapid release from the fuel after 

contact with groundwater and rather easy migration through the bedrock [13,15,26]. In addition, the 

stable isotopes of both of these metals are highly toxic in the environment and potentially accumulate 

in the food chains [9,23]. 

In recent years, research has focused on the use of microorganisms in the removal and potential 

salvage of metals and radionuclides from industrial waste waters [27]. However, these studies have 

focused on the use of algae and fungi, like Oedogonium hatei, Sphaeroplea Algae, Aspergillus niger 

and Trichoderma viride [1,52–54] in Ni bioremoval. Fewer studies of Ni
2+

 biosorption on bacteria, 

such as Bacillus sp. and Pseudomonas fluorescens are available [27,35]. In the case of Ag
+
, 

biosorption studies have been focused on the use of e.g. cyanobacteria (Spirulina platensis [55,56]) 

and baker’s yeast (Saccharomyces cerecisiae [57,58]). Of bacteria Magnetospirillum 

gryphiswaldense, Bacillus licheniformis, Streptomyces spp., Arthrobacter oxidas and A. globiformis 

have been used [56,59]. The bacteria used in the Ni
2+

 and Ag
+
 biosorption studies have been isolated 

from e.g. electroplating sludges and effluents (e.g. P. fluorescens, Bacillus sp.), gold mine (B. 

licheniformis), basalts rocks (A. oxidas and A. globiformis) and the rhizosphere of soybeans 

(Streptomyces spp.) [27,35,56,59]. Bioremoval of heavy metals by microorganisms has however 

been reported to be dependent, in addition to the chemical nature of heavy metal, on the species of 

microorganism as well as environmental conditions [60]. 

Acidic, ombrotrophic bogs are unique habitats that are widely distributed in cold, temperate 

regions found in boreal ecosystems of the Northern hemisphere. These areas, with high importance 

for biodiversity, have distinctive microbial populations [49,61–64], affected by low nutrient levels, 
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acidic water and changing seasons from cold, snow-covered winters to temperate summers. However, 

to our knowledge, studies on the biosorption of heavy metals on bacteria, isolated from boreal 

environment are scarce. 

In this study all tested bacterial strains removed both Ni and Ag from the solution. The uptake 

efficiency was however affected by incubation temperature and nutrient source. A higher uptake of 

Ni and Ag was found at +20 °C than at +4 °C. These two temperatures were chosen as they can be 

expected to be found in a bog in the temperate climate prevailing in Finland, where the temperature 

of deeper bog layers is typically around +4 °C and the upper layers may experience +20 °C during 

the summer months (July and August). The effect of the nutrient source clearly affected the uptake 

efficiency of the different metal ions and the highest uptake of Ni was detected in 1% Tryptone broth 

whereas for Ag uptake the 1% Yeast extract broth was most efficient. This may be due to the 

different nutrient requirements by the bacterial isolates, since Pseudomonas sp. PS-0-L removed 48% 

Ni from the solution when 1% Tryptone was used and only 35% when 1% Yeast extract was used. In 

contrast, the most efficient Ag remover, Paenibacillus sp. V0-1-LW removed 73% Ag from the 

solution when 1% Yeast extract was used, but only 42% when 1% Tryptone was used.  

Each bacterial strain had unique uptake properties. The most significant difference in the 

maximum uptake of Ni, was observed between the two Pseudomonas sp. strains, as the maximum 

uptake in PS-0-L was 76% higher than that observed in T5-6-I. This is not surprising as the two 

isolates also differed in the utilization patterns of different substrates tested earlier by the RapID 

system [45]. For the two Paenibacillus strains V0-1-LW and B6-7-W the difference in Ni
2+

 uptake 

was considerably lower; the maximum uptake in V0-1-LW was 63% of the maximum uptake 

observed in B6-7-W. For Ag
+
, the most prominent difference in the maximum uptake was observed 

between two strains of Paenibacillus sp., 73% and 17% for V0-1-LW and B6-7-W, respectively, 

especially at +4 °C in 1% Yeast extract broth. Thus, our results indicate that the uptake of Ni and Ag 

is dependent on the strain of bacteria, as well as on the species. The difference in the Ni and Ag 

uptake between the different bacterial species may be related to the chemical properties of metal 

sorbates and the properties of functional groups and cell wall structures of each bacterium. For both 

Gram negative and Gram positive bacteria the most important binding sites found in the cell wall are 

carboxyl (-COOH), phosphoryl (-PO3
2−

) and sulfhydryl (-SH) sites, and these groups differ in their 

affinity and specifity for metal binding [65,66]. Uptake on these sites is accompanied by 

displacement of protons and therefore depends on the degree of protonation, which in turn is affected 

by the pH value. Typically, bacterial cells exhibit buffering capacity, which for example in B. subtilis 

and S. oneidensis ranges from approximately pH 3 to pH 9 [66]. This kind of buffering capacity is a 

result of distinct acidic sites located on the cell walls [66] and is of importance in changing 

environmental conditions. In addition to the biosorption on the functional groups on cell walls, 

accumulation of intra- or extracellular precipitates is also possible [27] For example, for P. 

fluorescens 4F39 accumulation of dense Ni structures on the cell wall, corresponding to two 

orientations of Ni(OH)2 crystals, has been demonstrated [27]. 

Biosorption is possible both on living and dead cells, but mechanisms in which heavy metals 

and radionuclides are taken up using active bioaccumulation processes are present only in living  

cells [43,67,68]. For example, Ni
2+

 is known to be taken up into prokaryotic cells via ATP-binding 

cassette transporters (ABC-type transporters) and Ni-specific permeases [43]. In these mechanisms, 

the Ni
2+

 ion is specifically incorporated into Ni-dependent enzymes like urease, NiFe-hydrogenase, 

carbon monoxide dehydrogenase, methyl coenzyme M reductase, certain superoxide dismutases, 
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some glyoxylases and methylenediurease [43]. Incorporation usually occurs via complex assembly 

processes and requires accessory proteins and additional non-protein components [43]. These 

mechanisms are typically significantly slower than direct biosorption onto cell walls. In our samples, 

it was seen that uptake of Ni
2+

 increased with longer incubation times (7 and 14 days), compared to 

shorter incubation times (1 and 3 days). One explanation for this increase, in addition to slower 

bioaccumulation processes, is a possible change in the cell numbers and activities of the bacterial 

population in the sample over time. Over longer period of time the population of the bacteria initially 

added to the sample increases up to a certain point, which after the population starts to decrease, as 

can be seen as a decrease in the Ni
2+

 uptake with longer incubations. It was observed that after one 

day of incubation at +20 °C, Ni
2+

 uptake was on average only 3.3% (range 0.9–7.7%). This uptake 

can be assumed to be mostly a result from direct biosorption on cell walls. After 3 days incubation 

the average uptake increased to 7.8% (range 2.3–20%). After longer incubation periods the average 

uptake was significantly higher, 16% (range 5.3–35%) and 19% (range 1.2–48%), after 7 and 14 

days, respectively. The major part of this slow accumulation is expected to result from slow 

bioaccumulation processes involving active transport by living cells and also changes in extracellular 

matrix can affect the uptake. We assume that under in situ conditions of the bog, these slow 

processes are an important part of Ni
2+

 retention. It was estimated, based on the sorption experiments 

done with fresh overburden samples, that in in situ conditions of the bog the bacterial uptake of Ni
2+

 

accounts for approximately 0.02% of the total sorption in the moss layer, 0.01% in the peat layer, 

0.02% in the gyttja layer and 0.1% in the clay layer of the bog. This estimation was however done 

using average uptake of Ni
2+

 of only six isolated bacterial strains, which represented a minority of 

the total bacterial population [49], not to mention the whole microbial population of the bog. It 

should also be noted that these calculations are rough estimates of the total biouptake proportion, as 

the total metal sorption and bioaccumulation may depend on the physiological status of the bacterial 

populations and therefore the number of bacteria might not correlate directly with metal sorption. 

Therefore, also another approach, namely the samples re-inoculated with bacterial and microbial 

extracts, was used in this study. It was found that sterilization of the overburden samples in the 

surface, peat and gyttja layers of the bog decreased Ni
2+

 retention from an average of 80% to an 

average of 50%, with most prominent decrease from 91% to 56%, observed in the surface moss layer. 

Furthermore, it was observed that recolonization of the sterilized overburden samples with isolated 

bacteria and microbes extracted from fresh overburden samples, restored the retention of Ni
2+

 in the 

sterilized overburden samples to the same level as was observed in the unsterilized ones. 

Previously Ni uptake has been studied using Pseudomonas fluorescens [27]. As we compared 

the Ni uptake of Pseudomonas PS-0-L of our study to the Ni uptake of Pseudomonas fluorescens, it 

was found that the uptake by Pseudomonas PS-0-L is approximately only 1% of the uptake observed 

for Pseudomonas fluorescens [27]. However, previously we used the same bacterial isolates that 

were used in this study to examine their uptake capacity for iodide (I
−
) [45], selenite (SeO3

2−
) [69] 

and cesium (Cs
+
) [70] and it was observed that all these bacteria were able to remove also I

−
, SeO3

2−
 

and Cs
+
 from the solution. The average uptake capacity of all five studied ions followed the sequence 

Ag
+
 > SeO3

2−
 > Ni

2+
 > I

−
 > Cs

+
. The uptake was however variable and depended on the incubation 

conditions and nutrient broths used. For example, in addition to the broths used in Ni
2+

 and Ag
+
 

experiments, we also used 0.5% Peptone +0.25% Yeast extract in the I
−
 uptake experiments [45]. It 

was found that in this broth Paenibacillus V0-1-LW removed I
− 

from the solution with very high 

efficiency and in practice all I
−
 was removed from the solution. In the other used broths, I

−
 removal 
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was however significantly lower (<10%). When the uptake of I
−
, SeO3

2−
 and Cs

+
 was compared to 

the uptake of Ni
2+

 and Ag
+
 it was found that the same bacterial isolates that had high uptake capacity 

for Ni
2+

 (Pseudomonas PS-0-L, max 48%) and Ag
+
 (Paenibacillus V0-1-LW, max 73%), also had the 

highest capacities for I
− 

(Paenibacillus V0-1-LW, max 100%), SeO3
2−

 (Pseudomonas PS-0-L, max 

65%) and Cs
+
 (Paenibacillus V0-1-LW, max 12%) [45,69,70]. Also, when the experiments using 

sterilized overburden samples and added bacteria were compared, it was found that Burkholderia 

K5-6-SY had the most prominent effect on both the removal of Ni
2+

 and SeO3
2−

. 

It appears that Paenibacillus V0-1-LW, Pseudomonas PS-0-L and Burkholderia K5-6-SY have 

vast ability to utilize a large number of elements in their metabolism, or on the other hand they may 

be characterized by diverse cell wall structures, which can serve as biosorption sites for many 

different materials. Presumably, e.g. Ni
2 + 

and SeO3
2−

 uptake mechanisms differ from each other quite 

clearly, taking into account the significant differences in the chemical properties of these substances. 

5. Conclusion 

Bacteria isolated from an acidic, nutrient-poor bog were able to remove both Ni
2+

 and Ag
+
 from 

the solution and the uptake efficiency depended on temperature, nutrient source and bacterial strain. 

Even though the isolated bacteria belonged to the minority of the whole bacterial population of the 

bog, the fact that they all were able to remove both Ni
2+

 and Ag
+
 from solution indicates that Ni

2+
 

and Ag
+
 uptake is a common feature for bacteria found in this environment. Based on the biouptake 

experiments and experiments conducted with sterilized and bacterial/microbial re-inoculated 

overburden samples, it is most likely that bacteria are capable to influence the geochemical 

behaviour of Ni
2+

 and Ag
+
 in the northern, boreal environment also under in situ conditions. As our 

data indicates that uptake continues over longer periods of time (incubation times from 7 to 14 days), 

it is assumed that in addition to direct biosorption processes, also slower, active bioaccumulation 

processes may be possible. In the future it would be important to identify the active components of 

the bacterial cell wall that are involved in the bioaccumulation of radionuclides to better understand 

their retention processes in natural ecosystems. 
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