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Abstract: Staphylococcus aureus (S. aureus) is a human commensal and an opportunistic pathogen 
that may affect the gastrointestinal tract, the heart, bones, skin or the respiratory tract. S. aureus is 
frequently involved in hospital- or community-acquired lung infections. The pathogenic potential is 
associated with its ability to secrete highly effective virulence factors. Among these, the 
pore-forming toxins Panton-Valentine leukocidin (PVL) and hemolysin A (Hla) are the important 
virulence factors determining the prognosis of pneumonia cases. This review focuses on the structure 
and the functions of S. aureus hemolysin A and its sub-lethal effects on airway epithelial cells. The 
hypothesis is developed that Hla may not just be a tissue-destructive agent providing the bacteria 
with host-derived nutrients, but may also play complex roles in the very early stages of interactions 
of bacteria with healthy airways, possibly paving the way for establishing acute infections. 
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1. Staphylococcus aureus as a Pathogen 

In humans, Staphylococcus aureus (S. aureus), is a commensal bacterium residing mainly in the 
anterior nares [1,2]. Depending upon which part of the human population is tested, 15 to 30% carry 
these bacteria permanently (persistent carriers), another 30 to 55% are periodically colonized 
(intermittent carriers), while the others are non-carriers [3,4]. Several staphylococcal adhesion 
factors are known as well as their molecular targets in the host [5]. Certain components of the 
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bacterial cell wall, such as clumping factors [6,7], fibronectin-binding proteins [8,9,10] or wall 
teichoic acids [11], may serve as adhesins (microbial surface components recognizing adhesive 
matrix molecules, MSCRAMMs [12,13]) and facilitate attachment of the bacteria to the extracellular 
matrix, to cell surfaces or to docking molecules in host tissues. It is, however, still largely unknown 
which factors determine the individual carrier status in human hosts. Different combinations of 
bacterial MSCRAMMs with docking molecules in host tissues, which may vary due to individual 
genetic differences in humans [1,14], may determine whether an individual is a carrier, a potential 
carrier or a non-carrier. Another factor may be whether there are other (competing) microbes present 
or not [1]. Moreover, the status of the host’s immune system may also affect bacterial colonization as 
indicated by the facts that the relative number of persistent carriers is higher in children than in 
young adults [15], that the rate of carriers is higher among patients undergoing allergen-injection 
immunotherapy than in the respective control groups [16], and that S. aureus carriers were more 
abundant among individuals carrying the human immunodeficiency virus(HIV) than among 
individuals of the control group without HIV infection [17]. 

A carrier of staphylococci is at higher risk to acquire acute staphylococcal infections compared 
with non-carriers as most infections in carriers occur with the same bacterial strain that had been 
already associated with the carrier [18]. As the immune system of carriers has already had a chance 
to get in touch with the colonizing bacteria, acute infections with the colonizing strains of bacteria 
are generally less severe and have better prognoses than spontaneous infections in hosts that 
previously had been non-carriers [19]. Although there are strains of S. aureus that are more often 
involved in acute infections than others [20,21], it seems likely that the nature of staphylococcal 
infections is more or less opportunistic [14]. Open wounds, viral infections of the host or defects in 
host immune functions are conditions, which favor the transition of S. aureus from a commensal to a 
pathogen [22,23]. Staphylococcal infections occur in urinary and gastrointestinal tracts, in bone, and 
in the heart, but mostly on the skin (abscesses, furunculosis, scalded skin syndrome [24,25]) or in the 
respiratory tract causing rhinosinusitis [26] or pneumonia [27]. In some cases, sepsis may result from 
S. aureus infections and fatalities may occur from very extreme reactions of the host’s immune 
system [28,29]. S. aureus infections, however, are not always eliminated by the host immune system 
as the bacteria have evolutionarily developed many strategies to evade the host’s immune  
responses [30]. Another major problem in treating these ailments is that many staphylococcal strains 
are resistant to antibiotics. Infections caused by methicillin-resistant S. aureus (MRSA) [31,32] may 
occur within the community (community-acquired infection) or during hospitalization of patients 
(nosocomial or hospital-acquired infection) [33]. 

2. Host Responses to Staphylococcus aureus 

The barriers separating the internal space of a multicellular organism from the environment are 
comprised of epithelia. Thus, epithelial cells are generally the first cells in the body, which are 
engaged with bacteria or bacterial products when pro- and eukaryotic organisms interact. Respiratory 
epithelia are generally exposed to the external medium and confronted with inhaled bacteria on a 
regular basis. This is one reason why respiratory epithelia are well studied with respect to their 
ability to perform routine airway clearance [34,35,36] and to activate innate or adaptive immune 
responses upon exposure to microorganisms [37–43]. 

To install an adequate immunological defense reaction to airborne foreign objects, the surface 
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cells of the respiratory tract have to have the ability to recognize the quality of the inhaled material. 
The composition of all microbial factors, comprised of bacterial surface molecules as well as 
secreted factors, is highly specific for certain types of bacteria and has therefore been termed 
pathogen-associated molecular pattern (PAMP) or, as not all microbes are actually pathogens, 
microbe-associated molecular pattern (MAMP) [44]. Host cells are able to discriminate between 
different MAMPs/PAMPs by activation of a subset of pattern recognition receptors (PRRs) present at 
the cell surface or within the cytoplasm [45]. There are two types of membrane-bound PRRs in 
eukaryotic cells, the C-type lectin receptors differentiating sugar residues (mannose,fucoseor glucans) 
in carbohydrates exposed at the surface of viruses, fungi or bacteria from those in host cells [46,47], 
and the Toll-like receptors (TLRs) [47,48] which may recognize bacterial lipopolysaccharides (LPS), 
lipopeptides, proteins or nucleic acids [49]. Cytoplasmic NOD proteins (nucleotide-binding 
oligomerization domain proteins) [50] recognize bacterial peptidoglycans. Intracellular signaling 
activated by these receptor systems results in activation of enzymes involved in defensive cellular 
responses (e.g. phospholipase A2, lysozyme), production and secretion of antimicrobialpeptides or 
generation of reactive oxygen and nitrogen species to directly kill bacteria or infected host cells. In 
addition, the production and secretion of cytokines and chemokines is induced, which may mediate 
chemotaxis of immune cells (e.g. neutrophils) to the site of signal origin or may additionally activate 
the adaptive immune system [29,43]. 

With respect to the defense of airway epithelia against S. aureus, activation of TLR-2 and 
NOD2 signaling pathways seem to be especially relevant. Bacterial surface molecules like wall 
teichoic acids (WTA), lipoteichoic acids (LTA) or peptidoglycan have been identified as potential 
activators of TLR-2 signaling in epithelial cells [51–54]. In addition, staphylococcal peptidoglycan 
has been shown to induce NOD2 signaling [55]. Another surface bound component of S. aureus, the 
immunoglobulin-binding protein A, also activates defensive signaling in airway epithelial cells by 
binding to the TNF-α receptor [56,57,58]. The signaling pathways activated by these bacterial 
surface molecules coincide on the production and secretion of pro-inflammatory cytokines, the 
interleukins 1α, -6 and -8 as well as TNF-α in different cell types [29,59]. The chemokine IL-8 
(CXCL8) is chemotactic for neutrophils, which are lured to the site of infection to fight the bacteria 
by endocytosis and oxidative processes [60], while IL-6 enhances immunoglobulin secretion by B  
cells [61] and stimulates hepatocytes to produce acute-phase proteins [62,63]. TNF-α functions as a 
cytotoxic cytokine [64] that may induce death of overly stressed cells (e.g. from internalized 
bacteria). Interestingly, accumulation of IL-6 and IL-8 in supernatants of airway epithelial cells did 
not require contact of the cells with bacterial surface molecules, but was elicited by exposing cells to 
bacterial supernatants [65] or just one of the important virulence factors ofS. aureus strains, 
alpha-toxin (hemolysin A, Hla) [66,67,68]. Furthermore, inoculation of mice with Hla-secreting 
strains of S. aureus accelerated IL-8 accumulation in the bronchoalveolar lavage fluid in contrast to 
inoculation using hla-negative strains as controls [69]. Incubation of airway epithelial cells with Hla 
resulted in release of the cytotoxic cytokine TNF-α [70]. This indicates that secretion of Hla by 
bacteria is sufficient to mount an inflammatory response in host epithelial cells and that direct 
physical interaction of host cells with bacteria is not essential. 

Proteomic studies have shown that the pattern of proteins released into the bronchoalveolar 
lavage fluid by cells of the airways in mice changed substantially in response to nasal inoculation 
with S. aureus [71,72]. The authors observed dramatic increases inextracellular proteins within 6 h 
after inoculation. Pro-inflammatory cytokines (IL-1β, IL-8, IL-6 as well as TNF-α), complement 
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factors, pulmonarysurfactant protein A (SP-A), extracellular matrix components, protease inhibitors, 
cathelicidin, an anti-microbial peptide, lectins binding bacterial sugar moieties, and the coagulation 
factors V, X and XIII were much more abundant in the airway fluid in infected than in control mice. 
Many of these host proteins have been shown to interact with bacterial cells or their secretory 
products directly. Complement factors, immunoglobulins and SP-Aare opsonins that bind to S. 
aureus topromote phagocytosis of the bacteria by macrophages and neutrophils, generally a way to 
dispose of pathogens. Extracellular matrix (ECM) components as fibronectin and vitronectinare 
potential attachment sites for surface-bound S. aureus binding proteins, and coupling of bacteria to 
these ECM molecules facilitates internalization of bacteria by alveolar epithelial cells [8,73,74]. As 
non-professional phagocytes, these cells may or may not digest the ingested bacteria. In the latter 
case, the intracellular space may function as a refuge for the bacteria which may either protect them 
from being attacked by the host immune system resulting in long-term persistence or may be used as 
a reaction vessel to generate toxins and destructive enzymes to kill the cell and cause tissue 
disruption [75–81]. Loss of cells from epithelia may be associated with loss in barrier function [82], 
which enables external bacteria to enter the interior of the body. 

Proteomic and phosphoproteomic analyses using immortalized human airway epithelial cells 
treated with Hla revealed that substantial changes in protein expression and, even more pronounced, 
protein phosphorylation, occurred in signaling pathways and housekeeping proteins associated with 
cell-cell- and cell-matrix contacts, re-organization of the actin cytoskeleton and epidermal growth 
factor (EGF) signaling [83]. These findings correspond well to results of analyses of individual 
signaling pathways in these cells affecting cell-matrix interaction [84], Erk-type MAP kinase 
signaling and immediate early gene expression [66], or p38 MAP kinase signaling and secretion of 
pro-inflammatory cyto- and chemokines [67,85]. 

From the perspective of the host, a moderate cytokine-mediated inflammation is a suitable 
response to contact with bacteria or the secretory products of bacteria and helps the host to defend 
itself against potential pathogens. However, exaggerated pro-inflammatory signaling may induce 
severe tissue damage in the host. This insight has primed the search for mediators of Hla-induced 
pro-inflammatory signaling in epithelial cells [86]. Taken together, these examples show that 
interactions between bacterial and host molecules may be ambivalent with respect to costs and 
benefits for each of the interacting organisms. Depending on the specific conditions (concentrations, 
exposure time, status of the host immune system etc.), such interactions may provide protection of 
the host against bacterial attack or may benefit the bacteria to successfully establish an infection. 

3. S. aureus Virulence Factors 

Whether a strain of S. aureus is pathogenic or not depends on its ability to express different 
virulence factors. These factors may either remain attached to the bacterial cell surface and act on 
host tissues by direct host-pathogen interaction or may be secreted to the external medium and affect 
host cells even if bacteria do not physically interact with host cell surfaces [87]. Generally, virulence 
factors mediate pathogenesis in the host. Virulence factors may fulfill several functions for the 
bacteria in the host: They may (i) assist the bacteria in colonizing a niche in the host and may also be 
involved in mediating internalization of the bacteria by host cells, which is, if actively induced by 
bacterial factors, termed invasion, (ii)mediate suppression of the host’s immune systemor immune 
evasion of the bacteria, or (iii) may assist the bacteria in degrading host cells or tissues to obtain 
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space for spreading or to acquire nutrients. 
Genome analyses have shown that very different sets of genes coding for virulence factors are 

present in different S. aureus strains. This heterogeneity is due to the fact that many of these genes 
are not part of the bacterial core genome, but are encoded in pathogenicity islands (e.g. toxic shock 
syndrome toxin-1 and some enterotoxins) originating from horizontal gene transfer, or in phages (e.g. 
Panton-Valentine leukocidine, PVL) or in plasmids [88–93]. These genes are controlled by a 
complex regulatory network, which includes several two-component systems, alternative sigma 
factors, and various transcription factors [94,95,96]. The regulatory network integrates signals from 
the external environment and those from the internal metabolic machinery of the bacterial cell to 
generate particular subsets of virulence factor combinations at proper times and in amounts required 
for covering the momentary needs of the bacterial population. Depending on the actual density of 
bacterial cells (quorum sensing [97,98]), the composition of the medium, the presence of competitors, 
the quality of the host tissue or reactions of the host immune system, bacteria may undergo genetic 
adaptation [92] or show physiological acclimation by optimizing functions of the regulatory network 
to achieve expression of appropriate cocktails of virulence factors [99–103]. Proteome      
analyses [104,105], especially of the proteins that are secreted to the external medium by the bacteria, 
the secretome or exoproteome, have revealed [87,106,107] that the accessory gene regulator   
(agr)- [108,109] and the staphylococcal accessory regulator (sar)-systems [95,110] are involved in 
the expression of genes encoding either adhesion factors (at low densities of bacterial cells in the 
growth medium, i.e. during early exponential growth phase) or toxins (at high densities of bacterial 
cells in the growth medium, i.e. during late exponential growth phase and stationary phase). 
Adhesion factors mediate initial contact between the bacterium and host molecules in the 
extracellular matrix or at cell surfaces and are essential for commensal or pathogenic bacteria to 
extend their stay at their respective host niche to form colonies or biofilms [111] and, occasionally, to 
be internalized by host cells [112]. In some cell systems, internalized bacteria may even survive 
prolonged periods in a metabolically depressed condition as so-called small colony variants [81]. 
When extracellular bacteria reach critical densities in the host, they initiate the expression of 
bacterial modulators, toxins or enzymes that may attenuate responses of the host’s immune   
system [113–116] or assist the bacteria in degrading host cells or tissues to obtain space for spreading 
or to acquire nutrients from the host [117,118]. Recent comparative proteomic studies using the S. 
aureus RN1HG/HG001 strain [119] cultured either in tryptic soy broth (TSB, full medium) or in a 
modified culture medium for eukaryotic cells (pMEM) indicated that Hla production may occur 
already in the exponential growth phase in pMEM-cultured bacteria while it was still absent during 
this phase in bacteria cultured in tryptic soy broth (TSB) (Gutjahr 2010, 
http://ub-ed.ub.uni-greifswald.de/opus/volltexte/2011/915/). These preliminary data indicate that it 
may be worth to study effects of medium composition on virulence factor expression in these 
bacteria more thoroughly. 

S. aureus releases many different exoproteins (up to several hundred [87,106,107,120,121]) 
with entirely different functions into the extracellular medium. As S. aureus resides in human nares, 
it is often the first bacterium, which contributes to the genesis of lung infections (pneumonia) [122]. 
When focusing on S. aureus and the human lung, the pore-forming toxins Panton-Valentine 
leukocidin (PVL) and hemolysin A (Hla) appear to be important virulence factors determining 
morbidity as well as mortality associated with pneumonia [123,124,125]. This notion is based on the 
observation that patients infected with S. aureus strains carrying the phage-encoded genes for the two 
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components of PVL are at risk to develop necrotizing pneumonia, often a lethal        
condition [126,127]. As for the pore-forming hemolysin A (Hla), it has been shown in animal models 
that antibodies against Hla or blockers of the Hla-transmembrane pore like cyclodextrins mediate 
protection against S. aureus pneumonia [128,129,130], which may otherwise be induced by 
Hla-secreting strains of S. aureus [131]. Progressive tissue destruction associated with necrotizing 
pneumonia is mainly due to the PVL-mediated plasma membrane damage in leukocytes (especially 
neutrophils [132,133] resulting in the induction of indirect necrotic processes in human lung tissue. 
The prevalence of genes encoding the PVL components, however, is relatively rare among invasive S. 
aureus strains compared with almost ubiquitous presence of hla genes in such strains [124,134]. 
These data indicate that S. aureus strains, which produce hemolysin A, may be quantitatively more 
relevant as potential inducers of pneumonia than are those generating PVL. Such a notion is 
supported by the observations that hemolysin A affects the barrier-forming epithelial cells in the 
airways directly [135] and does this in a dose-dependent fashion [136]. Low concentrations of Hla 
induce cell-type specific changes in ion permeability of the plasma membrane, ATP release, 
activation of intracellular signaling cascades, re-arrangement of the actin cytoskeleton and changes 
in the barrier function of epithelial cell layers, whereas high concentrations seem to induce plasma 
membrane damage and cell death. 

Considering its high importance for potential disturbances of the integrity of airway epithelia, 
this review focuses on S. aureus hemolysin A and its sub-lethal effects on airway epithelial cells. A 
hypothesis is developed that Hla may not just be a tissue-destructive agent providing the bacteria 
with host-derived nutrients, but may also play complex roles in the very early stages of interactions 
of bacteria with healthy airways, possibly paving the way for establishing acute infections. 

4. S. aureus Hemolysin A (Hla) 

The hla gene of S. aureus codes for a precursor protein, which is post-translationally processed 
by proteolysis [137]. The soluble product is secreted to the extracellular space as a 33.4 kDa protein 
(alpha-toxin, hemolysin A, Hla) comprised of 293 amino acid residues (no cysteins), and a pI of 8.5 
to 8.6. It folds spontaneously into its final conformation in aqueous solutions [138]. Upon contact 
with cell surfaces of eukaryotic cells (Figure 1 A-B), Hla monomers may interact with certain lipid 
domains enriched in surface-exposed phosphocholine headgroups (lipid rafts containing 
sphingomyelin and phosphatidylcholine) [139,140,141]. In addition or alternatively to lipid binding, 
certain membrane-associated cell surface proteins may provide docking sites for Hla. Experimental 
evidence indicates that metalloproteinases, in particular ADAM10, are Hla receptor molecules on 
eukaryotic cell surfaces, as Hla has been shown to directly interact with ADAM10, and this 
interaction was diminished upon siRNA-mediated knockdown of ADAM10 [142]. Moreover, 
transgenic mice with a conditional disruption of the ADAM10 gene in their lung epithelium were 
reported to be resistant to lethal pneumonia induced by nasal inoculation using pathogenic S. aureus 
strains [143]. The interaction of Hla with ADAM10 results in redistribution of the complexes to 
plasma membrane areas enriched in caveolin-1 [142,144] and activation of the proteolytic activity of 
ADAM10. It is, however, still unclear whether ADAM10 activation occurs just by interaction with 
Hla or only after formation of a functional Hla-pore in the plasma membrane of the affected     
cell [142,143,145]. 

Obviously, the mechanism of interaction of Hla with host cells is concentration-dependent. Low 
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concentrations may result in binding of monomers to specific binding sites with half-maximal 
binding (to rabbit erythrocytes) of 1–2 nmol/L (33–66 ng/mL) [136]. Such binding sites, however, 
seem to be absent in human erythrocytes as significant rates of Hla monomer binding, 
pore-formation and subsequent cell lysis does not occur at concentrations below 1 μmol/L (33,000 
ng/mL) [136]. Pore-formation by Hla in lipid bilayer or vesicle experiments in vitro has been studied 
at very different concentrations (1 ng/mL up to 16.5 μg/mL) [139,146,147]. 

 

Figure 1. Putative assembly mechanism of Hla pores in plasma membranes of 
eukaryotic host cells. In the water-soluble Hlamonomer (A) the pre-stem region (red) is 
folded against the protein core. Upon binding to the plasma membrane (B), which may 
be facilitated by binding proteins (e.g. ADAM10) or areas of certain membrane lipid 
compositions (e.g. those enriched in phosphatidylcholine or sphingomyelin), Hla 
monomers are subject to lateral diffusion. Seven Hla monomers form a complex by 
interaction of the lateral surfaces and form a heptamericprepore (C). Formation of the 
transmembrane beta-barrel pore [156] occurs through synchronous extrusion of the 
pre-stem regions of all seven monomers (D) and insertion into the membrane (model 
adapted from [206] and simplified). 

These data indicate that pore formation may actually occur at any given Hla concentration, but 
that high concentrations of Hla monomers in the medium or the presence of receptors in intact cells 
may strongly accelerate pore formation. Unfortunately, experimental data about the Hla 
concentrations actually reached in infected host tissues are missing. Moreover, we know as yet only 
one or two potential receptor molecules for Hla monomers in mammalian cells, ADAM10 [142] and, 
potentially, alpha5beta1-integrin [70], and it is not known whether there are others or not. The 
relative abundances of ADAM10 are known for only very few cell types. As the cellular effects of 
pore formation are dependent on the actual number of pores present at a given time in a given cell, 
the rate of monomer binding, assembly and pore-formation is equally important as the rate of 
removal of pores from the plasma membrane by endocytosis and degradation or exosome formation. 
Given the lack in experimental data described above, it is virtually impossible to exactly predict 
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which cell type in the host is affected by Hla in which way. 
Formation of a functional transmembrane pore is a multi-step process requiring that Hla 

monomers attached to the surface of the host cell plasma membrane (Figure 1B) assemble into 
ahomoheptameric complex (Figure 1C), the prepore [147,148,149]. Each of the monomers contains 
two six-strand anti-parallel β-sheets, a β-sandwich, in those domains of the Hla monomers, which are 
exposed to the extracellular medium. These regions of all seven monomers together form the cap 
region of the prepore, while another array of β-sheets close to the cell surface form the rim region of 
the prepore [150,151]. Charged amino acid residues at the lateral surfaces of the rim region may 
provide contact sites with polar headgroups of lipids in host cell membranes. Several amino acids 
with aromatic side chains (tryptophane, tyrosine) at the base of the rim domain, however, may 
provide the contact sites for interaction of the prepore with the hydrophobic lipid environment of the 
plasma membrane [150]. The residues 118–140 in the sequence of the Hla monomer form the main 
portion of the pre-stem domain. If the prepore is fully assembled, all seven subunits simultaneously 
unfold their pre-stem domains, which are then inserted into the lipid bilayer. In the central regions of 
these domains, polar and hydrophobic amino acid side chains alternate, which fits to the model that 
these domains of all seven monomers form a transmembrane pore (Figure 1D, stem) with a 
hydrophobic surface interacting with the surrounding membrane lipids and a polar surface lining the 
central aqueous pore [152]. The histidine residue at position 35 in each of the monomers has a 
central function in the conformational change that results in the formation of the stem. Replacement 
of this amino acid by leucine completely abolished the transition of the Hla-heptamer from the 
prepore- (Figure 1C) to the pore stage (Figure 1D) [153]. Therefore, the H35L-mutant of Hla is often 
used to discriminate host cell effects depending on Hla plasma membrane attachment and prepore 
formation from those requiring formation of a functional transmembrane pore. 

The Hla transmembrane pore is relatively resistant against proteolysis, and detergents are 
needed to extract the pore from the host cell membrane. This indicates that the insertion of the pore 
does not disturb the surrounding lipid layer in a way that it induces non-specific leakiness [154]. In 
turn, this means that all compounds that are exchanged between extra- and intracellular spaces of 
Hla-treated eukaryotic cells either utilize the pore itself for membrane passage or permeate by other 
pathways secondarily activated by pore formation. 

The inner diameter of the pore at its narrowest site is approximately 1.4 nm [155,156,157]. 
Nominally, this diameter is large enough for the permeation of ions and small organic molecules up 
to molecular masses of 2 kDa [155]. Even single stranded RNA or DNA may be able to pass through 
the pore when electrical driving forces are provided. There are suggestions to use such systems for 
the development of new DNA sequencing techniques [158,159]. The ion selectivity of the Hla pore is 
not be very pronounced [118] so that cations as well as anions may pass the pore depending on their 
electrochemical gradients across the plasma membrane of the affected cell. Potassium ions      
(K+) [152,159,160,161]as well as chloride ions (Cl-) [159] have been shown to pass the Hla pore. 

The question, however, which substances are actually able to permeate through the cell 
membrane-inserted Hla pore under physiologically relevant conditions is not entirely clear as 
illustrated by differences in the conclusions concerning the calcium permeability of the pore in 
studies using recombinant Hla preparations on lymphocytes [162], keratinocytes [160], or  
fibroblasts [163,164] on one hand showing that the pore is not calcium-permeable, and, on the other 
hand, pheochromocytoma [165], endothelial [166] or epithelial cells [67,167] indicating that the pore 
is calcium-permeable. Several researchers have observed substantial losses of ATP from various 
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types of Hla-treated cells [152,160,164,168–172], which indicates that Hla pores are directly 
permeable to ATP and other molecules of similar sizes. However, eukaryotic cells may use the 
release of ATP from the cytosol to the extracellular space as some kind of a danger signal in response 
to potentially cell damaging stimuli [173,174] which initiates immunological and other cellular 
responses in neighboring cells. Pannexins have been implicated in mediating such ATP release from 
cells of various tissues by forming open pores resembling gap junction hemi-channels spanning 
through the plasma membrane of just one cell connecting intra- and extracellular spaces [175]. As 
there are controversial reports about entry or release of other molecules of similar molecular 
dimensions in Hla-treated fibroblasts or epithelial cells [167,176], it is not quite clear whether ATP is 
actually released through the Hla pore or by other pathways activated by Hla pore formation in the 
plasma membrane. 

Under normal physiological conditions of a cell, the Hla pore inserted into the plasma 
membrane is constitutively open. However, changes in extra- or intracellular concentrations of 
protons (pH) or divalent cations (Ca2+, Zn2+) or changes in membrane potential [146,157] may 
modify the conductive properties of the pore. 

5. Effects of S. aureus Hla in Airway Epithelial Cells 

Using the non-pore forming H35L-variant of S. aureus hemolysin A [153], researchers obtained 
experimental evidence indicating that virtually all of the as yet observed Hla effects on eukaryotic 
epithelial cells are due to the formation of functional pores through the plasma membranes of the 
host cells. Attachment of Hla monomers to the outer surface of the cell membrane or formation of 
prepores does not seem to affect the host cells substantially. 

The sensitivities of cells toward Hla is very different, even in cells originating from the same 
kind of tissue. As examples, two types of immortalized human bronchial epithelial cells and a lung 
cancer cell line have been compared in this respect. In different assays (live-dead cell staining, time 
lapse-microscopy of confluent cell layers, cell impedance, activation of intracellular signaling 
pathways etc.) S9 cells were much less sensitive to Hla-treatment compared with 16HBE14o- cells 
or A549 cells [67,84]. This points to a common basis for these differences which may lie in the 
different ways the cells accept Hla monomers at their surfaces or in differences in the half-life of Hla 
pores in the plasma membranes. The kinetics of Hla monomer association with the cell membrane 
may be affected by the abundance of potential receptor molecules. It has been shown that the amount 
of ADAM10 in airway epithelial cells determines the membrane-bound amount of Hla at a given 
time [142] and roughly correlates with the sensitivity of the respective cells to Hla [83], a finding 
that becomes even more obvious if cell types other than airway epithelial cells are considered, e.g. 
erythrocytes from different mammalian species [177]. On the other hand, it has been shown that the 
ability of cells to process plasma membrane areas containing Hla pores may also be an important 
determinant for their sensitivity toward Hla. Endocytosis and autophagy [178,179] or exosome 
production [180] may remove Hla pores from the plasma membrane and render them biologically 
inactive. We hypothesize that cells less sensitive toward Hla may have less receptor molecules on the 
their cell surfaces and/or may be able to more rapidly dispose of plasma membrane domains 
containing Hla pores than cells with high sensitivity toward Hla. 
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Figure 2. Potential effects of Hla pore formation on transmembrane ion gradients, 
membrane potential and cellular signaling in host cells. Quiescent eukaryotic cells 
(left panel) maintain transmembrane gradients for sodium (Na+), potassium (K+) and 
calcium ions (Ca2+) and membrane potential differences of −60 to −90 mV inside the cell 
(i) against the extracellular space (e). Formation of an Hlaprepore does not seem to 
change any of these conditions. Insertion of a cation permeable pore, however, would 
result in sodium and calcium influx into the cell due to driving forces given by the 
chemical concentration differences as well as the electrical gradient across the plasma 
membrane (middle panel). Influx of positively charged ions would result in plasma 
membrane depolarization (the values given are estimates). This, in turn, would provide 
the driving force for the exit of potassium ions from the cytosol to the extracellular space 
as both the chemical and the electrical gradient are now pointing in the same direction 
(right panel). Due to loss of positive charges from the cell interior, the plasma membrane 
will partially repolarize. It is still unknown whether the initial membrane depolarization 
has direct cellular effects. However, increases in intracellular calcium have been shown 
to affect cellular signaling. Loss of potassium ions from the cytosol plays a role in 
activation of p38 MAP kinase. Details are given in the text. Solid lines indicate that 
experimental evidence exists for the respective process while dashed lines indicate that 
the respective mechanism is likely involved but that this is still unproven. 

Hla pore formation in eukaryotic cells results in permeabilization of the plasma membrane for 
monovalent cations (Figure 2) as has been directly shown for potassium (K+) ions [160,161,162,164] 
and suggested for sodium ions (Na+). As there is usually no driving force for the net exit of 
potassium ions from the cytosol to the extracellular space in quiescent cells, the observed efflux of 
K+ from Hla-treated cells must be preceded by depolarization of the cell membrane [160,164], which 
has, unfortunately, not experimentally been shown yet. However, depolarization of the plasma 
membranemay mediate, through the exit of potassium ions from the cells [161], the activation of p38 
MAP kinase which has been previously characterized as a typical signaling process in Hla-treated 
cells [67,161,169] that may mediate cell protective processes and the activation of innate immune 
responses in the host (169). At least in airway epithelial cells, activation of p38 MAP kinase also 
depends on an elevation in the cytosolic concentration of free calcium ions ( [Ca2+]i) [67]. As already 
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known for some time, addition of Hla to the extracellular medium of epithelial cells actually results 
in a substantial rise in [Ca2+]i [166,167,181]. In the airways, these alterations may affect ciliary beat 
frequency, fluid and mucus secretion or release of pro-inflammatory cytokines and      
chemokines [65,67,135,182–186]. Such functional changes are supposed to represent defensive 
actions of the epithelial cells against the bacteria [35]. On the other hand, exposure of epithelial cells 
to Hla may modulate or even disrupt intracellular signal transduction [66,83,84,143] and induce cell 
shape changes [67,187,188] driven by actin-myosin interactions [189]. 

It has been postulated [154], but never been experimentally shown, that calcium ions can pass 
through the Hla pores. The data strongly support this hypothesis (Figure 2) because [Ca2+]i starts to 
increase with a short time lag upon addition of Hla to experimental cells [167] which may be 
explained by the time needed for Hla to form functional pores in the membrane, and for the resulting 
calcium influx to outperform cellular mechanisms that buffer or extrude calcium ions. Moreover, it 
has been shown that the presence of extracellular calcium is required for the Hla-mediated activation 
of the metalloproteinase ADAM10 [143] and that ADAM10 activation can be mimicked using 
calcium ionophores [190,191]. 

Activation of ADAM10 in Hla-treated cells, in turn, mediated cleavage of E-cadherins [143], 
which are important coupling proteins in cell-cell adhesion complexes (adherens junctions) [192]. 
We have recently shown that treatment of airway epithelial cells with recombinant Hla (rHla) results 
in changes in paxillin phosphorylation and acceleration in the formation as well as in disassembly of 
focal adhesion complexes [84], which attach the cells to the underlying matrix [193]. This results in a 
net loss of peripheral focal contacts located mainly in newly formed lamellipodia [84] and in massive 
changes in the architecture of the actin cytoskeleton (Figure 3).Such cells are not able anymore to 
stabilize and adequately adjust their cell shapes to movements of neighboring cells resulting in the 
appearance of paracellular gaps in the cell layer [67,84] (Figure 3). This correlates with epithelial 
injury and loss of epithelial barrier function observed during S. aureus infections in intact    
airways [145]. 

Attempts to dissect the cellular and molecular mechanisms underlying these cellular changes 
have not yet resulted in a conclusive picture. Several researchers have obtained evidence that 
Hla-treatment of cells results in activation of the protein kinases Src and Fak as well as Erk-type 
MAP kinases [67,84,142], but the modes of their activation are still elusive. The activation of 
metalloproteinases of the ADAM family, especially ADAM10, may result in ectodomain shedding of 
precursors of important signaling molecules like the epidermal growth factor (EGF) [194,195]. 
However, as members of the ADAM family, especially ADAM17, have been also implicated in 
shedding the ectodomains of receptors for TNF-α, EGF and IL-6 [56,57], the soluble portions of 
these receptors may mop up free ligand molecules from the airway lumen and terminate signaling. 
Hla-secreting strains of S. aureus were implicated in the activation of shedding of the ectodomain of 
syndecan-1, the major heparan sulfate proteoglycan of epithelial cells [196]. It is known that the 
shedding products of syndecan-1 elicit pro-inflammatory and tissue destructive actions in    
airways [197]. Depending on the mode of action of the Hla-activated sheddases and on the quality of 
their substrates, the resulting soluble shedding products may activate or inactivate autocrine or 
paracrine signaling providing either protective or deleterious signals for the respective target cells. 



22 

AIMS Microbiology  Volume 1, Issue 1, 11-36. 

 

Figure 3. Schematic representation of S. aureus Hla effects on cultured airway 
epithelial cells. In the quiescent condition (left image), cells form a confluent layer 
without any gaps between cells. Individual cells are safely attached to the underlying 
basal lamina by focal contacts (green dots) in the cellular periphery or focal adhesions 
underneath the cell center (not shown). Cells are attached to each other by tight junctions 
and by adherens junctions (not shown). The overall cell shape is maintained by bundles 
of very long actin stress fibers running across the entire cytosol and fixed at the ends to 
the plasma membrane by focal contacts or focal adhesions. Specific surface sculpturingis 
maintained by short cortical actin filaments. Shortly after addition of Hla to the cells 
(image in the center) the cells lose most of their focal contacts in the cell periphery 
resulting in the inability of the cells to stabilize actin stress fibers and to maintain their 
lamellipodia, while mature focal adhesions underneath the cell are largely maintained 
and cells are held in place. In some areas of the cell layer, cells seem to loosen their 
cell-cell contacts (tight junctions and adherens junctions) as indicated by the observation 
that the plasma membranes of neighboring cells are not tightly fitted to each other 
anymore. In a later stage of exposure to Hla (right image) the loss of actin stress fibers 
becomes very obvious and is accompanied by the accumulation of short actin filaments 
in the cell cortex just underneath the plasma membrane. The inability of the cells to 
stabilize their actin cytoskeleton, most likely accompanied by transiently increased 
calcium-driven cell motility, results in cell shape changes and the appearance of large 
paracellular gaps in the previously confluent cell layer. In some instances, cells try to 
keep contact to neighboring cells and to the substratum by maintaining a small number of 
long filopodia. Some cells, however, lose their cell-cell- and cell-matrix contacts 
altogether and leave the cell layer, which contributes to paracellular gap formation as the 
neighboring cells generally fail to close these gaps. 

The decrease in the cellular ATP level induced by Hla-treatment [152,160,164,168–172] may 
affect the activities of energy-requiring molecules such as ATPases (potentially followed by 
dissipation of ion gradients) or protein kinases (potentially followed by hypophosphorylation and 
functional impairment of important regulatory or housekeeping proteins). It is, however, 
questionable whether the loss of ATP from the cytosol actually inhibits ion pump activities as 
experiments have shown that intracellular Ca2+-ATPases are still active at full pace when cellular 
ATP-levels drop to 10% of the control levels [198]. Another effect of ATP depletion in cells may be 
the accelerated chronophin-dependent dephosphorylation of the slingshot phosphatase followed by 
activation of the actin depolymerizating factor cofilin [199], a process which would result in 
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degradation of actin stress fibers and accumulation of short actin filaments as actually observed 
(Figure 3). Such a mechanism could well explain the Hla-mediated changes in actin organization 
observed in Hla-treated airway epithelial cells [84]. Extracellular ATP, on the other hand, may 
function as a danger signal by activating purinergic receptors on airway epithelial cells [200,201,202] 
which may increase the ciliary beat frequency [203,204] and inhibit the apical uptake of sodium ions 
through the epithelial sodium channel (ENaC) [183] which results in an increase in luminal fluid 
volume. Both mechanisms may accelerate the removal of pathogens from the airways. 

6. Potential Roles of Sub-lytic Concentrations of Hla in the Airways 

Bacterial pore-forming toxins are generally considered to be agents used by the bacteria for the 
destruction of host cells aiming at the acquisition of nutrients (iron, amino acids, carbohydrates etc.), 
for providing space for bacterial growth and for compromising immune defense functions of the host. 
If this would be the sole function, however, it would be surprising that such complicated mechanisms 
of regulation of the expression of pore-forming toxins have evolved, that redundancy of 
pore-forming toxins in the same bacterial strain occurs, that the assembly of toxin monomers and 
pore formation in host cells is such a complex process, and that the cell physiological effects of 
sub-lytic concentrations of pore-forming toxins on eukaryotic host cells are so discrete and delicate 
as described above. 

Moreover, all living cells show a certain degree of resilience against different types of adverse 
environmental conditions. If, as an example, presence of a small amount of Hla pores in an epithelial 
cell allows calcium influx along the electrochemical gradient from the extracellular space to the 
cytosol, all of this calcium will be readily extruded by Ca2+-ATPases in the plasma membrane 
(PMCA) or in the endoplasmic reticulum membrane (SERCA) without any net effect on the 
intracellular calcium concentration. If the number of pores, however, gets larger the resulting calcium 
influx may outperform the pump rates of these ATPases. In that case, [Ca2+]i will rise and affect 
cellular signaling. Even then, this does not mean immediate death for the cell, but induction of 
different cell behavior or altered gene expression. Such mechanisms may provide potential 
explanations for differences in the individual responses of (even clonal) cells to uniform Hla 
incubation conditions as observed in experiments with immortalized airway epithelial cells [67]. 

In healthy mammalian airways, mucociliary clearance (Figure 4) will limit the number of 
bacteria residing in the lumen of an individual at any given time. The number of bacteria (quorum 
sensing), however, somehow determines the genetic programs currently realized in bacteria, and it is 
known that toxin production by S. aureus seems to be activated only if bacterial densities are    
high [107]. However, these genetic programs may also be affected by the medium conditions of the 
bacteria, and it would be interesting to study virulence factor expression at those conditions that 
actually exist in the human airways [205]. 
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Figure 4. Scheme of the airway barrier and the principle of mucociliary clearance. 
The tracheal and bronchial portions of mammalian airways are comprised of several 
different cell types of which the ciliary cells, the salt and water transporting cells and 
the mucus secreting cells are very important ones. By building and maintaining tight 
and adherens junctions these cells form high resistance epithelia, which constitute an 
effective barrier against diffusive exchange of solutes or particulate matter between the 
airspace and the interior of the body. Mucus secreting cells express mucins and secrete 
them by apical exocytosis. Concomittant secretion of salt and water results in the 
formation of two extracellular fluid layers. The innermost layer is the periciliary fluid 
layer (PCL), which allows the cilia of the ciliary cells to beat freely as the viscosity of 
this fluid layer is low. On top of the PCL, there is a highly viscous mucus layer. This 
layer can be very thick (up to 50 μm) and provides many attachment sites for inhaled 
dust particles and bacteria, which are readily adsorbed when inhaled air streams along 
the surface of the mucus layer. Driven by ciliary activity, the mucus layer with the 
attached material is continuously transported in the direction of the throat with a mean 
velocity of 60 μm/s. In human airways, every inhaled particle is transported up to the 
throat within 2 to 3 h and swallowed. As such a time span is generally not sufficient for 
bacteria to grow to high densities (forming colonies or biofilms), the mucociliary 
clearance is a very important mechanism of the innate defense system of mammalian 
airways. Any condition that compromises the mucociliary clearance, as disturbances of 
mucus- or salt and water secretion or the regulation of ciliary beating, increases the risk 
that inhaled bacteria reach critical densities and start to secrete soluble virulence factors. 
Other than the bacteria, these factors may diffuse through the mucus layer, reach the 
apical surfaces of the epithelial cells and cause malfunctions in the epithelial barrier. 
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Even mild disturbances of the mucociliary clearance, e.g. in hospitalized elderly people or 
humans suffering from viral infection, or in cystic fibrosis patients [182], may enable bacteria to stay 
long enough at the surface of the airway mucus layer to produce virulence factors. While the bacteria 
themselves are not able to cross the mucus layer and getting in physical contact with surfaces of 
epithelial cells, the soluble virulence factors may actually reach the cells by diffusion through the 
mucus layer. If, as described above, exposure of cells just to Hla elicits substantial changes in ion 
homeostasis, cell signaling and structural changes in the epithelial cell layers, we assume that 
bacteria actually utilize pore-forming toxins in sub-lytic concentrations to interfere with normal 
airway barrier and clearance functions and to compromise these. 

In summary, the staphylococcal pore-forming virulence factor alpha-toxin (hemolysin A, Hla) is 
one of the important determinants for pathogenesis in host organisms. During fulminant infections, 
Hla may primarily serve the bacteria to induce host tissue destruction and to acquire host-borne 
nutrients for bacterial growth. However, there are many indications that Hla may have additional 
functions in the early stages of infection, especially in the lung, where the diffusion barrier of the 
airway mucus lining prevent bacteria from getting in direct contact with epithelial cells, while 
soluble virulence factors like Hla may pass the mucus layer by diffusion and negatively affect the 
barrier functions of the airway epithelia. These initial actions of pore-forming toxins may enable 
bacteria to establish infections in principally healthy individuals. 
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