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Abstract: In this paper, we propose a fractional order Coronavirus (COVID-19) model incorporating
non-pharmaceutical interventions and vaccine hesitancy. The proposed model was calibrated with
data from literature and validated with reported daily cases of COVID-19 from Wuhan, China. We
derived the reproduction number and demonstrated that it is an important threshold parameter for
disease persistence and extinction. We examined the relationship between the reproduction number
and model parameters. Our findings underscore the importance of awareness and vaccine uptake on
mitigating the spread of COVID-19.
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1. Introduction

Emerging and re-emerging infectious diseases remains a major public health concern. In the last
four years, the world witnessed an unprecedented outbreak of coronavirus disease (COVID-19). Since
its discovery, COVID-19 has been swiftly spreading from one country to another causing massive
deaths and economic devastation world wide. As of 4 June 2023, the cumulative reported number of
confirmed cases of COVID-19 reached over 767 million and the cumulative number of dealths reaches
over 6.9 million deaths globally [1]. Despite significant progress in the development and introduction
of new diagnostics, which has lead to a remarkable decline in deaths and new infections, COVID-19
remains a public health challenge. According to the latest estimates from the world health organization
(WHO), from 8 May to 4 June 2023 (28 days), over 1.7 million new cases and over 10,000 deaths
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occurred globally [1]. Compared to the previous 28 days (10 April to 7 May 2023), this represents a
decrease of 38% and 47% in cases and deaths, respectively [1].

In spite of a considerable decline in COVID-19 cases and deaths, it remains imperative for re-
searchers to continuously explore the strength of the novel control methods to eradicate the disease.
Mathematical models provide powerful tools for explaining and predicting the COVID-19 trend, and
also for quantifying the effectiveness of different novel control strategies either singly or combined.
Since its discovery, several mathematical models have been formulated to extensively study various
aspects of factors involving COVID-19 transmission and control. Ndaı̈rou et al. [2] employed a system
of integer ordinary differential equations (IODEs) to model the effects of super-spreaders on COVID-
19 dynamics in Wuhan, China. Findings from their work showed that super-spreaders play a crucial
role on the generation of secondary infections.

Rozenfeld et al. [3] proposed a statistical model to evaluate risk factors associated with COVID-
19 infection. Their study showed that the risk of COVID-19 infection is higher among groups al-
ready affected by health disparities across age, race, ethnicity, language, income and living condi-
tions. Mushayabasa et al. [4] developed a mathematical model based on IODEs to evaluate the role
of governmental action and individual reaction on COVID-19 dynamics in South Africa. Their study
demonstrated optimal conditions necessary for the infection to die out as well as persist. In [5], a sys-
tem of IODEs were utilized to investigate the impacts of vaccination on COVID-19 dynamics. They
concluded that vaccination could significantly reduce the generation of new infections. To explore the
impact of lockdown of COVID-19 transmission dynamics, Ahmed et al. [6] developed a mathemat-
ical model based on the Caputo fractional-order. Khan et al. [7] presented a compartmental model
based on Caputo-Fabrizio operator to predict COVID-19 dynamics in the Sultanate of Oman. Ghosh
and Martcheva [8] developed an epidemic model based on IODEs to investigate the effects of proso-
cial awareness on COVID-19 dynamics in Colombia and India. Results from their work showed that
prosocial awareness has competitive potential to flatten the COVID-19 prevalence curve.

The aforementioned mathematical models of COVID-19 and those cited therein have certainly
produced many useful results and improved the existing knowledge on the disease dynamics. However,
despite all these efforts, several challenges remain in the mathematical modeling of COVID-19. In
particular, since the advent of several COVID-19 vaccines, a large proportion of the population in
different parts of the globe has been reluctant to be inoculated [9–11]. This phenomena is known as
vaccine hesitancy. WHO defines vaccine hesitancy as the delay in acceptance or refusal of vaccines
despite the availability of vaccine services [12]. Vaccine hesitancy limits vaccine efficacy [9].

Emperical studies have shown that the average acceptance rates of the COVID-19 vaccines are
relatively low across the world, particularly in the Middle East, Russia, Africa and several European
countries [9]. In particular, a study conducted in France in October 2020 revealed that 46% of French
citizens are vaccine hesitant. Furthermore, studies conducted in other countries revealed the following
statistics with regards to COVID-19 vaccine hesitancy: 36% in Spain and USA, 35% in Italy, 32%
in South Africa and 31% in Japan and Germany. Globally, vaccine hesitancy and objection has been
estimated to be around 27% [13]. Lack of information about the side effects, especially the long-
term effects, time-line of the COVID vaccines production, culture and religion issues, political and
conspiracy theory, are some of the reasons that have been associated with vaccine hesitancy [9, 10].

Considering these large percentages of hesitance and objection of COVID-19 vaccines, we thought
it is prudent to quantify the public health implications of vaccine hesitancy on COVID-19 dynamics. To
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this end, we developed a mathematical model of COVID-19 transmission that incorporates vaccination
effects and non-pharmaceutical interventions (NPIs). Since vaccination is voluntary and most of the
COVID-19 vaccines require two or more doses for one to be completely vaccinated, we assume that
individuals can choose to be partially or completely vaccinated. Partially vaccinated individuals are
those that do not complete all the required vaccine doses while completely vaccinated are those that
complete all the required doses per vaccine.

In this study, we are particularly concerned with quantifying the effects of delaying the first and
second COVID-19 vaccine dose on disease dynamics. We are cognisant that the Joint Committee
on Vaccination and Immunisation (JCVI) recommends the second dose from 3 to 12 weeks after the
first dose [14]. Hence, we will evaluate the implications of taking the second dose after 12 weeks
(approximately 84 days). Quantifying the effects of interventions enable policy maker and health
experts to evaluate the success of an epidemic response so as to improve and inform ongoing and
future interventions.

We therefore proposed a mathematical framework based on the Caputo Fractional derivative, since
fractional models can more accurately describe biological and natural phenomena than integer ordinary
differential equations [15–17]. Although there are several fractional derivatives in literature, we have
employed the Caputo derivative due to the following reasons (i) the Caputo derivative for a constant
has the same outcome as that of an integer ordinary differential equation, (ii) computations based on
the Caputo derivative makes use of local initial conditions, and (iii) the Caputo operator computes an
ordinary differential equation, followed by a fractional integral to obtain the desired order of fractional
derivative [18–20]. To the best of our knowledge, there are no studies in literature that have attempted
to quantifying the effects of delaying the second COVID-19 vaccine dose using a fractional model.

The rest of the paper is organized as follows: Section 2 presents the material and methods. We
present the novel COVID-19 model and its assumptions. Section 3 presents the results and discussions.
In particular, we present both analytical and numerical findings. Finally, concluding remarks and
limitations rounds up the paper.

2. Materials and methods

In this section, we present a fractional model to study the transmission of COVID-19 incoportaing
NIPs use and vaccination. The model is based on Fractional Calculus (FC), in particular, the Caputo
derivative and the Caputo fractional derivative of order q is defined by equation (2.1) [21]:

Dq
t0 x :=


1

Γ(1 − q)

∫ t

0

ẋ
(t − τ)q dτ, 0 < q < 1,

d
dt

x(t), q = 1

(2.1)

with t > 0, q ∈ (0, 1].

2.1. Mathematical model

Let S (t), V(t), E(t), I(t), A(t), H(t) and R(t) denote the number of susceptible, vaccinated, exposed,
clinically infected, asymptomatic infectious patients, hospitalized, and recovered human at time t,
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respectively. Thus the total human population at time t is given by N(t) = S (t) + V(t) + E(t) + I(t) +

A(t) + H(t) + R(t). The model is formulated based on the following assumptions:

(i) All new recruited individuals are assumed to be susceptible to infection. Let Λ be the con-
stant recruitment rate. Susceptible individual are assumed to acquire infection following effec-
tive contact with individuals displaying clinical signs of the disease I(t), asymptomatic infec-
tious patients A(t) and hospitalized patients H(t). Thus, consider the following force of infection
λh(t) = β(1 − ε)

(
H + A + I

)
, where β is the infection rate and ε (0 ≤ ε < 1) accounts for the

effectiveness of NPIs to reduce disease transmission.

(ii) Susceptible individuals are assumed to receive their first dose at rate κ. Thus 1/κ accounts for
the delay in taking the first COVID-19 vaccine dose. We assume that individuals innoculated
with the first dose have reduced chances of contracting the disease. Thus, partially vaccinated
individuals can acquire infection at rate (1 − φ)λh(t), where φ(0 ≤ φ < 1) accounts for vaccine
efficacy. If φ ≈ 1, it implies that the vaccine is highly effective and φ ≈ 0, implies that the vac-
cine if ineffective. COVID-19 led to the advent of several vaccines. Pfizer-BioNTech, Moderna,
Sinopharm, Sinovac, Sputnik V, Janssen (Johnson & Johnson’s) and AstraZeneca are some of the
companies that developed COVID-19 [22]. Although these vaccines were found to be effective
to prevent COVID-19, their levels of efficiency varies. However, for most of these vaccines, ex-
perimental and field studies have shown that for a higher efficiency, optimal vaccine doses need
to be more than one. Hence, in this study, we assume that vaccinated individuals who receive the
recommended doses relative to the vaccine being administered (more than a single dose) are re-
moved from infection at rate θ2. Thus, 1/θ2 accounts for the delay in taking the second COVID-19
vaccine dose.

(iii) Upon being infected with COVID-19, individuals enter the exposed state. These individuals in-
cubates the disease and are not yet infectious. We assume that they will remain in this state for an
average period of 1/α days, after which a proportionω develop clinical signs of the disease and the
remainder 1−ω becomes asymptomatic infectious patients. Clinically infected and asymptomatic
infectious patients are detected and hospitalized at rates δ1 and δ2, respectively. Asymptomatic
infectious and clinically infected patients receiving home based care are assumed to recover at
rates γ1 and γ2, respectively. Furthermore, clinically infected and hospitalized COVID-19 pa-
tients are assumed to suffer disease-related mortality at rate d. Successfully treated hospitalized
patients recover from the disease at rate γ3. In addition, we assume that natural mortality occurs
in all epidemiological classes at a constant rate µ.

AIMS Medical Science Volume 10, Issue 3, 196–222.



200

Based on the above assumptions the transmission dynamics of COVID-19 can be summarized by
the following system of equation (Model flow diagram is in Figure 1):

Dq
t0S (t) = Λq − βq(1 − ε)

(
H + A + I

)
S − (µq + κq)S ,

Dq
t0V(t) = κqS − βq(1 − φ)(1 − ε)

(
H + A + I

)
V − (µq + θ

q
2)V,

Dq
t0 E(t) = βq(1 − ε)(H + A + I

)
(S + (1 − φ)V) − (αq + µq)E,

Dq
t0 A(t) = (1 − ω)αqE − (µq + γ

q
1 + δ

q
2)A,

Dq
t0 I(t) = ωαqE − (µq + dq + γ

q
2 + δ

q
1)I,

Dq
t0 H(t) = δ

q
2A + δ

q
1I − (µq + dq + γ

q
3)H,

Dq
t0R(t) = γ

q
1A + γ

q
2I + γ

q
3H + θ

q
2V − µqR.


. (2.2)

Figure 1. A transition diagram between epidemiological classes.

3. Results and discussions

In this section, we present both analytical and numerical results.

3.1. Non-negativity and boundedness of model solutions

Since model (2.2) monitors human population, it is essential to demonstrate that all model solutions
are bounded and positive for all t ≥ 0. Based on the computations in Supplement A, we obtained the
following results.

Theorem 3.1. Model (2.2) has unique and non-negative solutions which turn into region Ω+ as t → ∞,
where Ω+ is defined by:

Ω+ =

{ (
S ,V, E, A, I,H,R

)
∈ R7

+

∣∣∣∣∣∣ S ≥ 0,V ≥ 0, E ≥ 0, I ≥ 0, A ≥ 0,H ≥ 0,R ≥ 0,
S + V + E + A + I + H + R = N ≤ Λq/µq,

}
(3.1)
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3.2. Reproduction numbers

One of the most important threshold quantity of epidemiological models is the reproduction num-
ber. It demostrates the disease transmission potential during an outbreak. Generally, the reproduc-
tion number is defined as the average number of new infections produced by a typical infected in-
dividual during their entire infectious period when introduced into a completely susceptible popula-
tion [23]. To determine the reproduction number we will make use of the Next-generation matrix
(NGM) method [24]. Based on the computations in Supplement B, we obtained the expression of
reproduction number of model (2.2) as follows (3.2):

R0 = βq(1 − ε)(1 − ω)
(

Λq

µq + κq +
κq(1 − φ)Λq

(κq + µq)(µq + θ
q
2)

)
αq

(αq + µq)(µq + γ
q
1 + δ

q
2)

+βq(1 − ε)ωq

(
Λq

µq + κq +
κ(1 − φ)Λ

(κ + µ)(µ + θ2)

)
α

(αq + µq)(µq + dq + γ
q
2 + δ

q
1)

+
βq(1 − ε)αq

(αq + µq)(µq + dq + γ
q
3)

(
Λq

µq + κq +
κq(1 − φ)Λq

(κq + µq)(µq + θ
q
2)

)(
(1 − ω)δq

2

(µq + γ
q
1 + δ

q
2)

+
ωδ

q
1

(µq + dq + γ
q
2 + δ

q
1)

)
= R0A + R0I + R0H, (3.2)

where R0 j, for j = A, I,H denotes the average number of secondary infections generated by one in-
fectious individual from epidemiological class j introduced in population wholly of susceptible (vac-
cinated and unvaccinated) humans. From (3.2) one can observe the totally susceptible (vaccinated and

unvaccinated) human population,
Λq

µq + κq +
κqΛq

(κq + µq)(µq + θ
q
2)
, contracts the disease following contact

with infected individuals in classes A, I and H at rate βq.Disease transmission is assumed to be reduced
by human awareness, (1− ε). Susceptible vaccinated individuals have lesser chances of contracting the
disease compared to susceptible unvaccinated, modelled by a factor 1 − φ. Infected individuals have

the probability
αq

(αq + µq)
to survive the exposed state to become infectious. A proportion (1 − ω) of

infected individuals that survive the exposed state will become infectious for an average duration of
1

(µq + γ
q
1 + δ

q
2)
. The complementary proportion ω, which survive the exposed state and become clinical

patients will be infectious for an average period
1

(αq + µq)(µq + dq + γ
q
2 + δ

q
1)
.Asymptomatic infectious

patients detected at rate δq
2 are hospitalized and will be infectious for an average period

1
(µq + γ

q
1 + δ

q
2)
.

Clinically infected patients detected at rate δq
1 are hospitalized and their average infectious duration is

1
(µq + dq + γ

q
2 + δ

q
1)
.

3.3. Stability of the model steady states

The main focus of this section is to analyze the global behavior of model (2.2) by examining its
stability. Global stability analysis enables the researcher to understand the evolution of the disease
about the model steady states. Comprehensive analysis in Supplement C shows that the following
result holds.
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Theorem 3.2. If R0 < 1 then the disease-free equilibrium (DFE) is globally stable. However, if R0 > 1
the DFE is unstable and a unique equilibrium exists and is a global attractor.

Theorem 3.2 implies that whenever R0 < 1 the disease dies out in the community and it persists if
R0 > 1. Hence if novel intervention strategies are capable of reducing R0 to values less than unity then
the disease will become extinct.

3.4. Estimation of model parameters

In order to determine numerical results of model (2.2), we need to estimate the model parameters.
We obtain these parameter values using two approaches: some parameter values are adapted from
literature and some other parameter values are estimated by computing the root-mean square error
(RMSE) as follows:

RMSE =

√√
1
n

n∑
k=1

(Estimate − Observed cases)2, (3.3)

where n is the number of observations. We will make use of the COVID-19 data for Wuhan, China
presented in [2]. Note that the daily cases correspond to the first term of the equation Dq

t0 H(t). We
will use this term to estimate new daily infections of model (2.2). All model parameter values are
presented in Table 1. We assumed the initial population levels as follows: S (0) = 4000, V(0) =

0, E(0) = 10, I(0) = 0, A(0) = 0, H(0) = 6, and R(0) = 0. From model (2.2) the daily new
cases correspond to the term δ

q
2A + δ

q
1I which account for the detected cases.

Table 1. Parameters and values.

Symbol Description Value Units Source

ω Proportion of exposed individuals who develop
clinical signs of the disease Dimensionless 0.75 [4]

Λ Per capita human recruitment rate Day −1 20 [25]
α−1 Incubation period Day 2 (2–14) [25]
φ Vaccine efficacy Dimensionless 0.5 (0–1) [25]
κ Rate of vaccination with first dose Day −1 0.03 [25]
θ2 Rate of vaccination with more than a single dose Days −1 0.05 [25]
ε Efficacy of NPIs Dimensionless 0.5 (0-1) [25]
δ1 Rate of hospitalization of clinical patients Day−1 0.94 [25]
δ2 Rate of hospitalization of asymptomatic patients Day−1 0.94 [25]
γ1 Recover rate of asymptomatic humans Day−1 0.004 [25]
γ2 Recover rate of infected humans Day−1 0.015 [25]
γ3 Recover rate of hospitalized humans Day−1 0.5 [25]
d Disease induced death rate Day −1 0.005 [26]
µ Natural death rate Day −1 5 × 10−6 [26]
β Disease transmission rate Day −1 5.4 × 10−6 Fitting
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Figure 2. (a) The root-mean-square error (RMSE) for different derivative orders. The mini-
mum error of estimation is obtained for q = 0.345. (b) The estimation of the fractional-order
model with q = 0.345. (c) Plot of residuals.

Simulation results in Figure 2 shows (a) the RMSE for different derivative orders (b) model fit
versus observed values and (c) plot of residuals. From the illustration in (a), one can observe that the
minimum error of estimation for the given data occurs for q = 0.345. In (b), we can observe that model
estimates are extremely close to the observed data. In (c), one can observe that the residuals show very
little or no autocorrelation or partial autocorrelation an evidence that we have a good fit.

3.5. Global sensitivity analysis

We examined the relationship between individual parameters and R0 when all model parameters
are simultaneously varied. We performed this analysis utilizing the partial rank correlation coefficients
(PRCC) approach presented in [27], and the results are presented in Figure 3. The output shows that
an increasing recruitment and disease transmission rate will increase disease transmission potential. In
contrast, the simulations shows that increasing (i) NPIs use; (ii), vaccination of susceptible individuals
(with either first dose or more than one dose) and vaccine efficacy will significantly reduce disease
transmission potential. Together, these results suggest that reducing disease transmission rate through
awareness campaigns and vaccination will significantly reduce disease transmission potential. In addi-
tion, results show that NIPs use has most impact on reducing disease transmission potential. We further
investigated the relationship between R0 and four model parameters which are strongly correlated to it;
awareness and disease transmission rate (Figure 4). Overall, these simulations confirm that increasing
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disease transmission rate will increase disease transmission potential and increasing use of NPIs will
reduce disease transmission potential.
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Figure 3. Sensitivity analysis of R0 with respect to its model parameters.

A contour plot of R0 as a function of ε (NPIs use)and φ (vaccine efficacy)is presented in Figure
5. The values of other model parameters are based on Table 1. We observe that whenever the efficacy
of NPIs and vaccine are atleast 80% all the time, then the disease transmission potential is reduce
to values below unity. This implies that the disease will die out in the community as guaranteed by
Theorem 3.2.

3.6. Effects of NPIs and vaccination on disease dynamics

Sensitivity analysis results has shown that high NPIs and vaccine efficacy have the potential to
reduce transmission potential. Here, we examine the disease dynamics with varying vaccine and NPIs
efficacy (Figure 6). Simulation results (Figure 6) concur with earlier findings that increasing NPIs use
coupled with high effective vaccine will lead to disease extinction. In particular, one can observe that
when both NPIs use and vaccine efficacy exceeds 75% then the disease dies out in the community.
Precisely, when ε = φ = 0, then R0 = 3.96 and when ε = φ = 75%, then R0 = 0.2491. Results
presented in Figure 6 also concur with analytical results in Theorem 3.2 that if R0 < 1 the the disease
dies out and the reverse occurs for R0 > 1.
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(c) (d)
Figure 4. Monte Carlo simulations of 1000 sample values for four illustrative parameters
(disease transmission rate, NPIs and vaccination rates) chosen via Latin Hypercube Sam-
pling.
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Figure 5. Contour plot of R0 as a function of ε (NPIs use)and φ (vaccine efficacy).

3.7. Effects of delaying the first COVID-19 vaccine dose on disease dynamics

To assess the effects of delaying the uptake of the first COVID-19 vaccine dose on disease dynam-
ics, we simulated model (2.2) at different values of κ with θ2 fixed at 0.01 per day. The results are in
Figure 7. Results show that a delay exceeding 10 days (κ = 0.1) may lead to disease persistence and
the reverse leads to disease extinction.
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Figure 6. Effects of NPIs and vaccine efficacy on disease dynamics.

3.8. Effects of delaying the second COVID-19 vaccine dose on disease dynamics

To evaluate the effects of delaying the second COVID-19 vaccine dose on disease dynamics, we
simulated model (2.2) at different values of θ2, (the rate at which individuals received more than a single
dose) and the other model parameters are fixed as in Table 1. The results are in Figure 8. Simulation
results indicates that an increase in the number of individual who take the optimal vaccine doses will
lead to disease extinction. Based on these results one can conclude that, if the delay for the second
COVID-19 vaccine is more than 100 days (θ2 = 0.01) then the disease may persist. Results in Figure 7
and 8 both show that delaying accepting COVID-19 vaccines have public health implications.

3.9. The role of memory effects on disease dynamics

To investigate the role of memory effects on the evolution COVID-19 over time, we simulated
model (2.2) for R0 < 1 (Figure 9) and R0 > 1 (Figure 10) at different values of q (the derivative order).
In all scenarios, we observed that model solutions will converge to a unique equilibrium point. In
particular, if R0 < 1 model solutions converges to DFE and if R0 > 1 solution converge to a unique
endemic equilibrium. Moreover, we observed that for R0 > 1 model solutions for different deriva-
tive orders exhibit an oscillatory behavior before they eventually converge to their respective endemic
points. This phenomena was also obsrved in the following studies [28, 29]. In addition, we observed
that due to the fractional-order the rate of decay and growth of solutions differs. In particular, when
the memory effects are strong (q < 1), the model solutions converges to their respective equilibrium
points earlier than when memory effects are weak (q ≈ 1). This outcome was also noted in the work of
Nisar et al. [30].
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Figure 7. Effects of delaying the first COVID-19 vaccine dose on disease dynamics.
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Figure 8. Effects of delaying the second COVID-19 vaccine dose on disease dynamics.
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Figure 9. Simulation results showing convergence of solutions to the disease-free equilib-
rium whenever R0 < 1.
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Figure 10. Convergence of model solutions to a unique endemic equilibrium whenever R0 >

1.
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4. Conclusion remarks

Mathematical models are invaluable tools that can be used to quantitatively evaluate vaccination
programs, improve their design and monitor new vaccine initiatives. Although vaccination is volun-
tary, the success attained by rolling out vaccines lies on vaccine efficacy and its acceptance by the
target population. With the efficacy of COVID-19 vaccines estimated to be in the range of 50–95%
efficacy [31], their success essentially depended on their acceptance by the population. Despite being
highly effective, COVID-19 roll-out has been characterized by vaccine hesitancy. Globally, vaccine
hesitancy and objection has been estimated to be around 27% [13]. Using a fractional model in this
paper, we evaluated the vaccine hesitancy on COVID-19 dynamics over time. In particular, we eval-
uated the effects of delaying the first and second COVID-19 dose on disease dynamics over time. In
addition, the model also includes the effects of non-pharmaceutical interventions (NPIs).

We employed a fractional model since model based on fractional calculus are capable of describing
real world phenomena more accurately compared to integer ordinary differential equations. In particu-
lar, we used the Caputo derivative since its derivative for a constant has the same outcome as that of an
integer ordinary differential equation. We computed the reproduction number and carried out sensitiv-
ity analysis using the partial rank correlation method to assess its relationship with model parameters.
Sensitivity analysis results showed that vaccines with relatively high efficacy are capable of minimiz-
ing the spread of the epidemic. We also observed that reducing the delay to accept the first and second
vaccine doses significantly reduces the epidemic outcomes. In contrast, we observe that parameters
associated with recruitment rate of the population and disease transmission can significantly increase
the epidemic whenever they are increased.

We also examined the global stability of the model steady states. By constructing suitable Lyapunov
functionals, we demonstrated the both the disease-free and endemic equilibrium are globally asymp-
totically stable whenever they exist. The aforementioned analytical results are supported by numerical
illustrations. To underpin and demonstrate this study, we carried out extensive numerical simulations,
in particular, we assessed the effects of NPIs and vaccination on disease dynamics. Results showed
that vaccines and NIPs interventions that are 75% effective all the time are capable of stopping the
epidemic. We also evaluated the implications of vaccine hesitancy on disease dynamics. Outcomes
showed that delaying accepting COVID-19 vaccines have public health implications. In particular,
a delay of more than 10 and 100 days for the first and second dose, respectively, leads to disease
persistence.

Our study has limitations. First, vaccine hesitancy can be triggered or aided by proliferation of
anti-vaccination misinformation through social media [32]. As a future work, it will be interesting to
modify the proposed model to incorporate media effects. Second, we did not account for heterogene-
ity in disease transmission. Risks of acquisition, spread, clinical symptoms and disease severity are
heterogeneous, as are access to and uptake of universal strategies of confinement, testing and isola-
tion [33]. Despite all these limitations, our findings might be useful for designing and implementing
vaccination programs.
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5. Supplement

5.1. Supplement A: Existence, uniqueness, positivity and boundedness of model solutions

In this section, we present the existence, uniqueness, positivity and boundedness of the solutions of
model (2.2). We commence our discussion by demonstrating existence and uniqueness of solutions.
Our approach is based on the fixed-point theory. Let B be a Banach space of real-valued continuous
functions defined on an interval I with the associated norm:

‖S ,V, E, A, I,H,R‖ = ‖S ‖ + ‖V‖ + ‖E‖ + ‖A‖ + ‖I‖ + ‖H‖ + ‖R‖ (5.1)

where ‖S ‖ = sup{|S (t)| : t ∈ I, ‖S ‖ = sup{|S (t)| : t ∈ I, ‖V‖ = sup{|V(t)| : t ∈ I, ‖E‖ = sup{|E(t)| : t ∈
I, ‖A‖ = sup{|A(t)| : t ∈ I, ‖I‖ = sup{|I(t)| : t ∈ I, ‖H‖ = sup{|H(t)| : t ∈ I, ‖R‖ = sup{|R(t)| : t ∈ I,
and B = E(I) × E(I) × E(I) × E(I) × E(I) × E(I) × E(I), with E(I) denoting the Banach space of
real-valued continuous functions on I and the associated sup norm. For convenience system (2.2) can
be rewritten in the equivalent form given below

Dq
t0S (t) = G1(t, S ),

Dq
t0V(t) = G2(t,V),

Dq
t0 E(t) = G3(t, E),

Dq
t0 A(t) = G4(t, A),

Dq
t0 I(t) = G5(t, I),

Dq
t0 H(t) = G6(t,H),

Dq
t0R(t) = G7(t,R).


. (5.2)

By applying the Caputo fractional integral operator, system (5.2), reduces to the following integral
equation of Volterra type with Caputo fractional integral of order 0 < q < 1,

S (t) − S (0) = 1
Γ(q)

∫ t

0
(t − χ)q−1G1(χ, S )dχ,

V(t) − V(0) = 1
Γ(q)

∫ t

0
(t − χ)q−1G2(χ,V)dχ,

E(t) − E(0) = 1
Γ(q)

∫ t

0
(t − χ)q−1G3(χ, E)dχ,

A(t) − A(0) = 1
Γ(q)

∫ t

0
(t − χ)q−1G4(χ, A)dχ,

I(t) − I(0) = 1
Γ(q)

∫ t

0
(t − χ)q−1G5(χ, I)dχ,

H(t) − H(0) = 1
Γ(q)

∫ t

0
(t − χ)q−1G6(χ,H)dχ,

R(t) − R(0) = 1
Γ(q)

∫ t

0
(t − χ)q−1G7(χ,R)dχ.


(5.3)

Next we prove that the kernels Gi, i = 1, 2, 3, 4, 5, 6, 7 fulfill the Lipschitz condition and contraction
under some assumptions. In the following theorem, we have demonstrated for G1 and one can easily
verify for the remainder.

Theorem 5.1. Let us consider the following inequality

0 ≤ (β(1 − ε)
(
k1 + k2 + k3

)
+ µ + κ) < 1.

The kernel G1 satisfies the Lipschitz condition as well as contraction if the above inequality is satisfied.
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Proof. For S and S 1 we proceed as below.

‖G1(t, S ) −G1(t, S 1)‖ = ‖ − (β(1 − ε)
(
H + A + I

)
+ µ + κ))(S (t) − S 1(t))

= (µ + κ)‖S − S 1‖ + β(1 − ε)‖(A + I + H)(S − S 1)‖. (5.4)

Since A(t), I(t) and H(t) are bounded functions, i.e, ‖A‖ ≤ k1‖, ‖I‖ ≤ k2 and ‖H‖ ≤ k3, by the property
of norm functions, the above inequality (5.4) can be written as

‖G1(t, S ) −G1(t, S 1)‖ ≤ η1‖S (t) − S 1(t)‖, (5.5)

where η1 = β(1 − ε)(k1 + k2 + k3) + µ + κ. Hence for G1 the Lipschitz condition is obtained and if an
additionally 0 ≤ β(1− ε)(k1 + k2 + k3) + µ+ κ < 1, we obtain a contraction. The Lipschitz condition for
the other kernels are

‖G2(t,V) −G2(t,V1)‖ ≤ η2‖V(t) − V1(t)‖,
‖G3(t, E) −G3(t, E1)‖ ≤ η3‖E(t) − E1(t)‖,
‖G4(t, A) −G4(t, A1)‖ ≤ η4‖A(t) − A1(t)‖,
‖G5(t, I) −G5(t, I1)‖ ≤ η5‖I(t) − I1(t)‖,
‖G6(t,H) −G6(t,H1)‖ ≤ η6‖H(t) − H1(t)‖,
‖G7(t,R) −G7(t,R1)‖ ≤ η7‖R(t) − R1(t)‖.


(5.6)

�

Recursively, the expression in (5.3) can be written as

S n(t) − S (0) = 1
Γ(q)

∫ t

0
(t − χ)q−1G1(χ, S n−1)dχ,

Vn(t) − V(0) = 1
Γ(q)

∫ t

0
(t − χ)q−1G2(χ,Vn−1)dχ,

En(t) − E(0) = 1
Γ(q)

∫ t

0
(t − χ)q−1G3(χ, En−1)dχ,

An(t) − A(0) = 1
Γ(q)

∫ t

0
(t − χ)q−1G4(χ, An−1)dχ,

In(t) − I(0) = 1
Γ(q)

∫ t

0
(t − χ)q−1G5(χ, In−1)dχ,

Hn(t) − H(0) = 1
Γ(q)

∫ t

0
(t − χ)q−1G6(χ,Hn−1)dχ,

Rn(t) − R(0) = 1
Γ(q)

∫ t

0
(t − χ)q−1G7(χ,Rn−1)dχ.


(5.7)
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The difference between successive terms of system (5.2) in recursive form is given below:

φ1n = S n(t) − S n−1(t)
= 1

Γ(q)

∫ t

0
(t − χ)q−1(G1(χ, S n−1) −G1(χ, S n−2))dχ,

φ2n = Vn(t) − Vn−1(t)
= 1

Γ(q)

∫ t

0
(t − χ)q−1(G2(χ,Vn−1) −G2(χ,Vn−2))dχ,

φ3n = En(t) − En−1(t)
= 1

Γ(q)

∫ t

0
(t − χ)q−1(G3(χ, En−1) −G3(χ, En−2))dχ,

φ4n = An(t) − An−1(t)
= 1

Γ(q)

∫ t

0
(t − χ)q−1(G4(χ, An−1) −G4(χ, An−2))dχ,

φ5n = In(t) − In−1(t)
= 1

Γ(q)

∫ t

0
(t − χ)q−1(G5(χ, In−1) −G5(χ, In−2))dχ,

φ6n = Hn(t) − Hn−1(t)
= 1

Γ(q)

∫ t

0
(t − χ)q−1(G6(χ,Hn−1) −G6(χ,Hn−2))dχ,

φ7n = Rn(t) − Rn−1(t)
= 1

Γ(q)

∫ t

0
(t − χ)q−1(G7(χ,Rn−1) −G7(χ,Rn−2))dχ,



(5.8)

with the initial conditions S 0(t) = S (0), V0(t) = V(0), E0(t) = E, A0(t) = A(0), H0(t) = H(0) and
R0(t) = R0. Taking the norm of the first equation of (5.8), we obtain

‖φ1n(t)‖ = ‖S n(t) − S n−1(t)‖

= ‖
1

Γ(q)

∫ t

0
(t − χ)q−1(G1(χ, S n−1) −G1(χ, S n−2))dχ‖

≤
1

Γ(q)
‖

∫ t

0
(t − χ)q−1(G1(χ, S n−1) −G1(χ, S n−2))dχ‖. (5.9)

Applying the Lipschitz condition (5.5) one gets

‖S n(t) − S n−1(t)‖ ≤
1

Γ(q)
η1

∫ t

0
(t − χ)q−1‖S n−1 − S n−2‖dχ. (5.10)

Thus, we have

‖φ1n(t)‖ ≤
1

Γ(q)
η1

∫ t

0
(t − χ)q−1‖φ1n(t)‖dχ. (5.11)

Similarly, for the remainder of the equations in system (2.2) we have

‖φ2n(t)‖ ≤ 1
Γ(q)η2

∫ t

0
(t − χ)q−1‖φ2n(t)‖dχ,

‖φ3n(t)‖ ≤ 1
Γ(q)η3

∫ t

0
(t − χ)q−1‖φ3n(t)‖dχ,

‖φ4n(t)‖ ≤ 1
Γ(q)η4

∫ t

0
(t − χ)q−1‖φ4n(t)‖dχ,

‖φ5n(t)‖ ≤ 1
Γ(q)η5

∫ t

0
(t − χ)q−1‖φ5n(t)‖dχ,

‖φ6n(t)‖ ≤ 1
Γ(q)η6

∫ t

0
(t − χ)q−1‖φ6n(t)‖dχ,

‖φ7n(t)‖ ≤ 1
Γ(q)η7

∫ t

0
(t − χ)q−1‖φ7n(t)‖dχ.


(5.12)

AIMS Medical Science Volume 10, Issue 3, 196–222.



213

From (5.12) one can write

S n(t) =
∑n

i=1 φ1i(t), Vn(t) =
∑n

i=1 φ2i(t), En(t) =
∑n

i=1 φ3i(t),
An(t) =

∑n
i=1 φ4i(t), In(t) =

∑n
i=1 φ5i(t), Hn(t) =

∑n
i=1 φ6i(t),

Rn(t) =
∑n

i=1 φ7i(t),

 (5.13)

Now, we claim the following result which guaranteed the uniqueness of solution of model (2.2).

Theorem 5.2. The proposed fractional epidemic model (2.2) has a unique solution for t ∈ [0,T ] if the
following inequality holds

1
Γ(q)

bqηi < 1, i = 1, 2, ....., 7. (5.14)

Proof. Earlier we have shown that the kernels conditions given in Eqs. (5.5) and (5.6) holds. Thus
by considering the Eqs. (5.12) and (5.14), and by applying the recursive technique we obtained the
succeeding results as below

‖φ1n(t)‖ ≤ ‖S 0(t)‖
[

1
Γ(q)b

qη1

]n

, ‖φ2n(t)‖ ≤ ‖V0(t)‖
[

1
Γ(q)b

qη2

]n

, ‖φ3n(t)‖ ≤ ‖E0(t)‖
[

1
Γ(q)b

qη3

]n

,

‖φ4n(t)‖ ≤ ‖A0(t)‖
[

1
Γ(q)b

qη4

]n

, ‖φ5n(t)‖ ≤ ‖I0(t)‖
[

1
Γ(q)b

qη5

]n

, ‖φ6n(t)‖ ≤ ‖H0(t)‖
[

1
Γ(q)b

qη6

]n

,

‖φ7n(t)‖ ≤ ‖R0(t)‖
[

1
Γ(q)b

qη7

]n

.


(5.15)

Therefore, the above mentioned sequences exist and satisfy ‖φ1n(t)‖ → 0, ‖φ2n(t)‖ → 0, ‖φ3n(t)‖ → 0,
‖φ4n(t)‖ → 0, ‖φ5n(t)‖ → 0, ‖φ6n(t)‖ → 0, and ‖φ7n(t)‖ → 0, as n → ∞. Furthermore, from Eq. (5.15)
and employing the triangle inequality for any k, we one gets

‖S n+k(t) − S n(t)‖ ≤
n+k∑

j=n+1

T j
1 =

T n+1
1 − T n+k+1

1

1 − T1
,

‖Vn+k(t) − Vn(t)‖ ≤
n+k∑

j=n+1

T j
2 =

T n+1
2 − T n+k+1

2

1 − T2
,

‖En+k(t) − En(t)‖ ≤
n+k∑

j=n+1

T j
3 =

T n+1
3 − T n+k+1

3

1 − T3
,

‖An+k(t) − An(t)‖ ≤
n+k∑

j=n+1

T j
4 =

T n+1
4 − T n+k+1

4

1 − T4
,

‖In+k(t) − In(t)‖ ≤
n+k∑

j=n+1

T j
5 =

T n+1
5 − T n+k+1

5

1 − T5
,

‖Hn+k(t) − Hn(t)‖ ≤
n+k∑

j=n+1

T j
6 =

T n+1
6 − T n+k+1

6

1 − T6
,

‖Rn+k(t) − Rn(t)‖ ≤
n+k∑

j=n+1

T j
7 =

T n+1
7 − T n+k+1

7

1 − T7
,



(5.16)
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where Ti = 1
Γ(q)b

qηi < 1 by hypothesis. Therefore, S n, En, An, In, Hn and Rn are regardedas Cauchy
sequences in the Banach space B(J). Hence they are uniformly convergent as described in [34].Ap-
plying the limit theory on Eq. (5.7) when n → ∞ affirms that the limit of these sequences is the
unique solution of system (2.2). Ultimately, the existence of a unique solution for system (2.2) has
been achieved. �

We now demonstrate the positivity of solutions for all t ≥ 0. To prove positivity and boundedness of
solutions, we need the following Generalized Mean Value Theorem in [35] and corollary.

Lemma 5.1. Suppose that f (x) ∈ C[a, b] and Dq
t0 f (x) ∈ C[a, b], for 0 < q ≤ 1, then we have

f (x) = f (a) +
1

Γ(q)
(Dq

t0 f )(ξ)(x − a)q (5.17)

with a ≤ ξx, ∀x ∈ (a, b] and Γ(·) is the gamma function.

Corollary 5.1. Suppose that f (x) ∈ C[a, b] and Dq
t0 f (x) ∈ C(a, b], for 0 < q ≤ 1. If Dq

t0 f (x) ≥ 0,
∀x ∈ (a, b), then f (x) is non-decreasing for each x ∈ [a, b]. If Dq

t0 f (x) ≤ 0, ∀x ∈ (a, b), then f (x) is
non-increasing for each x ∈ [a, b].

We now prove that the non-negative orthant R7
+ is positively invariant region. To do this, we need to

show that on each hyperplane bounding the non-negative orthant, the vector field points to R7
+. From

model (2.2), one gets:

Dq
t0S (t)|S =0 = Λq ≥ 0, (5.18)

Dq
t0V(t)|V=0 = κqS ≥ 0, (5.19)

Dq
t0 E(t)|E=0 = βq(1 − ε)(H + A + I

)
(S + (1 − φ)V) ≥ 0, (5.20)

Dq
t0 I(t)|I=0 = (1 − ω)αqE ≥ 0, (5.21)

Dq
t0 A(t)|A=0 = ωαqE ≥ 0, (5.22)

Dq
t0 H(t)|H=0 = δ

q
2A + δ

q
1I ≥ 0, (5.23)

Dq
t0R(t)|R=0 = γ

q
1A + γ

q
2I + γ

q
3H + θ

q
2V ≥ 0. (5.24)

Thus, by Corollary 5.1, the solution of model (2.2) are always positive for t ≥ 0. We now demonstrate
that all solutions of model (2.2) are bounded above for all t ≥ 0. To do this, we need the following
Lemma 5.2 and Lemma 5.3.

Lemma 5.2. (see [36]). Let q > 0, n − 1 < q < n − N. Suppose that f (t), f ′(t), ..., f (n−1)(t) are
continuous on [t0,∞) and the exponential order and that Dq

t0 f (t) is piecewise continuous on [t0,∞).
Then

L{Dq
t0 f (t)} = sqF (s) −

n−1∑
k=0

sq−k−1 f (k)(t0) (5.25)

where F (s) = L{ f (t)}.

Lemma 5.3. (see [37]). Let C be the complex plane. For any α > 0 β > 0, and A ∈ Cn×n, we have

L{tβ−1Eα,β(Atα)} = sα−β(sα − A)−1,

forRs > ‖A‖
1
α , whereRs represents the real part of the complex number s, and Eα,β is the Mittag-Leffler

function [21].
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Since all solutions of model system (2.2) have been shown to be positively invariant and have a lower
bound zero (5.18)-(5.24), we now proceed to demonstrate that these solutions are bounded above. By
summing all equations of system (2.2) one gets:

Dq
t0 N(t) = Λq − µqN(t) − dqI(t) − dqH(t)

≤ Λq − µqN(t). (5.26)

Taking the Laplace transform of (5.26) leads to:

sqL(N(t)) − sq−1N(0) ≤
Λq

s
− µqL(N(t)). (5.27)

Combining like terms and arranging leads to

L(N(t)) ≤ Λq s−1

sq + µq + N(0)
sq−1

sq + µq

= Λq sq−(1+q)

sq + µq + N(0)
sq−1

sq + µq . (5.28)

Applying the inverse Laplace transform leads to

N(t) ≤ L−1
{

Λq s−1

sq + µq + N(0)
sq−1

sq + µq

}
+L−1

{
N(0)

sq−1

sq + µq

}
≤ ΛqtqEq,q+1(−µtq) + N(0)Eq,1(−µtq)

≤
Λq

µq µ
qtqEq,q+1(−µtq) + N(0)Eq,1(−µtq)

≤ max
{

Λq

µq ,N(0)
}

(µqtqEq,q+1(−µtq) + Eq,1(−µtq))

=
C

Γ(1)
= C, (5.29)

where C = max
{

Λq

µq ,N(0)
}

. Thus, N(t) is bounded from above. This completes the proof of Theorem

3.1.

5.2. Supplement B: Reproduction number

In order to compute the reproduction number using the next generation matrix (NGM) method [24] we
first evaluate the disease-free equilibrium (DFE). Through direct calculations one can easily verify that
in the absence of COVID-19 in the community the DFE of model (2.2) is:

E0 : (S 0,V0, E0, A0, I0,H0,R0) =

(
Λq

µq + κq ,
κqΛq

(κq + µq)(µq + θ
q
2)
, 0, 0, 0, 0, 0

)
. (5.30)

We now define the nonnegative matrix F that denotes the generation of new infection terms and the
non-singular matrixV that denotes the remaining transfer terms are respectively given (at the disease-
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free equilibrium E0) by:

F = βq(1 − ε)(S 0 + (1 − φ)V0)


1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,

V =


αq + µq 0 0 0
−(1 − ω)αq µq + γ

q
1 + δ

q
2 0 0

−ωαq 0 µq + dq + γ
q
2 + δ

q
1 0

0 −δ
q
2 −δ

q
1 µq + dq + γ

q
3

 . (5.31)

It follows from (5.31), that the NGM K of the model (2.2) is (5.32)

K =


m1 m2 m3 m4

0 0 0 0
0 0 0 0
0 0 0 0

 , (5.32)

where

m1 =
βq(1 − ε)(1 − ω)

(αq + µq)(µq + γ
q
1 + δ

q
2)

(
Λq

µq + κq +
κq(1 − φ)Λq

(κq + µq)(µq + θ
q
2)

)(
αq +

δ
q
2

µq + dq + γ
q
3

)
,

+
βq(1 − ε)ω

(αq + µq)(µq + dq + γ
q
2 + δ

q
1)

(
Λq

µq + κq +
κq(1 − φ)Λq

(κq + µq)(µq + θ
q
2)

)(
αq +

δ
q
1

µq + dq + γ
q
3

)
, (5.33)

m2 =
βq(1 − ε)

(µq + γ
q
1 + δ

q
2)

(
Λq

µq + κq +
κq(1 − φ)Λq

(κq + µq)(µq + θ
q
2)

)(
1 +

δ
q
2

µq + dq + γ
q
3

)
, (5.34)

m3 =
βq(1 − ε)

(µq + dq + γ
q
2 + δ

q
1)

(
Λq

µq + κq +
κq(1 − φ)Λq

(κq + µq)(µq + θ
q
2)

)(
1 +

δ
q
1

µq + dq + γ
q
3

)
, (5.35)

m4 =
βq(1 − ε)

(µq + dq + γ
q
3)

(
Λq

µq + κq +
κq(1 − φ)Λq

(κq + µq)(µq + θ
q
2)

)
. (5.36)

The spectral radius of (5.32) gives the reproduction number of model (2.2) is given by Equation (3.2).

5.3. Supplement C: Stability of the model steady states

To investigate the global stability of the model steady states we will construct appropriate Lyapunov
functionals. Since the recovered/removed population does not contribute to the generation of secondary
infections one can ignore that last equation of model (2.2) when examining the global stability and
consider the following reduced system

Dq
t0S (t) = Λq − βq(1 − ε)(H + A + I

)
S − (µq + κq)S ,

Dq
t0V(t) = κqS − βq(1 − φ)(1 − ε)(H + A + I)V − (µq + θ

q
2)V,

Dq
t0 E(t) = βq(1 − ε)(H + A + I

)
(S + (1 − φ)V) − (αq + µq)E,

Dq
t0 I(t) = ωαqE − (µq + d + γ

q
2 + δ

q
1)I,

Dq
t0 A(t) = (1 − ω)αqE − (µq + γ

q
1 + δ

q
2)A,

Dq
t0 H(t) = δ

q
1I + δ

q
2A − (µq + dq + γ

q
3)H.


(5.37)
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Now, to investigate the global stability of the DFE let us consider the Lyapunov functional (5.38):

L0(t)(t) = a1E(t) + a2I(t) + a3A(t) + a4H(t), (5.38)

where

a1 =
βωα

~1~2
+
β(1 − ω)α
~1~3

+
βωαδ1

~1~2~4
+
β(1 − ω)αδ2

~1~3~4
,

a2 =
β

~2
+
βδ1

~2~4
, a3 =

β

~3
+
βδ2

~3~4
, a4 =

β

~4
,

where,

~1 = (µ + α), ~2 = (µ + d + γ2 + δ1), ~3 = (µ + γ1 + δ2), ~4 = (µ + d + γ3).

Taking the derivative of L0(t) along the solutions system (5.37) and making some algebraic simplifica-
tion lead one gets:

L′0(t) ≤ β(1 − ε)(R0 − 1)(I(t) + A(t) + H(t)). (5.39)

If R0 ≤ 1, then L′0(t) ≤ 0. Let M be the largest invariant set in Ω, we can observe that L′0(t) = 0
iff either R0 = 1. Therefore, by the Lyapunov-LaSalle invariance principle [38], the DFE is globally
asymptotically stable whenever R0 ≤ 1. This completes the proof.

To demonstrate the second part of Theorem 3.2, we need Lemma 5.4 in [39]:

Lemma 5.4. Let x(·) be a continuous and differentiable function with x(t) ∈ R+. Then, for any time
instant t ≥ b, one has

c
bDq

t

(
x(t) − x∗ − x∗ ln

x(t)
x∗

)
≤

(
1 −

x∗

x(t)

)
c
bDq

t x(t), x∗ ∈ R+, ∀q ∈ (0, 1). (5.40)

We now proceed to investigate the global stability of the endemic equilibrium. We define the Lyapunov
functional:

W(t) = B1

{
S − S ∗ − S ∗ ln

(
S
S ∗

)}
+ B2

{
V − V∗ − V∗ ln

(
V
V0

)}
+ B3

{
E − E∗ − E∗ ln

(
E
E∗

)}
+B4

{
A − A∗ − A∗ ln

(
A
A∗

)}
+ B5

{
I − I∗ − I∗ ln

(
I
I∗

)}
+ B6

{
H − H∗ − H∗ ln

(
H
H∗

)}
,

(5.41)
with

B1 = B2 = B3 = 1,

B4 =
βq(1 − ε)A∗(S ∗ + (1 − φ)V∗)

(1 − ω)αqE∗
+
βq(1 − ε)δq

2A∗H∗

(1 − ω)αqE∗

(
S ∗ + (1 − φ)V∗

δ
q
2A∗ + δ

q
1I∗

)
,

B5 =
βq(1 − ε)I∗(S ∗ + (1 − φ)V∗)

ωαqE∗
+
βq(1 − ε)δq

1I∗H∗

ωαqE∗

(
S ∗ + (1 − φ)V∗

δ
q
2A∗ + δ

q
1I∗

)
,
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B6 =
βq(1 − ε)H∗(S ∗ + (1 − φ)V∗)

δ
q
2A∗ + δ

q
1I∗

. (5.42)

Applying Lemma 5.4 leads to (5.43):

Dq
t0W(t) ≤ (µq + κq)S ∗

(
2 − x1 −

1
x1

)
+ (µq + θ

q
2)V∗

(
3 −

x1

x2
−

1
x1
− x2

)
+βq(1 − ε)A∗S ∗

(
3 −

1
x1
−

x3

x4
−

x4

x3
x1

)
+ βq(1 − ε)I∗S ∗

(
3 −

1
x1
−

x3

x5
−

x5

x3
x1

)
+
βq(1 − ε)δq

2A∗H∗S ∗

(δq
2A∗ + δ

q
1I∗)

(
4 −

1
x1
−

x3

x4
−

x4

x6
−

x6

x3
x1

)
+βq(1 − ε)(1 − φ)A∗V∗

(
4 −

1
x1
−

x1

x2
−

x3

x4
−

x4

x3
x2

)
+βq(1 − ε)(1 − φ)I∗V∗

(
4 −

1
x1
−

x1

x2
−

x3

x5
−

x5

x3
x2

)
+
βq(1 − ε)δq

1I∗H∗S ∗

δ
q
2A∗ + δ

q
1I∗

(
4 −

1
x1
−

x3

x5
−

x5

x6
−

x6

x3
x1

)
+
βq(1 − ε)(1 − φ)δq

2A∗H∗V∗

(δ2A∗ + δ
q
1I∗)

(
5 −

1
x1
−

x1

x2
−

x3

x4
−

x4

x6
−

x6

x3
x2

)
+
βq(1 − ε)(1 − φ)δq

1I∗H∗V∗

(δq
2A∗ + δ

q
1I∗)

(
5 −

1
x1
−

x1

x2
−

x3

x5
−

x5

x6
−

x6

x3
x2

)
, (5.43)

where

x1 =
S
S ∗
, x2 =

V
V∗
, x3 =

E
E∗
, x4 =

A
A∗
, x5 =

I
I∗
, x6 =

H
H∗
,

It follows that if xi = 1, (for i = 1, 2, 3, 4, 5), that is., S = S ∗, V = V∗, E = E∗, A = A∗, I = I∗ and
H = H∗ one gets we have Dα

t0W(t) = 0. Furthermore, Since the arithmetic mean is greater or equal to
the geometric mean, that is;

x1 +
1
x1
≥ 2

√
x1 ·

1
x1

,

it implies Dq
t0W(t) ≤ 0. Using the LaSalle’s invariance principle [38], we conclude that the endemic

equilibrium point EE of model (2.2) is globally asymptotically stable if R0 > 1. This completes the
second part of Theorem 3.2.
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