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Abstract: DNA direct repair (DR) pathways are unique in DNA repair because those mechanisms 
restore the genetic information without any DNA synthesis and are thus error free. We review the DR 
mechanisms, consequences of the absence of those systems in cells, their occurrence in cancer, 
regulation of their genes and proteins in cancer cells, and the potential exploitation of inhibitors to 
enhance chemotherapy. 
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1. Introduction

Cellular DNA is constantly under attack by endogenous and exogenous chemicals that induce a
diverse array of harmful lesions, referred to as adducts. Adducts compromise the welfare of cells 
because they trigger mutations, and block DNA and RNA polymerases, which can result in arrest of 
DNA/RNA synthesis, DNA strand breaks, block gene expression, or mutations. Fortunately, 
mammalian cells have developed a variety of DNA damage repair mechanisms that help preserve 
cellular function by removing DNA lesions. Most DNA damage repair pathways remove damaged 
lesions by breaking the phosphodiester backbone, excising the damaged base, and resynthesizing a 
segment of DNA using a complementary template and error-prone DNA polymerases. However, 
direct repair (DR) removes DNA, and RNA damage, without excision, and without resynthesis; 
thereby making this repair pathway error-free. 

DR maintains genomic integrity by protecting DNA mainly from endogenous and exogenous 
forms of alkylation damage. Endogenous forms of alkylating agents are produced as byproducts of 
oxidative metabolism, and from the enzymatic cofactor, S-adenosylmethionine [1,2]. Exogenous 
alkylating agents are commonly found in food, and in the air as contaminants from tobacco smoke 
and fuel combustion [3,4]. Alkylating agents react with DNA and RNA to form a diverse pattern of 
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simple and complex lesions. The pattern of lesions depends on numerous factors such as: The 
substrate damage site, the chemical nature of the alkylating agent (substitution nucleophilic 
unimolecular [SN1] vs. substitution nucleophilic bimolecular [SN2]), the DNA structure 
(single-stranded [ss] vs. double-stranded [ds]), and the DNA sequence [5]. The most commonly 
occurring lesions caused by alkylating agents include N1-methylguanine (1meG), O6-methylguanine 
(O6meG), N7-methylguanine (7meG), N3-methylguanine (3meG), N3-methylcytosine (3meC), 
N1-methyladenine (1meA), and N3-methyladenine (3meA) (Figure 1) [6–8]. Alkylation-induced 
DNA lesions pose a great threat to human health because they can compromise the genome by 
generating DNA strand breaks, and inducing mutations that can lead to diseases, such as cancer [9–11]. 

 

Figure 1. Major DNA lesions induced by methylating agents. 

This review focuses on the pathways implicated in the direct reversal of alkylation-induced 
damage. Furthermore, we will highlight how DR mechanisms function in protecting cells from 
cancer development, and the therapeutic applications during cancer treatment. 

2. Direct repair 

There are two major types of proteins that conduct DR in mammalian cells, 
O6-methylguanine-DNA methyltransferase (MGMT) [12] and the AlkB homologs (ALKBH) family 
of α-ketoglutarate (α-KG)-Fe(II) dependent dioxygenases [13]. MGMT repairs most exocyclic 
O-linked alkyl-adducts by using a unique repair mechanism which renders the enzyme inactive in the 
process [14]. In contrast, ALKBH2 and 3 in the ALKBH family carry out numerous repair reactions, 
and can catalyze the removal of N-alkyl lesions present on cytosine, adenine, thymine, and guanine 
residues [15]. DR proteins are of significance because they protect cells from the cytotoxic and 
mutagenic potential of alkylating agents. Recently, a comprehensive analysis of all DNA damage 
repair pathways in multiple cancer types identified that DR genes, e.g., ALKBH3 and MGMT, are 
frequently altered, predominantly by epigenetic silencing [16], but cancer-related alteration in the 
expression of those genes in some cancers was predicted previously [11,17–19,20]. This suggests 
that altered DR genes can be used as prognostic markers for enhanced cancer risk. Furthermore, loss 
of DR function can sensitize cancer cells to alkylating chemotherapeutic agents [17,21–24]. 
Therefore, it is of clinical importance to identify inhibitors of DR enzymes to enhance treatment by 
synthetic lethality. 
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2.1. MGMT repair mechanism 

The MGMT protein is evolutionary conserved across prokaryotes, archaea, and eukaryotes; 
most notably in the active site sequence [25]. While there is no significant sequence homology in the 
N-terminal domain among species, the C-terminal domain is absolutely conserved. The C-terminal 
contains an active-site cysteine motif (PCHR), the O6meG binding channel, and a helix-turn-helix 
(HTH) DNA-binding motif [26]. The HTH motif allows MGMT to migrate along dsDNA, flipping 
bases into its active site until it detects weakened base pairing caused by alkyl damage [27]. The 
MGMT active site contains an evolutionary conserved cysteine residue (Cys145), which accepts an 
alkyl group from the DNA adduct, inactivating the enzyme in the process (Figure 2) [28]. 

 

Figure 2. MGMT active site repair mechanism. 

MGMT is of biological importance because it removes the most mutagenic lesions caused by 
alkylating agents. The preferred substrate of MGMT are O6meG lesions, but it can also remove 
larger lesions such as O6ethylG, as well as O4meT, albeit at a much slower rate [29]. Loss of MGMT 
function makes cells susceptible to the mutagenic and cytotoxic effects of O6meG lesions (Figure 3). 

 

Figure 3. (A) MGMT substrates. R indicates deoxyribose position; (B) MGMT inhibitors. 

Once alkylated, MGMT is inactivated; working a single time as a suicide enzyme [30]. That 
inactivation by protein alkylation causes a significant conformational change. The conformation 
change triggers a structural destabilization that results in rapid ubiquitination and degradation by 
the 26S proteasome system [31–33]. This single use mechanism means that cellular levels of MGMT 
are depleted as the reaction occurs, and continuous de novo synthesis of MGMT is required for continued 
repair [34]. Indeed, tissues and cells treated with alkylating agents show enhanced MGMT biosynthesis. 

Regulation of MGMT expression is still under discussion. In E. coli, there are two O6meG DNA 
methyltransferases, the Ada and Ogt enzymes [35]. The expression of ada is inducible as part of the 
adaptive response to alkylating agents, whereas ogt expression is constitutive. Induction of MGMT 
to DNA damage exists in some mammalian cell lines [36–38], but the response is not universal. 
MGMT expression is inducible by glucocorticoids [39] that indicates more studies on factors 
controlling the expression of this important gene are required. Post-transcriptional regulation of 
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MGMT protein levels occurs through microRNA (miRNA) mediated degradation of MGMT mRNA. 
miRNA binding to RNA inhibits translation, and shuttles it towards degradation via the 
RNA-induced silencing complex (RISC). Four miRNAs have been identified to alter MGMT protein 
levels: miR-181d, miR-767-3p, miR-648, and miR-370-3p [40,41]. Expression levels of miR-181d 
and miR-370-3p are inversely correlated with those of the MGMT transcript, and are associated with 
a favorable response to temozolomide (TMZ) in glioblastomas [42,43]. These reports indicate that 
the expression status of miRNAs may be implicated in the development of TMZ resistance. 

2.2. MGMT protects against O-linked alkyl adducts 

Although the O6meG adduct is generated to a lesser extent than other lesions, it has a severe 
biological impact by eliciting the mutagenic effects of alkylating agents. Alkylating agents that 
produce little O6meG are considered weak carcinogens [44]. O6meG mispairs with thymine during 
DNA replication by forming two hydrogen bonds (Figure 4), but the absence of MGMT can also 
result in cytotoxicity [45–47]. If not repaired by MGMT, O6meG, is also subject to translesion 
synthesis (TLS) by low-fidelity DNA polymerases, resulting in G→A transition mutations [48–51], 
but the in vivo role of these enzymes in bypass is still not completely understood. Therefore, in the 
absence of MGMT, O6meG lesions formed by endogenous and exogenous sources of alkylating 
agents contribute to mutations in the genome. 

 

Figure 4. Mispairs formed by O6meG lesions. 

2.3. MGMT models 

Exposure of various MGMT-deficient models to alkylating agents have validated the biological 
importance of MGMT. Early studies found that Mgmt-deficient cells show enhanced sensitivity to 
alkylating agents as compared to normal cells expressing Mgmt [52]. In murine models, 
Mgmt-deficiency increased cell death in proliferating tissues, and increased mutation frequency after 
exposure to either SN1 or SN2 alkylating agents [47,53–58]. In Chinese hamster ovary cells with an 
inducible MGMT cDNA expression construct, low levels of MGMT are linked to accumulation of 
O6meG lesions and a 10-fold increase in HPRT mutation frequency, with G→A mutations dominating 
the mutation spectrum [59]. Induction of MGMT expression resulted in reduced mutation frequencies. 

Furthermore, the cytotoxic potential of O6meG is observed in the absence of MGMT and the 
presence of an intact mismatch repair (MMR) pathway. O6meG:T mispairs are recognized by the 
MMR machinery resulting in the excision of thymine, leaving O6meG behind. This initiates a 
“futile” cycle in which MMR machinery continuously binds to O6meG:T mispairs through several 
rounds of repair, eventually resulting in the formation of double-strand breaks and cell death [60–63]. 
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However, alkyl-induced mutation inactivation of MMR genes has been observed in recurrent GBM 
tumors, and contributes to resistance to alkylating agents, such as TMZ [64]. 

In many cells, loss of MGMT expression occurs by hypermethylation of the MGMT promoter 
region [65,66]. In contrast to MGMT deficiencies, an overwhelming amount of evidence suggests 
that overexpression of MGMT in normal cells provides enhanced protection against alkylating 
agents [67]. For example, mice overexpressing Mgmt show a significant reduction in 
alkylation-induced thymic lymphomas, colon carcinogenesis, and liver tumor formation [68–73]. 
Furthermore, Mgmt-overexpression in cancer-prone mouse models show reduced spontaneous 
formation of hepatocellular carcinoma, and alkylation-induced lymphoma [57,70,74,75]. In other 
work, skin keratinocyte specific expression of MGMT in mouse demonstrated that following 
N-nitroso-N-methylurea exposure, tumor initiation and progression were reduced compared to 
control mice not overexpressing MGMT [76,77]. However, higher MGMT levels did not protect 
against 12-O-tetradecanoylphorbol-13-acetate-mediated tumor promotion [77]. Such findings 
highlight the biological significance of MGMT in normal cells. 

2.4. ALKBH2 and ALKBH3 repair mechanism 

The ALKBH family of α-KG-iron (II) dependent dioxygenases is composed of nine proteins in 
mammalian cells, ALKBH1-8 and Fat Mass and Obesity-associated gene (FTO). However, only 
ALKBH1-3 and FTO have been identified to possess DNA repair activity [78,79]. Since in vivo 
studies on ALKBH1 and FTO concerning their role in DNA repair are limited, we will focus 
attention on ALKBH2 and ALKBH3. The ALKBH2 and 3 proteins directly repair alkyl lesions by an 
iron and α-KG-dependent oxidative demethylation reaction to yield an undamaged base with the 
methyl group being released as formaldehyde (Figure 5) [80,81]. Although the ALKBH2 and 
ALKBH3 utilize the same repair mechanism, they exhibit different cellular localization, and are 
implicated in different protein complexes. For example, ALKBH2 is strictly localized in the 
nucleus, and mainly repairs lesions present on dsDNA by interacting with PCNA at the replication 
fork [80,82]. In contrast, ALKBH3 is found in both the cytoplasm and nucleus where it has a high 
affinity for ssDNA and RNA methylated substrates as compared to the ALKBH2 for those 
substrates [80,83]. In the nucleus, ALKBH3 co-localizes with the activating signaling cointegrator 
complex 3 (ASCC3) helicase enzyme, which unwinds dsDNA to promote lesion repair by ALKBH3; 
this association may expand the substrate range for ALKBH3 to include dsDNA [84,85]. 

 

Figure 5. Repair of 1meA and 3meC by ALKBH proteins. 
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2.5. ALKBH proteins protect against N-linked alkyl adducts 

Despite their differences, the ALKBH2 and 3 proteins repair similar N-alkyl lesions. The 
preferred substrates of ALKBH2 and ALKBH3 are 1meA and 3meC lesions present on DNA and/or 
RNA, but they can also remove other lesions such as 1meG, 3meT, 1etC, as well as ethenobase 
adducts such as 1,N6-ethenoadenine, and 3,N4-ethenocytosine [80,86–89]. Formation of 1meA and 
3meC generally occurs in ssDNA most likely due to the protection conferred by base pairing in 
dsDNA. These lesions are considered highly cytotoxic due to their ability to block synthesis by DNA 
polymerase, thereby triggering apoptosis [90–92]. However, although toxic, 1meA lesions possess a 
low mutagenic potential, whereas 3meC lesions can induce C→T and C→A mutations, possibly due 
to adduct bypass by TLS DNA polymerases (Figure 6) [93,94]. Therefore, based on the enzymatic 
specificity, the role of the ALKBH2 and 3 repair proteins is to protect cells from the highly cytotoxic 
and mutagenic properties of N-alkyl lesions. 

 

Figure 6. Mispairs formed by 3meC to form mutations. 

2.6. Alkbh-/- models 

Murine models deficient in Alkbh2 or Alkbh3 do not exhibit any overt phenotypic differences 
when compared to their wild-type counterparts. However, over time Alkbh2-/- mice show an 
age-related accumulation of 1meA lesions in the liver, whereas Alkbh3-/- do not show this phenotype, 
which indicates a preference of Alkbh2 for 1meA lesions [95,96]. In addition, using mouse 
embryonic fibroblast (MEFs) isolated from Alkbh2-/- and Alkbh3-/-mice, researchers found that both 
mutant MEFs were sensitive to methyl methanesulfonate treatments, but only Alkbh2-deficiency 
provided protection against genomic mutations. Most notably, loss of Alkbh2 in MEFs was 
associated with C→A and C→T mutations following methyl methanesulfonate treatments. 
Furthermore, Alkbh2-deficient MEFs showed an apparent increase in T→A mutations following 
methyl methanesulfonate exposure [97]. 

Loss of both Alkbh2 and Alkbh3 in mice does not result in any obvious phenotypic aberrations, 
and the mice are both fertile and live to normal ages [95–97]. Nonetheless, Alkbh2-/-Alkbh3-/- 
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double-mutant mice are susceptible to alkylation-induced tumor development; suggesting that both 
enzymes are required for alkylation resistance. In addition, this study constructed an 
Aag-/-Alkbh2-/-Alkbh3-/- (Note: Aag in the NIH database is Mpg) triple knockout mouse to determine 
the interaction between Aag-mediated base excision repair and DR in protecting against 
inflammation. Using this model, researchers found an accumulation of toxic and mutagenic εA 
and 1,N2-εG lesion relative to Aag deficient mice, which suggests substrate redundancy between Aag 
and Alkbh proteins [96]. Based on these findings, monitoring the expression status of ALKBH2 and 
3 in cancer patients may prove useful when alkylating agent chemotherapeutics are used, given that 
loss of both enzymes could enhance secondary tumor development. However, the role that ALKBH2 
and ALKBH3 play in cancer etiology is unclear. 

3. DNA direct reversal repair and cancer 

3.1. MGMT and cancer 

Reduced levels of DR proteins contribute to elevated cancer risk, progression, and are important 
determinants of therapeutic response [98]. MGMT, the most frequent DR protein with altered levels, 
is decreased in 11% of cancer types [16]. In fact, gene silencing through promoter methylation is the 
dominant alteration of the MGMT gene, consisting of 92.4% of total alteration [16]. Methylation of 
the CpG islands on the MGMT promoter shields transcription factor binding sites from transcription 
machinery, resulting in reduced gene expression [65,66]. However, the mechanism that controls 
MGMT promoter silencing remains unclear. 

Low MGMT expression due to promoter silencing could also promote tumorigenesis by 
allowing O6meG-induced mutagenesis in oncogenes and tumor-suppressor genes. Loss of MGMT is 
associated with point mutations in KRAS, observed in colon cancer and gastric cancer, and in p53 of 
non-small cell lung cancer and astrocytic tumors [99–103]. In addition, MGMT promoter 
methylation is frequently observed in many cancer types such as glioma, lymphoma, breast, and 
retinoblastoma [104,105]. However, tumors with low MGMT activity manifest enhanced sensitivity 
towards chemotherapeutic alkylating agents. Therefore, detection of MGMT promoter methylation 
status is clinically relevant because that status can serve as a predictor for a positive therapeutic 
response to alkylating agents [24]. For example, patients with glioblastoma whose tumors had MGMT 
promoter hypermethylation showed a better response to TMZ, and improved survival as compared to 
patients with no MGMT promoter methylation [106]. In contrast, high MGMT activity is often 
associated with aggressive malignant tumors and drug resistance [107]. Breast and ovarian tumors 
with high MGMT activity are linked to rapid disease progression, and with high variation in MGMT 
activity in cancer cells [108–110]. In addition, cancer cells that express high levels of MGMT are 
resistant to treatment with alkylating agents. One therapeutic approach in treating MGMT-positive 
tumors is to deplete tumor cells of MGMT activity using inhibitors, but the value of using MGMT 
inhibitors therapeutically is still being evaluated. 

3.2. ALKBH and cancer 

The contribution that the ALKBH proteins play during the carcinogenesis is currently under 
debate. Given that ALKBH2 and ALKBH3 are often overexpressed in certain cancers, such as 
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non-small cell lung carcinoma and prostate adenocarcinoma [19,111], it is of clinical significance to 
understand the role these proteins play in cancer development and progression. ALKBH2 and 
ALKBH3 have been suggested to function as tumor suppressors [112]. Indeed, downregulation of 
ALKBH2 contributes to the development and progression of various cancers such as gastric cancer [18]. 
Furthermore, a comprehensive analysis of The Cancer Genome Atlas revealed that 
methylation-driven transcriptional silencing of the ALKBH3 gene occurs in 8% of cancers; with 
promoter silencing of ALKBH3 observed in many breast cancers [16,113]. Those results are 
consistent with a loss of ALKBH2 or ALKBH3 activity increasing cancer risk. 

In various cancers, ALKBH2 or ALKBH3 are overexpressed, most notably ALKBH3 [76,77,81–83]. 
For example, increased levels of ALKBH3 are often found in prostate and non-small cell lung 
cancers, and increased levels of ALKBH3 in pancreatic adenocarcinoma is correlated with poor 
prognosis and higher pathological stage [20,84,111]. However, loss of ALKBH2 or ALKBH3 
expression in cancer cells renders them sensitive to anticancer drugs. Such is seen in urothelial 
carcinoma where loss of ALKBH3 induced cell cycle arrest and reduced tumor cell survival [114]. 
Also, loss of ALKBH3 in pancreatic adenocarcinoma in xenograft mouse models resulted in reduced 
tumor proliferation and induced apoptosis [20]. Whether overexpression of ALKBH2 or 3 helps drive 
tumor development, or if it is merely a response to alkylating agents remains to be determined. These 
findings suggest that inhibition of ALKBH2 or ALKBH3 function can serve as a potential approach 
to sensitize cancer cells to chemotherapeutic drugs. 

4. DNA direct reversal repair and therapeutic applications 

Alkylating agents were the first form of chemotherapeutics developed for the treatment of 
leukemia and lymphomas [115]. Currently, several methylating agents are used as anticancer drugs 
principally based on their ability to generate large amounts of 1meA and O6meG lesions, or similar 
derivatives on genomic DNA. There are two major forms of alkylating agents used in therapy: 
Monofunctional and bifunctional (Figure 7). Methylating agents contain a single reactive group that 
interacts covalently with nucleophilic reactive centers in DNA; these chemicals are the most 
commonly used alkylating agents during chemotherapy [116]. Dacarbazine and procarbazine are SN1 
methylating agents currently used for the treatment Hodgkin's lymphoma and TMZ used in 
glioblastoma treatment. The chloroethylating nitrosoureas, nimustine, carmustine, and lomustine are 
used for the treatment of brain tumors [5]. Bifunctional alkylating agents contain two reactive groups 
that can form interstrand crosslinks. These agents include mechlorethamine, cyclophosphamide, and 
melphalan that are used for the treatment of leukemia, lymphoma, multiple myeloma, ovarian cancer, 
and solid tumors [5]. 

Our understanding of how cancer cells react to different chemotherapeutic agents is becoming 
better understood. Altered DNA damage repair pathways are often targeted with anti-cancer agents to 
enhance a positive tumor response through synthetic lethality. Cancer cells lacking DR pathways can 
be targeted with alkylating agents. However, many cancers overexpress DR enzymes rendering them 
resistant to alkylating agents. Therefore, using inhibitors to inactivate MGMT or ALKBH proteins in 
tumors is a useful strategy to increase the response to alkylating agents. 
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Figure 7. Selected alkylating agents used therapeutically. The species modifying DNA 
are indicated by red in the structures. 

4.1. MGMT inhibitors 

MGMT inhibitors are pseudosubstrates that mimic the structure of O6meG (Figure 3B), and take 
advantage of its “suicide” mechanism by covalently binding to the enzyme active site rendering it 
inactive. In cancer cells, MGMT inhibitors are used to deplete MGMT-positive cancer cells of active 
enzyme, which enhances the efficacy of alkylating agents. To date, numerous MGMT inhibitors have 
been synthesized, such as O6-benzylguanine (O6BG), O6-(4-bromothienyl)guanine (lomeguatrib), 
and O6-[3-(aminomethyl)benzyl]guanine, and extensively studied in clinical trials in combination 
with DNA alkylating agents [117,118]. 

The first developed, and the most extensively studied MGMT inhibitor is O6BG, which is 
2,000-times more effective at inactivating MGMT as compared to the O6meG lesion [119–121]. 
Various in vitro and in vivo studies have established that inactivation of MGMT with O6BG enhances 
sensitivity to alkylation treatment, and inhibited tumor growth [122]. Clinical trial studies have 
shown that O6BG sensitizes gliomas, melanomas, gastric adenocarcinomas, and medulloblastomas to 
the cell killing effects of TMZ and carmustine [123–127]. In addition, phase I trials using 
lomeguatrib in combination with TMZ effectively deplete patients of MGMT activity, and increase 
O6meG adducts in various cancer forms [128,129]. However, contrasting clinical trials studies have 
reported that the use of MGMT inhibitors in combination with anticancer alkylating agents has no 
impact on clinical outcome [122,130,131]. In addition, numerous clinical trials, and animal studies 
have determined that O6BG and lomeguatrib increases toxicity associated with alkylating therapy in 
non-tumor cells, especially in the bone marrow, resulting in myelosuppression [132–134]. Efforts to 
reduce off-target effects using O6BG substrates conjugated to tumor cell metabolites like glucose or 
folate are currently being tested, but have not been used in clinical trials [135,136]. Another inhibitor 
of MGMT that also induces autophagy is lipoic acid [137]. It remains to be seen whether other 
MGMT inhibitors enhance efficacy against tumors, or merely increase non-tumor cell toxicity during 
treatment with alkylating agents. 

In contrast to inhibiting MGMT activity, other studies have focused on reducing MGMT 
expression in cancer cells. Targeting pathways that are often overactive in cancer cells may restore 
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sensitivity towards alkylating agents. Various studies have revealed that inhibiting signaling 
pathways, such as Hedgehog/GLI1 and WNT/β-catenin, reduces MGMT expression and restores 
sensitivity towards alkylating agents [138,139]. In addition, another strategy to reduce MGMT 
expression is by promoting gene promoter methylation [21,140]. Efforts to reduce MGMT gene 
expression include using the histone deacetylase (HDAC) inhibitors valproic acid (VPA), and the 
DNA methylation inhibitors [141–145]. Other work showed that TMZ and VPA treatments of 
melanoma cells, overexpressing HDACs, substantially increase apoptosis and/or increase survival 
compared to controls [143]. VPA treatment in melanoma cells also reduces proteins involved in 
homologous recombination (RAD52) and the Fanconi anemia pathway (FANCD2) [143]. Although 
VPA reactivates capase-8 and increased caspase-3 levels, at least one report suggests little if no 
benefit for using radiation and TMZ along with VPA [146]. Nonetheless that assessment is still under 
study. Despite the numerous proposed methods to deplete MGMT gene expression in tumor cells, 
there are no viable clinical approaches developed to inhibit MGMT production. However, these 
methods have the potential to be used as a treatment option for MGMT-positive cancers, and help 
avoid the toxicities associated with O6meG derivatives. 

4.2. ALKBH inhibitors 

Similar to MGMT, overexpression of ALKBH2 promotes chemoresistance to alkylating agents [147]. 
Unlike MGMT, the potential inhibitors remain in the developmental stages, and there are currently 
no inhibitors of ALKBH proteins being tested in clinical trials [147]. Recent studies have suggested 
indirect methods for inhibiting ALKBH protein functions, which can be used as novel 
chemotherapeutic approaches to cancer treatment. One study proposed deregulating protein stability 
by targeting the OTU/USP7/USP9X deubiquitinase pathway, which acts as a master regulator of 
ALKBH2 and ALKBH3 protein stabilization. The OTU/USP7/USP9X deubiquitinase complex 
regulates ALKBH by K48-ubiquitination, a signaling peptide that marks proteins for proteasomal 
degradation [148,149]. In the absence of USP7 or USP9X, cells are sensitized to alkylation-mediated 
damage due to ALKBH protein destabilization. This suggests that small-molecule inhibitors of USP7 
and USP9X can be used to sensitize cancer cells to chemotherapeutic drugs [150,151]. 

Limiting the required metabolic α-KG in cancer cells can serve as a therapeutic approach 
because it reduces ALKBH2 and ALKBH3 activity levels. A recent study found that the 
oncometabolite ᴅ-2-hydroxyglutarate (ᴅ-2-HG), which accumulates in IDH-mutant cancer cell lines, 
is an α-KG structural analog that acts as an inhibitor of ALKBH2 and 3 by blocking its 
demethylation activity. Therefore, IDH-mutant cancer cell lines have increased sensitivity to 
alkylating agents [152]. Another study found that glutamine deficiency inhibits ALKBH2 and 3 from 
repairing DNA alkylation damage. Glutamine is a precursor of α-KG and that study indicated 
reduction in α-KG levels using glutaminase inhibitors, in combination with alkylating agents, can 
improve drug efficacy [153]. Whether these methods will elicit a positive response in clinical trials 
has yet to be determined. 

5. Conclusions 

The DR systems in mammalian cells are more limited in their capacity to repair a variety of 
adducts as compared to base excision and nucleotide excision repair pathways. However, DR has 
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major roles in the elimination of adducts that can lead to mutations or cell death. The development of 
inhibitors of MGMT, ALKBH2, and ALKBH3 could help augment existing chemotherapies based on 
small DNA alkylating agents. Coupled with new technologies for drug delivery, targeting could be 
more specific to tumor cells, resulting in improved patient outcomes. 
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