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Abstract: Nowadays, pervasive computing technologies are paving a promising way for advanced 

smart health applications. However, a key impediment faced by wide deployment of these assistive 

smart devices, is the increasing privacy and security issue, such as how to protect access to sensitive 

patient data in the health record. Focusing on this challenge, biometrics are attracting intense 

attention in terms of effective user identification to enable confidential health applications. In this 

paper, we take special interest in two bio-potential-based biometric modalities, electrocardiogram 

(ECG) and electroencephalogram (EEG), considering that they are both unique to individuals, and 

more reliable than token (identity card) and knowledge-based (username/password) methods. After 

extracting effective features in multiple domains from ECG/EEG signals, several advanced machine 

learning algorithms are introduced to perform the user identification task, including Neural Network, 

K-nearest Neighbor, Bagging, Random Forest and AdaBoost. Experimental results on two public 

ECG and EEG datasets show that ECG is a more robust biometric modality compared to EEG, 

leveraging a higher signal to noise ratio and also more distinguishable morphological patterns. 

Among different machine learning classifiers, the random forest greatly outperforms the others and 

owns an identification rate as high as 98%. This study is expected to demonstrate that properly 
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selected biometric empowered by an effective machine learner owns a great potential, to enable 

confidential biomedicine applications in the era of smart digital health. 

Keywords: biomedicine; smart health; biometrics; user identification; electrocardiogram; 

electroencephalogram; neural network; random forest; AdaBoost 

 

1. Introduction 

Leveraging continuous advancements in electronics, communication and computers, the health 

industry is being quickly reshaped, allowing for more and more promising smart/mobile health 

solutions [1–8]. However, along with dramatically increased assistive devices, connection needs and 

big data, the security and privacy issue is also rising. It is highly necessary to pay enough attention to 

concerns such as how to provide confidential biomedicine applications, and how to effectively 

protect the sensitive data of patients. Biometric human identification is attracting tremendous 

attentions focusing on the security and privacy issue. As an emerging technology, biometric is more 

robust than traditional methods, such as token (identity card) and knowledge-based 

(username/password) ones which may be stolen or lost. Biometric is usually unique to individuals 

and highly difficult to be duplicated [9]. There are several categories of biometric modalities, such as 

the behavioral and physiological ones. The examples for the former one include gait, signature, face, 

etc. We take special interest in the latter one in this paper. The physiological signals can be easily 

collected by wearable computers which are part of the body sensor network. Then the signals 

acquired can be processed either by personal digital devices or cloud computing servers, for user 

identification purpose toward confidential smart digital health. 

 Among different physiological signals, the heart electrocardiogram (ECG) [10] and the brain 

electroencephalogram (EEG) [11] are two key modalities. The former one reflects the electrical 

behavior of the heart which is modulated by both sympathetic and 

parasympathetic nerves. To measure the ECG signal, ECG electrodes are used to detect the tiny 

electrical changes on the human body. These changes are generated by heart muscle’s 

electrophysiological movements during depolarization and repolarization phases of one heartbeat. 

Therefore, it is hard to be duplicated and safer than traditional identification methods. In daily 

applications, the ECG signal can be easily collected by wearable computers and then sent to 

cellphone devices or other personal digital platforms. The ECG signal can be collected at any time 

since the live human body continuously generates heart electrical signals which are propagated to all 

the body parts.  

EEG signal is another famous modality that can be used in many applications, such as seizure 

detection, sleep quality monitoring and emotion tracking. Here, we focus on its application in 
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biometric human identification. EEG signal is also unique to individuals, and is somehow, more 

difficult to be duplicated considering the underlying signal generation mechanism is much more 

complicated. The EEG signal is usually collected by EEG electrodes placed on the head fixed by a 

specific EEG cap. There are also some easy-wearing EEG caps which only collect data from several 

locations with the scarification of accuracy. EEG signal is usually highly weak and of a log signal-to-

noise ratio, therefore, many EEG electrodes are still used in practical application scenarios to obtain 

more redundant information for performance enhancement purpose. Of course, this may lower the 

wearability. But considering EEG signal is highly difficult to be duplicated, it is still attracting more 

and more attentions in human identification applications.  

However, a thorough comparison between ECG and EEG-based biometric human identification 

lacks enough attention. This study is necessary, because ECG and EEG have different advantages 

and disadvantages in many aspects mentioned above, including sensor placement methods, signal 

quality, wearability of the signal acquisition device, difficulty of duplication, and so on. A detailed 

comparative analysis of these two modalities can effectively advance the practical application of an 

appropriated signal in pervasive assisted personal devices, for confidential biomedicine purpose. 

Another aspect lacking enough study is the signal processing and machine learning algorithms 

used to perform the feature extraction and user classification tasks. Many different machine learning 

classifiers have been used to learn the features extracted and identify users on the fresh unseen data. 

However, which algorithm is more effective is not thoroughly compared and analyzed. Considering 

machine learners are usually built based on diverse mechanisms, the comparison is thus highly 

necessary. For example, the neural network is inspired by the brain structures and introduces a large 

number of neurons which are expected to generate neuron spikes reflecting the data patterns. The 

random forest, instead, is based on a totally different assumption, which includes forests of simple 

decision trees and applies an ensemble strategy to get an averaged classification result.  

Focusing on above aspects lacking of study, in this paper, we investigate different advanced 

machine learning approaches on two physiological modalities, i.e., heart ECG and brain EEG, to 

gain insights on how to select an effective machine leaner and an appropriate signal for human 

identification purpose. The machine learning methods taken in consideration include Neural Network, 

K-nearest Neighbor, Bagging, Random Forest and AdaBoost [12]. Moreover, we also extract multi-

domain features for the ECG signal, and the gamma-band spectral power ratio feature for the EEG 

signal. These features are fed to different machine learners to build the model on the training data, or 

to test the model on the unseen testing data. The identification rate is reported for different 

modalities and different machine learners. The discussion on the effectiveness of the features and 

classifiers is also given to point out future research directions.  

The following article is organized as follows: section 2 gives the detailed methods in terms of 

datasets, feature extraction and classifiers; section 3 includes experimental results and discussion, 

and also comparison with state-of-the-art works; section 4 concludes the study. 
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2. Materials and Methods  

2.1. Datasets 

To evaluate two physiological modalities, we have used two widely-applied public datasets, the 

Fantasia ECG dataset [13,14] and the UCI (University of California, Irvine) EEG dataset [15]. 

The Fantasia ECG dataset was acquired for aging trend study purpose and thus owns diverse 

ECG morphologies. This dataset has been used in many studies focusing different problems. Here, 

we choose 20 recordings from 20 subjects for human identification purpose. 

The UCI EEG dataset was collected using the 64-electrode configuration. Each subject was 

exposed to the picture stimulation, and thus their EEG signals reflected this external visual input. 

EEG data corresponding to 20 nonalcoholic subjects are also used to evaluate the proposed algorithm. 

2.2. Pre-Processing 

There are two pre-processing steps, including filtering and signal segmentation. For ECG signal, 

a Butterworth band-pass filter (2 to 50 Hz) is applied to remove the low frequency baseline wander 

and the high frequency power line interference. Then ECG heartbeats are segmented based on the 

middle point between two heartbeat R peaks. Considering this study focuses on the effectiveness of 

the ECG heartbeat in terms of user identification, we directly use the ground truth heartbeat R peak 

locations to perform the heartbeat segmentation. This is because of the fact that ECG signal is 

usually acquired continuously, and we need to firstly segment the ECG heartbeats and then extract 

features from these heartbeats. But heartbeat detection algorithm may induce some faking heartbeats 

when the ECG signal is impacted by motion artifacts and other noise. In this study, the heartbeats 

selected do not include faking heartbeats, which is important for a fair comparison purpose with the 

ECG signal.  

For EEG signal, a band-pass filter (30 to 50 Hz) is applied to the raw signal to get the gamma 

band signal, which corresponds to the visual stimulation-related signal fluctuation. In the UCI EEG 

dataset, each stimulation is stored in a single file, so there is no need to segment the data stream. It 

means we treat each data file as an instance, similar as a heartbeat.  

Based on the ECG heartbeats or the EEG stimulation-related responses, we now can extract 

features to represent the signal characteristics that can be fed to the machine learners.  
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Figure 1. An example of ECG signal with characteristic points (P, Q, R, S and T). 

2.3. ECG Feature Extraction 

For ECG feature extraction, we have considered eleven features from multi-domains. An 

example of ECG signal with characteristic points is given in Figure 1 and the extracted features are 

listed in Table 1. Some of these features have been used in other areas, such as EMG signal 

processing and body activity recognition [16,17]. But we extract them here for biometric human 

identification purpose. 

(1) Skewness [16] 

Skewness is used to measure the symmetry of the distribution of the samples around the R peak 

region. The definition is ܵܵܰܭሾܺሿ ൌ ఓయ
ఙయ
ൌ

ாൣሺ௑ିఓሻయ൧

ሺாሾሺ௑ିఓሻమሿሻయ/మ
, where ߤଷ is the third central moment and ߪ 

is the standard deviation, of signal ܺ. 

(2) Kurtosis [16] 

Kurtosis is used to measure the distribution of samples around the R peak region. The definition 

is KurtሾXሿ ൌ ஜర
஢ర
ൌ

୉ൣሺଡ଼ିஜሻర൧

ሺ୉ሾሺଡ଼ିஜሻమሿሻమ
, where μସ is the fourth central moment and σ is the standard deviation, 

of signal ܺ. 

(3) Auto-regression coefficient 1 

Coefficient 1 of the normalized four order auto-regression. (Coefficient 0 is not used since it is a 

constant) 

(4) Auto-regression coefficient 2 

Coefficient 1 of the normalized four order auto-regression. 

(5) Auto-regression coefficient 3 
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Coefficient 1 of the normalized four order auto-regression. 

(6 ) Auto-regression coefficient 4 

Coefficient 1 of the normalized four order auto-regression. 

(7) Median frequency  

The median frequency of the power spectrum of the R peak region. 

(8) Mean frequency 

The mean frequency of the power spectrum of the R peak region. 

(9) Root mean square  

Root mean square value calculated based on the R peak region. 

(10) Modified median frequency [17] 

The modified median frequency is the frequency which equally divides the amplitude of the 

spectrum of the R peak region. 

(11) Modified mean frequency [17] 

The modified mean frequency is the frequency which averages amplitude of the spectrum of the 

R peak region. 

Table 1. Summary of extracted ECG features. 

No. Name 

1 Skewness 

2 Kurtosis 

3 Auto-regression coefficient 1 

4 Auto-regression coefficient 2 

5 Auto-regression coefficient 3 

6 Auto-regression coefficient 4 

7 Median frequency 

8 Mean frequency 

9 Root mean square 

10 Modified median frequency 

11 Modified mean frequency 

2.4. EEG Feature Extraction 

For EEG feature extraction, it is difficult to apply similar methods used in ECG feature 

extraction, because the EEG signal is highly noise (which will be shown in the result section) and it 

is hard to distinguish meaning morphologies. Therefore, we have introduced the gamma-band 

spectral power ratio feature [18], defined in (1-5): 
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ܵ௖,௧ 	ൌ 	 ܵ௖,௧ 	 ∗ 	ܵ௖,௧	, ∀ܿ ∈ ሾ1,64ሿ, ݐ∀ ∈ ሾ1,256ሿ (1) 

ܵܵܵ௖ ൌ 	∑ ܵ௖,௧்
௧ୀଵ , ∀ܿ, ܶ ൌ 256    (2) 

௖,௧ܵܨ 	ൌ ௖,௧ܨ	 	∗ ,	௖,௧ܨ	 ∀ܿ,  (3)     ݐ∀

௖ܵܵܨ ൌ 	∑ ௖,௧்ܵܨ
௧ୀଵ , ∀ܿ      (4) 

௖ܴܩ ൌ ,ܵܵܵ௖	௖/ܵܵܨ	 ∀ܿ    (5) 

where, 

ܵ௖,௧: the voltage value of the ݐ െ ܿ ℎ sample in theݐ െ  ℎ channel, from the unfiltered raw EEGݐ

data, 

ݐ ௖,௧: the voltage value of theܨ െ ܿ ℎ sample in theݐ െ  ℎ channel, from the band-pass filteredݐ

EEG data, 

ܵܵ௖,௧: the energy of the ݐ െ ܿ ℎ sample in theݐ െ  ,ℎ channel, from the unfiltered raw EEG dataݐ

ݐ ௖,௧: the energy of theܵܨ െ ܿ ℎ sample in theݐ െ  ,ℎ channel, from the filtered EEG dataݐ

ܵܵܵ௖: the energy of the ܿ െ  ,ℎ channel, from the unfiltered raw EEG dataݐ

ܿ ௖: the energy of theܵܵܨ െ  ,ℎ channel, from the filtered EEG dataݐ

ܿ ௖: gamma band energy ratio over the raw data, for theܴܩ െ  .ℎ channelݐ

Therefore, we can get ܴܩ௖ which is channel-wise gamma band energy ratio over the raw data. 

This feature vector (64 values) is expected to give the signal strength in the gamma band which is 

correlated with the visual stimulation [18]. 

To extract the features, MATLAB is used, which performs the data segmentation, filtering, 

feature calculation and .csv file generation which will be used by the RStudio [19] to perform the 

classification later. 

2.5. Machine Learning Model Training and Testing 

After extracting features for each instance, we now can train the machine learning classifiers to 

learn the model parameters based on the training data. Considering we have extracted 11 features for 

the ECG signal and 64 features (64 channels) for the EEG signal, we thus choose more ECG 

instances for algorithm evaluation for fairness purpose. 300 heartbeats are chosen for each subject 

and in total, there are 6000 instances for 20 subjects.  

For EEG signal, there are in total 1137 instances for 20 subjects and each subject has around 60 

measurements (each measurement includes 64 time series corresponding to 64 EEG signal channels).  

We have introduced the 10-fold cross validation method to test the generalization ability of the 

trained models [20], and the averaged performance (accuracy) is reported. We have extracted the 

features directly from the database, therefore there is no null or redundant data. Null or redundant 

data may exist when using some databases which are already extracted features. Five different 

classifiers are evaluated in this study, including Neural Network, K-nearest Neighbor, Bagging, 

Random Forest and AdaBoost, and the identification rate over two datasets is given. 
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2.5.1 Neural Network 

The neural network [12] is inspired by the brain structures where layer-wise neurons are 

organized in a way that can represent high-level abstraction. To accelerate the training process, we 

have used a four-layer neural network, with one input layer, two hidden layers and one output layer. 

For ECG, the number of nodes for four layers are 11 (11 features), 50, 50 and 20 (20 subjects), 

respectively. And for EEG, they are 64, 100, 50 and 20, respectively, where more nodes for the 

second layer is used to more effectively learn patterns from 64 features.  

2.5.2 K-nearest Neighbor 

The K-nearest neighbor (KNN) classifier [12] is a non-parametric method, which analyzes the 

distribution of the instances to build the model. KNN does not make any assumption on the data 

distribution which is its advantage since practical data does not obey typical distribution assumptions. 

So KNN usually generates nonlinear boundaries for different groups. K is selected as 20 here since 

we have 20 subjects in each dataset. 

2.5.3 Bagging 

The bagging classifier (Bootstrap Aggregating) [12] can effectively decrease the variance of the 

prediction, because it can generate more data based on the original dataset to train the classifier. It is 

actually a special case of model averaging. Here we build the bagging classifier based on the 

decision trees and get the smoothed results.  

2.5.4 Random Forest 

The random forest [12] is based on a totally different assumption, which includes forests of 

simple decision trees and applies an ensemble strategy to get an averaged classification result. 

Random forest has been used in many areas and demonstrated effective classification ability. Here 

we choose 100 trees to build the random forest. 

2.5.5 Adaboost 

The Adaboost classfier (Adaptive Boosting) [12] is designed to be able to get a weighted sum 

results from weak learners. It is adaptive since it can adjust the selection of training samples based on 

historical training performance (previous iterations). It means that it can learn to select samples more 

useful to improve the prediction performance of the model.  
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3 Results and Discussion 

In this section, we give detailed experimental results of pre-processing, feature extraction and 

classification. 

3.1 Pre-Processing 

The ECG data after band-pass filtering is shown in Figure 2. Clear ECG morphology can be 

observed, leveraging a relatively high signal-to-noise ratio. Therefore it should be able to effectively 

extract multi-domain features from ECG heartbeats with a good signal quality.  

 

Figure 2. Filtered ECG data. 

The EEG signal is much noisier than the ECG signal. To clearly demonstrate the signal quality, 

both raw and band-pass filtered signals are given, as shown in Figure 3 and 4, respectively. In Figure 

3, the EEG data for one instance (64 × 256 points) is plotted where it is hard to find out potential 

patterns. After filtering, Figure 4 still does not show observable signal behaviors. This is to say, even 

with 64 channels, it is still highly challenging to analyze the behavior from the ECG signal. This is 

the major reason we choose the gamma band spectral power ratio as the feature. 
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Figure 3. Raw EEG data (64 channels from one instance). 

 

Figure 4. Band-pass filtered EEG data (64 channels from one instance). 
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3.2 Feature Extraction 

We have visualized the extracted features only for the EEG signal because we are interested in 

whether the gamma band spectral feature can reflect some meaningful behaviors of the EEG signal. 

An example is given in Figure 5, where 64 features are plotted for one EEG instance and there are 

several spikes corresponding to some specific EEG channels. 

If we further plot all instances for one subject, as shown in Figure 6, we can find relatively 

consistent trend for these instances, with similar feature spikes. That means the gamma band spectral 

feature does reflect underlying brain behaviors related to visual stimulation. But at the same time, it 

is also worth noting that these instances are also very noisy and have a large variance. This indicates 

that EEG features may not be as effective as ECG features, which will be further introduced later.  

Another thing worth noting is that the spikes in Figure 6 correspond to several EEG channels, 

which are connected to EEG electrodes placed on some specific locations of the head. This also 

gives some hints to remove some non-significant electrodes to enhance the wearability and power 

efficiency of the algorithm. But in this study, we keep all these features considering that EEG is 

highly noisy and we want to leverage as much information as possible to fully explore the potential 

of the EEG-based human identification method. 

 

Figure 5. Extracted 64 features for EEG data (64 channels from one instance). 
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Figure 6. Extracted 64 features for all instances of one subject in the EEG database. 

3.3 Performance 

The performance of five advanced classifiers is summarized in Table 2. For ECG dataset, the 

random forest shows the best accuracy, followed by the Adaboost and neural network. For EEG 

dataset, all accuracy is no more than 90% because the signals are not as strong as the ECG signals 

and of much noise. The random forest still shows a best accuracy, 86%, followed by the neural 

network and the KNN.  

Therefore, we can get two important insights here. Firstly, ECG signal is much more 

appropriate for human identification, leveraging a high signal-to-noise ratio, and EEG signal even 

with 64 channels cannot provide an identification rate higher than 90%. Secondly, the random forest 

classifier is the most powerful one compared with other four methods, leveraging the ensemble 

ability of many decision trees. The neural network can also provide relatively good performance 

because the brain-inspired neuron connections can learn the underlying patterns from data effectively. 

Overall, the ECG-based biometric identification method using the random forest machine learner is 

the best combination according to our study.  
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Table 2. Summarization of five machine learners over two datasets. 

Data Classifier 10-fold cross validation accuracy (%) Averaged

ECG 

NN 94.2 90.8 90.2 93.8 91.3 94.0 91.2 92.7 92.3 92.3 92.3 

KNN 86.3 85.5 84.3 87.0 86.0 86.5 87.3 85.3 85.5 86.0 86.0 

Bagging 93.0 91.0 90.2 91.7 89.3 93.0 93.3 92.7 92.7 91.7 91.9 

RF 97.7 98.0 97.5 97.8 97.2 98.3 99.2 97.7 98.5 97.8 98.0 

Adaboost 97.0 96.8 96.7 97.5 95.7 98.0 97.3 97.5 96.3 96.3 96.9 

EEG 

NN 85.1 77.2 86.8 86.8 88.6 80.7 83.3 89.5 84.2 88.3 85.1 

KNN 77.2 68.4 81.6 75.4 78.9 75.4 73.7 81.6 83.3 84.7 78.0 

Bagging 72.8 63.2 64.9 67.5 65.8 69.3 70.2 66.7 63.2 64.0 66.7 

RF 86.8 78.9 89.5 81.6 91.2 83.3 87.7 87.7 87.7 85.6 86.0 

Adaboost 78.1 71.1 71.9 69.3 68.4 71.9 79.8 79.8 75.4 73.0 73.9 

NN: neural network; KNN: K-nearest neighbor; RF: random forest. 

Table 3. Performance comparison with state-of-the-art works. 

Methods  Signal Datasets ID Rate 

Proposed ECG 20 subjects 98.0% 

Yao et al. [10] ECG 20 subjects  91.5% 

Tan et al. [21] ECG 10 subjects 91.7% 

Lourenco et al. [22] ECG 16 subjects 94.3% 

Ting et al. [23] ECG 13 subjects 87.5% 

ID: identification. 

3.4 Comparison 

To further illustrate the effectiveness of the proposed ECG & RF-based method leveraging the 

extracted multi-domain features, we also compare our method with four state-of-the-art works as 

shown in Table 3. EEG-based method is not listed in Table 3 considering that its accuracy is much 

lower than ECG-based method and we only suggest ECG-based method for practical application 

scenarios. Our method owns a much higher identification rate than other works, demonstrating that 

the extracted multi-domain features and the random forest machine learner is very powerful in 

human subject identification. The other works did not compare different modalities and different 
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machine learning classifiers, however, we compared EEG and ECG modalities and showed that ECG 

is superior to EEG leveraging a better signal quality, and we also compared different classifiers and 

demonstrate that the random forest more effective than other method. 

3.5 Limitations and Future Work 

In future, there are several directions to further enhance the study. Firstly, extracting more 

features and selecting critical ones may further enhance the accuracy and power efficiency; secondly, 

more datasets can also be introduced to evaluate the identification rate when more human subjects 

need to be distinguished; thirdly, the ensemble of different classifiers may also contribute to the 

performance enhancement, since different classifiers usually leverage different assumptions and their 

combination may help to cover more mechanisms behind the data. 

Besides, EEG signal also shows different characteristics during different sleep stages [24–28], 

which may result in different user identification rates and can be further studied. 

Currently available ECG and EEG datasets were not acquired at the same time. Although we 

tried to balance the selection of these two datasets to make the comparison fairer, we believe if we 

can collect ECG and EEG from same subjects at the same time, we can make the comparison more 

robust. Meanwhile, it is also necessary to consider more datasets in future work. Moreover, we will 

further evaluation more classifier configurations to explore their impact. Currently, we empirically 

selected the parameters for these classifiers. 

4 Conclusion 

In this paper, we have proposed the ECG & RF-based biometric human identification approach 

toward practical confidential biomedicine applications. Firstly, we have considered both ECG and 

EEG modalities and investigated their appropriateness in terms of human identification, by 

evaluating their signal quality, feature effectiveness and identification rate. Experimental results 

show that ECG is more robust than EEG levering a high signal-to-noise ratio and effectively 

extracted features. Secondly, we thoroughly compared five advanced machine learners and 

determined that the random forest classifier is much more powerful than other methods benefitting 

from its ensemble learning strategy. Specifically, for ECG & RF-based approach, a user 

identification rate as high as 98.0% is achieved, which is much higher than state-of-the-art works. 

This study is expected to show that properly selected biometric empowered by an effective machine 

learner owns a great potential, to enable confidential biomedicine applications in the era of smart 

digital health. 
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