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Abstract: Cardiac autonomic neuropathy (CAN) is a disease that occurs as a result of nerve damage 
causing an abnormal control of heart rate. CAN is often associated with diabetes and is important, as 
it can lead to an increased morbidity and mortality of the patients. The detection and management of 
CAN is important since early intervention can prevent further complications that may lead to sudden 
death from myocardial infarction or rhythm disturbance. This paper is devoted to a review of work 
on developing data mining techniques for automated detection of CAN. A number of different 
categorizations of the CAN progression have been considered in the literature, which could make it 
more difficult to compare the results obtained in various papers. This is the first review proposing a 
comprehensive survey of all categorizations of the CAN progression considered in the literature, and 
grouping the results obtained according to the categorization being dealt with. This novel, thorough 
and systematic overview of all categorizations of CAN progression will facilitate comparison of 
previous results and will help to guide future work. 
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1. Introduction 

Clinical applications of data mining techniques have been actively investigated. For 
preliminaries and background information on this broad area let us refer the readers to the 
monographs [1–3]. In particular, for successful treatment of various conditions, it is important to find 
attributes that may help in the early detection of signs and symptoms of disease that may facilitate 
the prevention, early diagnosis and treatment (cf. [4–9]). Likewise, automated computer-based 
diagnosis plays an important role in eHealth and mobile applications (cf. [10,11]). The present 
review article deals with recent contributions to this broad research area for the special case of 
cardiovascular autonomic neuropathy (CAN), which is a well-known complication associated with 
diabetes (cf. [12–14]). 

Cardiovascular (CVD) complications associated with diabetes account for 65% of all diabetic 
deaths [15]. The large impact of CVD associated with diabetes mellitus Type 1 and Type 2 has 
brought about the recommendation that people with diabetes should be regularly screened for the 
presence of comorbidities including autonomic nervous system dysfunction with the aim to decrease 
the incidence of cardiovascular related morbidity and mortality [16–18]. People with diabetes and 
autonomic neuropathy have an increased mortality rate (29%) compared to people with diabetes but 
no autonomic neuropathy (6%) [19,20]. As many as 22% of people with type 2 diabetes suffer from 
CAN, with prevalence increasing as duration of diabetes increases [21,22]. CAN leads to impaired 
regulation of blood pressure, heart rate and heart rate variability (HRV). The increased risk of cardiac 
mortality due to arrhythmias makes screening of people with diabetes for autonomic neuropathy vital 
so that early detection, intervention and monitoring can occur [23]. Autonomic neuropathy is also 
associated with non-response hypoglycemia and a reduction in counter-regulation of the 
hypoglycemic events [24,25]. Silent ischemia is significantly more frequent in patients with CAN 
than in those without CAN [26,27] and significantly more people with diabetes die from 
cardiovascular disease such as heart attack and stroke, which can be attributed to CAN [28]. Early 
subclinical detection of CAN and intervention are of prime importance for risk stratification in 
preventing the potentially serious consequences of CAN [29].  

Data mining methods are an important adjunct to medical research in identifying disease 
markers that allow early detection, prevention or treatment of disease. Electronic patient records and 
large healthcare databases combined with data mining provide a means to improve the level of health 
by identifying latent features not identified previously that are strong indicators of disease [30]. Data 
mining methods have been used extensively in health care research to build prediction models that 
provide additional information for improving health care outcomes [31–33]. 

2. Tests of the Ewing Battery 

Autonomic neuropathy in diabetics has been traditionally identified by performing the Ewing 
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battery of tests, which was recommended by the American Diabetes Association and the American 
Academy of Neurology. These tests evaluate heart rate (HR) and blood pressure (BP) responses to 
various activities [34–36]. The five tests in the Ewing battery are shown in Table 1 following [35]. 
Results of these tests provide a good assessment of diabetic autonomic neuropathy and aid in 
objective diagnosis instead of relying on self-reported clinical signs such as gustatory sweating, 
reflux, and incontinence. For the current study, patient results were only included if participants in 
the study were free of medication and comorbidities affecting their heart rate. The response of 
subjects to each of the Ewing tests is defined as normal, borderline or abnormal, as shown in Table 1, 
where HR is measured beats per minute (BPM) and BP is measured in mmHg. 

Table 1. Summary of Ewing tests. 

Values 
HR response 

to standing  

BP response 

to standing 

HR response to 

deep breathing 

Valsalva maneuver 

and HR response 

BP response to 

sustained handgrip 

Abnormal ≤ 1.00 ≥ 30 ≤ 10 ≤ 1.10 ≤ 10 
Borderline 1.01–1.03 11–29 11–14 1.11–1.20 11–15 
Normal ≥ 1.04 ≤ 10 ≥ 15 ≥ 1.21 ≥ 16 

Let us refer to [35,37,38] and [13] for more explanations and details on conducting and 
interpreting tests included in the Ewing battery. From this grading CAN risk assessment can be 
divided into a normal and no CAN evident category and four CAN categories comprising: early, 
definite, severe and atypical, as shown in Table 2. 

Table 2. Categorization of CAN based on Ewing tests. 

Category Normal Early Definite Severe Atypical 

Decision 
criterion 

All tests 
normal or 

one 
borderline 

One of the 
three heart rate 
tests abnormal 

or two 
borderline 

Two or more 
of the heart 

rate tests 
abnormal 

Two or more of the heart 
rate tests abnormal plus 
one or both of the blood 
pressure tests abnormal 

or both borderline 

Any other 
combination 
of tests with 

abnormal 
results 

The categorization given in Table 2 is for diagnosing CAN categories as shown in [37]. The 
paper [35] compared these rules for determining the categories of CAN with two alternative scoring 
systems. The first one gave 0 for a normal result, ½ for a borderline outcome, and 1 for an abnormal 
outcome, resulting in a combined total core ranging from 0 to 5 for each participant. The second set 
of rules counted the number of outcomes that were abnormal, which again produced a total score in 
the range from 0 to 5 for each person. The paper [35] demonstrated that these scoring systems give 
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roughly equivalent categorizations and neither seems to carry a real advantage over the other.  
It is not always possible for patients to perform all of the Ewing tests. For instance, the hand 

grip test may be difficult due to arthritis. The lying to standing tests often cannot be included in the 
test battery results due to mobility challenges of patients. Likewise, some patients have conditions 
where forceful breathing required for the Valsalva maneuver is contra-indicated. These issues result 
in CAN risk assessments being made in practice on the basis of only a subset of the Ewing battery. 

This review groups the results obtained in the literature into several sections according to the 
categorization being studied. If a paper considers several classifications simultaneously, we include a 
more detailed summary of the new methods proposed in this paper in the section devoted to the 
categorization with the smallest number of classes since usually it is easier to handle and the best 
outcomes are achieved in this case. In the sections devoted to categorizations with a larger number of 
classes we only include an indication of the best values obtained for the corresponding categorization 
in the relevant paper. 

The following categorizations of CAN progression have been considered in the literature:  
• CAN2: the presence or absence of CAN (2 classes); 
• CAN3: absence of CAN, early CAN, and definite CAN (3 classes); 
• CAN4: normal, early, definite and severe CAN (4 classes); 
• CAN5: normal, early, definite, severe, and atypical CAN (5 classes); 
• CAN-early: early CAN and the absence of early CAN (2 classes); 
• CAN-severe: severe CAN and the absence of severe CAN (2 classes). 

Here the absence of early CAN is the union of normal, definite CAN and severe CAN classes. 
Likewise, by the absence of severe CAN we mean the union of normal, early CAN, and define  
CAN classes. 

3. DiabHealth Database 

Many articles have used the large database of health-related parameters and tests amalgamated 
in the Diabetes Screening Complications Research Initiative (DiabHealth) [39] organized by Charles 
Sturt University in Australia. The collection and analysis of data in the project was approved by the 
Ethics in Human Research Committee of the university. The participants were instructed not to 
smoke and refrain from consuming caffeine containing drinks and alcohol for 24 hours preceding the 
tests as well as to fast from midnight of the previous day until tests were complete. The 
measurements were conducted from 9:00am until 12midday and were recorded in the DiabHealth 
database along with various other clinical data including age, sex and diabetes status, blood pressure (BP), 
body-mass index (BMI), blood glucose level (BGL), and cholesterol profile. Reported incidents of a 
heart attack, atrial fibrillation and palpitations were also recorded. DiabHealth has made it possible to 
collect a large database with over 2500 entries and several hundred features.  
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4. Heart Rate Variability for the Automated Diagnostics of CAN 

The Ewing battery is commonly used for detecting CAN but is often not conclusive and 
therefore more sensitive and accurate tests are required. This section deals with one of the most 
important special classes of attributes, which have been applied for the automated detection of CAN 
in previous publications.  

Heart Rate Variability (HRV) as a clinical tool using ECG recordings has been shown to be a 
sensitive marker for risk of future arrhythmias or CAN and is easier to use clinically compared to the 
Ewing battery [40]. The ability to use only HRV for accurate identification of CAN and CAN 
progression provides alternative test results to the physician in addition to invasive testing such as 
cholesterol, BGL and HbA1c results. 

HRV attributes can serve as a safeguard measure detecting CAN from short heart rate 
recordings during a patient health review. Several articles have applied HRV features to the task of 
automated detection of CAN. The motivation to use HRV data is that it is more often available and 
easier to obtain in clinical practice than the Ewing battery features. HRV measures also provide many 
more variables compared to the five attributes in the Ewing battery.  

HRV analysis involves determining the interbeat intervals (RR intervals) between successive 
QRS complexes on an ECG or directly from heart rate recordings. HRV information can include as 
many as 20–30 measures sensitive to different characteristics of the ECG time series that can be 
divided into time, frequency, and nonlinear measures [41]. ECGs are routinely assessed in clinical 
practice and although they do not directly indicate CAN, HRV can be determined from the interbeat 
interval tachogram or from a continuous heart rate recording [42].  

Nonlinear HRV measures have become popular in recent times as they are more robust against 
nonstationarity and nonlinearity characteristics of the RR tachogram and are able to detect how aging 
and pathological conditions affect interbeat variation [43,44]. Nonlinear HRV features such as 
detrended fluctuation analysis (DFA), estimate complexity inherent in the signal. The correlation 
dimension (D2

Table 3 summarizes various HRV analysis methods. In particular, it uses the notion of normal to 
normal beat intervals, also called NN intervals, see [44,46,47] for more explanations. 

) can also be applied [45].  

Several entropy measures have been proposed such as approximate entropy, sample entropy, 
tone-entropy [48,49]. These measures have subsequently led to the multiscale entropy measures 
including the multi-scale Rényi entropy, which is a generalization of the Shannon entropy [50]. The 
Rényi entropy H is defined as 

𝐻𝛼(𝑋) =
1

1 − 𝛼
log2�𝑝𝑖α

∞

𝑛=1
 

where α is the order of the Rényi entropy and pi stands for the probability of X being equal to a 
particular value. The value of Rényi entropy for given π and α is denoted by H (π,α). 
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Table 3. HRV measures. 

HRV method Measure Description 

Time  SDNN The standard deviation of the normal to normal beat intervals 
Domain  RMSSD The square root of the mean squared difference of the NN intervals 
Frequency  Total Power Variance of N-N intervals over the temporal segment (freq < 0.4) 
Domain VLF Power in very low frequency range (freq < 0.04) 
 LF Power in low frequency range (freq 0.04 to 0.15) 
 HF Power in high frequency range (freq 0.15 to 0.4) 
Nonlinear SD1, SD2 The standard deviations perpendicular to and along the 

line-of-identity of the Poincaré plot 
 ApEn Approximate entropy 
 SampEn Sample entropy 
 D Correlation dimension 2 
 DFA Detrended fluctuation analysis:  

α1 - Short-term fluctuation slope; α2

 
- Long-term fluctuation slope 

ShanEn Shannon entropy 

 Rényi En Rényi entropy 

5. Data Mining Methodology 

The following standard measures of the effectiveness or performance of classifiers have been 
considered in the literature devoted to the diagnostics of CAN: accuracy, precision, recall, F-measure, 
sensitivity, specificity and Area Under Curve (AUC) also known as the Receiver Operating 
Characteristic or ROC area. These measures are standard and well-known. The readers interested in 
detailed explanations of these standard measures can find them in the monograph [51]. 

Several articles devoted to CAN divide the data set into a training set and a validation set to 
assess the effectiveness of the classifiers being designed ([52]). On the other hand, 10-fold cross 
validation, which is a standard well-known technique organizing experiments to prevent overfitting 
machine learning models to data, have also been reported. It can be implemented in WEKA and is 
invoked by default as stratified 10-fold cross validation, see [51]. It divides data into ten stratified 
folds and creates training sets and hold out testing sets ten times for ten consecutive tests with hold 
out sets automatically. Another method designed in the literature to prevent over-fitting is the 5 × 2 
cross-validation introduced and recommended in [53] for comparison of classifiers. This method 
carries out five iterations of twofold cross-validation. The results of cross-validation implemented in 
WEKA are included in the output of all classifiers automatically, which makes it easy to apply cross 
validation in experiments concerning classifiers implemented in WEKA [54,55]. 
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6. Binary Classification CAN2 

The paper [38] carried out a study demonstrating the usefulness of HRV and complexity 
analyses based on short term ECG recordings as a screening tool for CAN2 categorization. Binary 
classification CAN2 was investigated because so few patients realize that they have CAN since it can 
be asymptomatic for a substantial period of time during diabetes progression. The study utilized a 
total of 17 sets of ECG recordings from DiabHealth from diabetic subjects with definite CAN and 
without CAN. Poincaré plot indices were used and compared with the traditional time and frequency, 
and the sample entropy (SampEn) to analyze variability (short and long term) and complexity of 
HRV respectively. It was shown that reduced (p > 0.05) Poincaré plot patterns and lower (p < 0.05) 
SampEn values corresponded to patients with definite CAN, which can be a practical diagnostic and 
prognostic marker. Furthermore, a simple decision tree was trained to predict CAN2 categories using 
SampEn and Poincaré plot indices. It produced outcomes with 100% sensitivity and 75% specificity 
achieving an accuracy of 88.24%. 

In order to reduce the cost of performing medical tests required to collect the attributes yet 
maintain diagnostic accuracy, it is essential to optimize the features used for classification and to 
keep the number of features as small as possible. Feature selection methods of this kind are outlined 
in this section. The binary classification CAN2 was also studied in [52]. Instead of concentrating on 
the role of attributes of a particular type, the article applied data mining feature selection methods to 
derive a set of features to be used for the automated detection of CAN. The experiments undertaken 
divided the data set into a training set and a validation set. A hybrid of Maximum Relevance filter 
(MR) and Artificial Neural Net Input Gain Measurement Approximation (ANNIGMA) wrapper 
approaches was defined and was used to reduce the number of features necessary for optimal 
classification. The combined heuristic MR-ANNIGMA exploits the complimentary advantages of 
both the filter and wrapper heuristics to find significant features [52]. 

The best accuracy obtained by applying this method for CAN2 was 80.66%. The feature 
selection approach applied in [52] however identified an effective set of ECG components associated 
with CAN2, which have clinical relevance. More information on the relation of ECG features, CAN 
and hypertension have been established in [56,57]. 

The binary classification CAN2 was also considered in [57–59]. The best classifiers reported in 
those publications achieved predictive accuracies of 94.61% [57], 94.84% [58], and 97.74% [59].  

The paper [60] dealt with the binary classification CAN2 for diabetes patients only. It carried 
out a comprehensive study of the effectiveness of several decision trees including ADTree, J48, 
NBTree, RandomTree, REPTree, and SimpleCart and various ensembles of decision trees generated 
by applying AdaBoost, Bagging, Dagging, Decorate, Grading, MultiBoost, Stacking, and two 
multilevel combinations of AdaBoost and MultiBoost with Bagging. The best classifier designed in [60] 
achieved classification results for CAN2 with the ROC area equal to 0.947. 

In [41], visualization methods for determining the categories of CAN2 were studied. The 
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authors concentrate on visualization using only data derived from HRV. A variety of measures were 
extracted from the sequence of interbeat time intervals (RR intervals). The multiscale Renyi entropy 
was calculated using −5 < α < +5, where α = 1 gives the Shannon entropy and α = 2 produces the 
squared entropy. Sample Entropy was also calculated in order to provide a comparison. All features 
calculated from HRV were visualized using a Spider diagram. The results show that this visualization 
technique not only captures that binary classification CAN2, but provides additional insights by 
displaying a comprehensive picture of the complexity of the disease. In this relation, let us note that 
it would be also interesting to investigate the applications of conceptual graphs for the visualization 
of the diagnostics of CAN progression, since conceptual graphs are well known effective tools for 
formal visual reasoning in the medical domain [61,62].  

Karmakar and colleagues [63] undertook a multi-lag Tone-Entropy (T-E) analysis of HRV data 
for CAN2. A total of 41 ECG recordings from DiabHealth were utilized with definite CAN and 
without CAN. T-E values of each patient were calculated for different beat sequence lengths (denoted 
by len and ranging from 50 to 900) and lags (denoted by m and ranging from 1 to 8). For all values 
of the len and m parameters, it was discovered that the group of normal patients has a lower mean 
tone value compared to that of definite CAN patients, whereas the mean entropy value was higher in 
normal patients than in patients with definite CAN. Leave-one-out cross-validation tests using a 
quadratic discriminant (QD) classifier were applied to investigate the performance of multi-lag T-E 
features. This produced 100% accuracy for T-E with len = 250 and m = {2, 3} settings, which is 
better than the performance of T-E technique based on m = 1. The results demonstrated the usefulness 
of multi-lag T-E analysis over single lag analysis for the diagnosis of CAN2 categorization. 

Investigating data transfer, the paper [64] solved the problem of minimizing data transfer 
between different data centers of the cloud during the diagnosis of CAN2 by classifiers deployed in 
the cloud. A new model of clustering-based multi-layer distributed ensembles (CBMLDE) was 
introduced. It was designed to eliminate the need to transfer data between different data centers for 
training of the classifiers. Ten-fold cross validation and a dataset derived from DeabHealth were used 
in order to determine the best combinations of options for setting up CBMLDE classifiers. The 
results demonstrated that CBMLDE classifiers not only completely eliminate the need in patient data 
transfer, but also have significantly outperformed all base classifiers and simpler counterpart models 
in all cloud frameworks. 

7. Ternary Classification CAN3 and Quaternary Classification CAN4 

Ternary classification, CAN3, has been considered simultaneously with the quaternary 
classification, CAN4, in previous papers. These papers also included CAN2. The paper [65] 
considered CAN2, CAN3, and CAN4. The paper only used complete data without addressing the 
problem of missing values and applied feature selection methods incorporated in the implementation 
of Random Forest in R [66,67] to select relevant features. Multilevel classifiers were investigated in [65]. 
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The best classifier produced AUC values of 0.997 for CAN2, 0.994 for CAN3, and 0.990 for CAN4. 
It is essential to note that the results of [65] cannot be applied to handle missing values, since all tests 
used a large set of features and a complete dataset.  

The Ewing battery of tests is still commonly used, but the question of which if any of the single 
tests included in the Ewing battery may perform equally well as the 5-test battery and which one of 
the five tests this may be has not been investigated prior to Stranieri and colleagues [29] handled all 
three classifications CAN2, CAN3, and CAN4 to address this question. An optimal order of the 
Ewing tests was determined using the Optimal Decision Path Finder procedure proposed in [68]. In 
addition, visual aids were developed in [29] to simplify the selection of the next Ewing test during 
applications of this procedure in practice. Only simple basic decision trees were used and the best 
accuracy achieved was equal to 94.14% for CAN2 [29]. 

The paper [69] introduced a new parameter, the beat-to-beat TQ-RR ratio derived from ECG 
recordings and was investigated in conjunction with the systolic-diastolic interval interaction (SDI) 
parameter. Performance of both QT-TQ and TQ-RR based SDI measures was explored to diagnose 
the categories of CAN3. ECG recordings of 72 diabetic subjects without CAN, 55 subjects with early 
CAN and 15 subjects with definite CAN from the DiabHealth study were utilized. The outcomes 
obtained demonstrated that variability of the TQ-RR based SDI measure can distinguish all three 
categories of CAN3 with p-value p < 0.001. In contrast, the variability of the QT-TQ based SDI 
measures showed significant difference only between the normal subjects and definite CAN 
categories. This demonstrates TQ-RR based SDI parameter turned out more sensitive in the detection 
of CAN3 categories compared to the QT-TQ based measures.  

The paper [13] used ten-fold cross validation to compare the effectiveness of applications of 
decision trees, ensemble classifiers and multi-level ensemble classifiers for neurological diagnostics 
of CAN. It investigated and compared the effectiveness of AdaBoost, Bagging, MultiBoost, Stacking, 
Decorate, Dagging, and Grading in their ability to enhance the performance of decision 
trees—ADTree, J48, NBTree, RandomTree, REPTree, SimpleCart, as well as several other base 
classifiers—Decision Table, FURIA, J48, NBTree, Random Forest and SMO. In addition, Jelinek et al. 
also investigated the meta-classifiers AdaBoost, Bagging, Dagging, Decorate, Grading, MultiBoost 
and Stacking to determine which function best in enhancing the performance of base classifiers 
further within the framework of a multi-level classification paradigm [13]. Several other studies 
handled other different multi-stage systems ([29,70–72]). The best outcomes were obtained by two 
options combining Bagging and Decorate into one multi-level ensemble classifier. The first option 
was Bagging in the second level after applications of Decorate based on Random Forest in the first 
level. The other optimal solution was using Decorate in the second level to combine the results of 
Bagging applied to Random Forest as a base classifier. These combinations achieved an AUC of 
0.997 for CAN2, 0.994 for CAN3, and 0.990 for CAN4, respectively. 

A new machine learning algorithm for the diagnosis of CAN progression based on HRV 
attributes was proposed in [14]. The Multi-Layer Attribute Selection and Classification (MLASC) 
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algorithm was applied to the DiabHealth data and accuracy was determined by tenfold 
cross-validation to investigate optimal options to be employed at the different layers of MLASC and 
compared the effectiveness of MLASC with other counterpart versions and simplified methods. In 
addition, [14] introduced a new feature selection method, Double Wrapper Subset Evaluator with 
Particle Swarm Optimization (DWSE-PSO), and incorporated it in one of the steps of MLASC. The 
outcomes of experiments presented in [14] compared several automated feature selection and 
optimization methods in their effectiveness as a subpart of MLASC. These feature selection 
techniques had not been considered before for the task of classification of CAN progression using 
HRV attributes. The results obtained in [14] deal with three classifications: CAN2, CAN4, and 
CAN4 and demonstrated that the MLASC algorithm produced the best results when applying DWSA 
with PSO attribute selection, and performed better in comparison with other approaches. Diagnosis 
by this method achieved an AUC level of 0.96 for CAN2, 0.95 for CAN3, and 0.94 for CAN4, respectively. 

Decision making and diagnosis in medical practice is most often based on incomplete data due 
to either unavailability of diagnostic laboratory services, technical issues or lack of patient 
cooperation as well as counter-indications for undertaking certain diagnostic tests. The first article 
specifically addressed to the problem of missing values in this clinical paradigm by using the Ewing 
formula and regression to classify CAN [71]. Previous articles circumvented the problem of missing 
values in CAN data by deleting all records and fields with missing values and applying classifiers 
trained on different sets of features that were complete. Most of these also added alternative features 
to compensate for the deleted values. The paper [71] introduced and investigated a new method for 
classifying CAN data with missing values. In contrast to all previous papers, the new method 
proposed by Abawajy et al. did not delete attributes with missing values, did not use classifiers, and 
did not add features. Instead it applied regression and meta-regression combined with the Ewing 
formula to identify CAN2 and CAN3. The best outcomes were obtained by the additive regression 
meta-learner based on M5Rules and combined with the Ewing formula. It achieved the best accuracy 
of 99.78% for CAN2, and 98.98% for CAN3.  

8. Quinary Classification CAN5 

The quinary classification CAN5 was investigated in [73] concentrating on the impact of blood 
biochemistry features for improving the predictive accuracy of the diagnosis of CAN in situations 
where one or more of the Ewing tests cannot be completed because of the individual difficulties 
faced by each patient in performing the tests. A novel class of iterative multilevel ensembles, called 
automated iterative multitier ensembles (AIME) was introduced. AIME employs varied ensembles 
allocated to several layers by combining them into one integrated system being generated 
automatically so that one ensemble acts as an integral part of another one. Experiments presented in 
this paper relied on the standard ten-fold cross validation to investigate the effectiveness of AIME 
ensembles carried out for the quinary classification, CAN5. The results obtained demonstrated that 
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several blood biochemistry attributes can be used to supplement the Ewing battery for the detection 
of CAN in the absence of a complete set of Ewing tests. The results show that AIME provided higher 
accuracy as a multitier CAN5 classification system. For CAN5 categorization, the best accuracy of 
99.57% was obtained by the AIME that combined Decorate as the top layer with Bagging on middle 
layer applied to Random Forest as a base classifier.  

9. Binary Classification of Early CAN 

Binary classification of early CAN was considered simultaneously with CAN2 and the ternary 
classification, CAN3 in [74]. It investigated the problem of determining of these categorizations 
based only on HRV. A variety of measures may be extracted from HRV, including time domain, 
frequency domain, and more complex non-linear measures. Among the latter, Renyi entropy has been 
proposed as a suitable measure that can be used to discriminate CAN from normal healthy patients. 
There are several different ways that can be used to calculate various variants of the Renyi entropy, 
which depend on a number of parameters. The paper [74] compares nine different methods to 
calculate Renyi entropy by applying several variations of the histogram method and a density method 
based on sequences of RR intervals. The effectiveness on nine methods in achieving the best 
separation of the different categories of CAN3 is then compared. The results obtained showed that 
that the histogram method using single RR intervals yields an entropy measure that is either 
incapable of discriminating CAN from controls, or it provides little information that could not be 
gained from the standard deviation (SD) of the RR intervals. In contrast, probabilities calculated 
using a density method based on sequences of RR intervals yielded an entropy measure that provided 
good separation between groups of participants and provided information not available from the SD. 
This showed that different approaches to calculating probability for determining the Renyi entropy 
may affect the success of detecting CAN3 categories. Thus, the results of [74] bring clarity to the 
question of how best to calculate the Renyi entropy for the successful detection of CAN3 categories. 

10. Binary Classification Severe CAN 

The paper [75] applied multiscale Allen factor to determine a marker for cardiac neuropathy 
from ECG recordings as features to be used for the machine learning methods and automated 
detection. It introduced the Graph-Based Machine Learning System (GBMLS). This method is 
intended to enhance the effectiveness of the diagnosis of severe diabetic neuropathy. We applied it to 
the multiscale Allen factor (MAF) features as a collection of attributes determined from the recorded 
ECG biosignals. These attributes can be collected as a result of routine ECG investigation of patients 
regardless of the presenting medical problems. The experiments compare sensitivity and specificity 
of the automated detection produced by GBMLS with analogous outcomes achieved by various other 
machine learning approaches. To this end the authors used a comprehensive collection of important 
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classifiers and clusterers available in the open source machine learning software package Scikit-learn. 
The experiments have demonstrated that the best outcomes were obtained by GBMLS in 
combination with MAF, which improved sensitivity to 0.89 and specificity to 0.98 and outperformed 
several other classifiers and clusterers including Random Forest with sensitivity of 0.83 and 
specificity of 0.92. 

11. Future work 

Future work will further propose new hierarchical data mining methods in classification of CAN 
progression in combination with new HRV parameters that are robust against short heart rate 
recordings and allow patients to self-monitor disease progression with data integrated at a central site 
on the cloud for population studies.  

Since conceptual graphs are effective tools for formal visual reasoning in the medical domain [61,62], 
it would be interesting to investigate the applications of conceptual graphs for the visualization of the 
diagnostics of CAN progression.  
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