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Abstract: Segmentation of left ventricles in Cine MR images plays an important role in analyzing
cardiac functions. In this study, we propose a variational method that incorporates both prior
knowledge on geometrical coupling and shapes of the endo- and epicardium. Specifically, we
dynamically maintain and update a smoothly varying distance between the endo- and epicardial
contours, represented by a pair of level set functions, with a novel coupling energy embedded in
the length regularization. We encode the shape prior with a sparse composite model based on a
set of training templates. A robust fidelity with Gaussian mixture models is employed to provide
robust intensity estimates in each subregion under insufficient local gradient information. Quantitative
evaluation of the proposed method demonstrates competitive/better DSC and APD accuracy compared
to other state-of-the-art approaches.
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1. Introduction

Cine MRI is a suitable modality in analyzing cardiac functions by segmenting the endo- and
epicardial contours of the left ventricle (LV) [1]. Given the unclear boundaries between these
structures and against the background, prior geometric knowledge needs to be incorporated. A typical
idea is to maintain a close-to-constant distance between the endo- and epicardial contours (a “ring”
structure) with either hard values [2] or by a soft constraint [3]. However, such static/pre-defined
distance may fail to capture large LV shape variations across slices and phases among different
subjects. More recently, it has been proposed to use a two-level contours of a single level set function
to represent the endo- and epicardium [4], with their enclosing relations maintained by a smoothly
varying distance. A local intensity model has been utilized to handle the overlapped distributions.
However, representing the endo- and epicardium with a single level set function may hinder flexible
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incorporation of shape prior specific to individual structures [5, 6, 7]. The local intensity model could
also be overly sensitive to contour initializations and kernel parameter settings [8].

In this study, we propose to represent the endo- and epicardium with two separate level set
functions, but introduce a novel coupling setup embedded in the length regularization, with a
symmetric “dilation/erosion” morphological relation imposed, to achieve a smoothly varying distance
between the endo- and epicardial contours. The coupled level set representations further allows us to
incorporate a sparse composite shape descriptor to boost the performance. Gaussian mixture models
are utilized to represent overlapped intensity distributions in each subregion. Compared to local
intensity models, it is more robust to contour initializations, noise, and selection of setup parameters.

2. Method

2.1. Variational segmentation formulation with a coupled length regularization and sparse composite
shape prior

Figure 1 illustrates the proposed cardiac region separation scheme. Specifically, given an image
I : Ω→ R and two dependent level set functions φ1, φ2 : Ω→ R, we partition Ω into three subdomains:
Ω1 , {x|φ1(x) ≤ 0}, Ω2 , {x|φ1(x) > 0, φ2(x) ≤ 0 }, Ω3 , {x|φ2(x) > 0}, representing the left ventricular
cavity, myocardium and background, respectively. A typical variational segmentation formulation
consists of two components: E(Φ) = E f idelity + Ereg, a data fidelity and a regularization, which we will
elaborate bellow.

Figure 1. The proposed cardiac region separation scheme: left ventricular cavity Ω1,
myocardium Ω2, background Ω3.

2.1.1. E f idelity

We choose to model intensity distributions with Gaussian mixtures for each Ωi [9]:

P(I(x)|Ωi, θi) =

ni∑
j=1

w j,i√
2πσ2

j,i

exp(−
(I(x) − µ j,i)2

2σ2
j,i

), (1)

where ni represents the number of Gaussian components for each Ωi, θi = { w j,i, µ j,i, σ j,i}

represents the weights and parameters for the jth Gaussian component. E f idelity is then constructed as
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a weighted log-likelihood as:

E f idelity(Φ,Θ) = −

∫
Ω

(1 − H(φ1))log(c1P(I(x)|θ1))dx

−

∫
Ω

H(φ1)(1 − H(φ2))log(c2P(I(x)|θ2))dx

−

∫
Ω

H(φ2)log(c3P(I(x)|θ3))dx,

(2)

where H represents the heaviside function, c1, c2, c3 weights the importance/gains of correctly
segmenting each corresponding regions.

2.1.2. Ereg

Our design of regularization consists of two components: Elength and Eshape.
Elength: For a smoothly varying distance between the endo- and epicardial contours at each location,

we introduce a novel coupling in the length regularization with

Elength =

∫
Ω

g1δ(φ1)|∇φ1|dx +

∫
Ω

g2δ(φ2)|∇φ2|dx +
β

2

∫
Ω

|∇d|2dx, (3)

where δ represents the Dirac delta function, g1 = (φ2(x) + d(x))2 and g2 = (φ1(x) − d(x))2 are the
dilated/eroded geometry indicator functions that traps φ1 to be the distance d from φ2 and vice versa.

Eshape: Inspired by a recently developed shape regularization [7], we construct two shape library
Dendo = [ψendo

1 , ψendo
2 , ...ψendo

m ] and Depi = [ψepi
1 , ψ

epi
2 , ...ψ

epi
m ], representing the training shapes. The shape

regularization is designed as:

Eshape =

∫
Ω

{(φ1 − Dendow)2 + (φ2 − Depiw)2}dx + γ‖w‖1, (4)

which dynamically regularizes the current estimates of φ1, φ2 towards a sparse linear combinations of
the training shapes weighted by w. In this study, we utilize the single weight w to ensure the coupling
of training shape selections, since the corresponding column/shape in Dendo and Depi comes from the
same patient. However, our regularization also permits a more general form that has different library
size with different weights (wendo and wepi) under the situation when training shapes do not pair up or
come from heterogeneous sources.

With the introduced Elength and Eshape, our Ereg is designed as the following:

Ereg(Φ, d,w) =
λ1

2

∫
Ω

(φ2 + d)2δ(φ1)|∇φ1|dx +
λ2

2

∫
Ω

(φ1 − d)2δ(φ2)|∇φ2|dx +
β

2

∫
Ω

|∇d|2dx

+
α

2

∫
Ω

{(φ1 − Dendow)2 + (φ2 − Depiw)2}dx + γ‖w‖1 +
µ

2

2∑
i=1

∫
Ω

(∇φi − 1)2dx,
(5)

where
∑2

i=1

∫
Ω

(∇φi − 1)2dx is designed to preserve the signed distance property of each level set
functions [10]. Smooth approximations of the heaviside and Delta functions are used for numerical
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implementation [11]. Algorithm 1 presents the block coordinate descent/minimization scheme used
to minimize the variational energy.

ALGORITHM 1 Minimization scheme
1: while |Ek − Ek−1| < tol do
2: minimization w.r.t. θ1, θ2, θ3 with Expectation-Maximization (EM) algorithm [12]:

θk+1
1 , θk+1

2 , θk+1
3 ← EM(φk

1, φ
k
2, I,w

k, dk)
3: minimization w.r.t. w with alternating direction method of multipliers (ADMM) [13]:

wk+1 ← ADMM(α2 (‖φk
1 − Dendow‖22 + ‖φk

2 − Depiw‖22) + γ‖w‖1)
4: gradient descending w.r.t. d

dk+1
1 ← dk

iter num
while m < iter num do

dk+1
m+1 = dk+1

m + ∆t{−λ1(φk
2 + dk+1

m )δ(φk
1)|∇φk

1| − λ2(φk
1 − dk+1

m )δ(φk
2)|∇φk

2| + β∆dk+1
m }

end while
5: gradient descending w.r.t. φ1, φ2

φk+1
1,1 ← φk

1,iter num, φ
k+1
2,1 ← φk

2,iter num
while i < iter num do

φk+1
1,i+1 =φk+1

1,i + ∆t{−δ(φk+1
1,i )log(c1P(I(x)|θk+1

1 )) + δ(φk+1
1,i )(1 − H(φk+1

2,i ))log(c2P(I(x)|θk+1
2 ))

+
λ1

2
δ(φk+1

1,i )∇ · ((φk+1
2,i + dk+1

m+1)2
∇φk+1

1,i

|∇φk+1
1,i |

) − λ2(φk+1
1,i − dk+1

m+1)δ(φk+1
2,i )|∇φk+1

2,i |

− α(φk+1
1,i − Dendowk+1) + µ(∆φk+1

1,i − ∇ · (
∇φk+1

1,i

|∇φk+1
1,i |

))}

φk+1
2,i+1 =φk+1

2,i + ∆t{−δ(φk+1
2,i )H(φk+1

1,i+1)log(c2P(I(x)|θk+1
2 )) + δ(φk+1

2,i )log((c3P(I(x)|θk+1
3 ))

− λ1(φk+1
2,i + dk+1

m+1)δ(φk+1
1,i+1)|∇φk+1

1,i+1| +
λ2

2
δ(φk+1

2,i )∇ · ((φk+1
1,i+1 − dk+1

m+1)2
∇φk+1

2,i

|∇φk+1
2,i |

)

− α(φk+1
2,i − Depiwk+1) + µ(∆φk+1

2,i − ∇ · (
∇φk+1

2,i

|∇φk+1
2,i |

))}

end while
6: end while

2.2. Parameter settings

For all experiments in this study, we manually chose and fixed the parameters as: c1 = c2 =

1, c3 = 0.1, λ1 = λ2 = 2, β = 2, α = γ = 0.02, µ = 1 and time step ∆t = 0.1. We set the
Gaussian component number to be n1 = n2 = 1 for the cavity and myocardium, and n3 = 2 for the
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background. Our algorithm was implemented with matlab 2012b. It took about one minute to segment
one image volume on a macbook pro laptop with quad-core i7 2.3GHz and 8GB RAM. No specific
code optimization and/or paralellization schemes were used.

3. Experimental results

We evaluated the proposed method on datasets from MICCAI LV segmentation challenge (http:
//smial.sri.utoronto.ca/LV_Challenge/Home.html), which consists of 15 training datasets
and 15 validation datasets from patients of different pathologies. The Cine steady state free precession
MR short axis images were obtained with a 1.5T GE Signa MRI, with FOV = 320 × 320 mm2, image
size = 256 × 256 and slice-thickness = 8 mm. The manual segmented endo- and epicardial contours
were provided in all slices at end-diastolic (ED) and end-systolic (ES) phases. Our training endo- and
epicardium libraries were built upon 15 training datasets, and the evaluation was performed on the 15
validation datasets.

The segmentation accuracy was evaluated based on both Dice similarity coefficient (DSC) metric
and average perpendicular distance (APD). DSC is defined as DSC , 2|Cseg∩Ctruth |

|Cseg |+|Ctruth |
, where Cseg and Ctruth

are the segmented foreground from the obtained and manual segmentation respectively. APD
measures the perpendicular distance from the segmented contour to the corresponding manually
contour, averaged over all contour points.

Figure 2 compares segmented contours from our method with manual segmented contours on one
typical LV example. Figure 3 demonstrates the flexibility and robustness of the proposed method on
segmenting one LV example with various thickness of its myocardium within and across different
slices. Table 1 reports and compares the DSC and APD statistics of the proposed method with results
from other state-of-the-art methods. The proposed method had slightly lower APD compared to [4]. It
achieved competitive/better DSC and APD accuracy compared to the other state-of-the-art methods.

Figure 2. Segmentation results on one typical LV example: contours from our method
(upper row), manual contours (lower row).
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Figure 3. Segmentation results on one LV example with various thickness of the
myocardium within and across different slices: contours from our method (upper row),
manual contours (lower row).

Table 1. DSC and APD statistics of segmentation results on validation datasets from
MICCAI challenge.

DSC APD (mm)
endocardium epicardium endocardium epicardium
Mean S.D. Mean S.D. Mean S.D. Mean S.D.

proposed 0.89 0.04 0.94 0.02 2.10 0.53 2.09 0.54
[14] 0.88 0.03 0.93 0.02 2.44 0.62 2.05 0.59
[4] 0.89 0.04 0.94 0.02 1.93 0.37 1.64 0.42

[15] 0.89 0.04 0.92 0.02 2.04 0.47 2.35 0.57

4. Discussion and conclusion

Our proposed coupled length/distance regularization dynamically updates and encourages a
smoothly varying distance between the endo- and epicardium through the optimization process. It is
more flexible and accurate to capture the large endocardium-epicardium variations across different
slices and among different patients, as compared to conventional approaches where such distance is
usually static and pre-determined by heuristics [2, 3, 16].

The proposed method is similar to the dual-layer single level set approach [4] in regularizing a
smoothly varying distance between the endo- and epicardium, but with added flexibility of
incorporating individual priors for each structure separately [5, 6, 7], such as via coupled or
decoupled sparse composite shape models depends on the training source. In this study, we utilize a
single weight w to ensure the coupling of epi- and endocardium selections, since those shapes come
from a single patient in each shape library. However, under situations that training shapes do not pair
up, our formulation would be flexible enough to provide an asymmetric and decoupled regularization.
For example, when endo- and epicardial training shapes come from different groups of patients, our
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model is capable of providing an asymmetric regularization by enforcing different weights (wendo and
wepi) from such different training sources to leverage all training instances. Such flexibility also
permits further extension of the current model to a joint left and right ventricle (RV) segmentation
framework, where training LV and RV shapes often come from heterogeneous sources. In the specific
context where differentiating intensity gradient is often absent at the structure interface, the more
global Gaussian mixture model we use has the advantage of being more stable, more robust to contour
initialization and noise, and does not require the tuning of (heterogeneous) local kernel parameters.

In summary, we have proposed a novel variational segmentation method by introducing
geometrical coupling into the length regularization and a flexible coupled/decoupled sparse composite
shape prior. Our method has been evaluated on the validation datasets from MICCAI challenge and
achieved comparable/better DSC and APD accuracy compared to other state-of-the-art methods. A
joint left and right ventricle segmentation method is under development.

Conflict of Interest

All authors declare no conflicts of interest in this paper.

References

1. Lelieveldt B, Geest R, Lamb H, et al. (2001) Automated observer-independent acquisition of
cardiac short-axis MR images: A pilot study 1. Radiology 221: 537–542.

2. Lynch M, Ghita O, Whelan PF (2006) Left-ventricle myocardium segmentation using a coupled
level-set with a priori knowledge. Comput Mem Imag Grap 30: 255–262.

3. Kohlberger T, Funka-Lea G, Desh V (2007) Soft level set coupling for LV segmentation in gated
perfusion SPECT. In Medical Image Computing and Computer-Assisted Intervention (MICCAI)
4791: 327–334.

4. Feng C, Li C, Zhao D, et al. (2013) Segmentation of the left ventricle using distance regularized
two-layer level set approach. In Medical Image Computing and Computer-Assisted Intervention
(MICCAI) 8149: 477–484.

5. Tsai A, Yezzi A, Wells W, et al. (2003) A shape-based approach to the segmentation of medical
imagery using level sets. IEEE Trans Med Imaging 22: 137–154.

6. Cremer D, Osher S, Soatto S (2006) Kernel density estimation and intrinsic alignment for shape
priors in level set segmentation. Int J Comput Vision 69: 335–351.

7. Liu W, Ruan D (2014) Segmentation with a shape dictionary. In Biomedical Imaging (ISBI),
IEEE International Symposium on: 357–360.

8. Wang L, Li C, Sun Q, et al. (2008) Brain MR image segmentation using local and global intensity
fitting active contours/surfaces. In Medical Image Computing and Computer-Assisted Intervention
(MICCAI) 5241: 384–392.

9. Verma N, Muralidhar GS, Bovik AC, et al. (2011) Model-driven, probabilistic level set based
segmentation of magnetic resonance images of the brain. In Engineering in Medicine and Biology
Society (EMBC), IEEE Annual International Conference on: 2821–2824.

AIMS Medical Science Volume 2, Issue 4, 295–302.



302

10. Li C, Xu C, Gui C, et al. (2005) Level set evolution without re-initialization: a new variational
formulation. In Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society
Conference on 1: 430–436.

11. Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Springer.

12. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the
EM algorithm. J R Stat Soc Series B (Methodological) 39: 1–38.

13. Boyd S, Parikh N, Chu E, et al. (2011) Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations and Trends in Machine Learning 3: 1–
122.

14. Jolly MP, Xue H, Grady L, et al. (2009) Combining registration and minimum surfaces for the
segmentation of the left ventricle in cardiac Cine MR images. In Medical Image Computing and
Computer-Assisted Intervention (MICCAI) 5762: 910–918.

15. Constantinides C, Chenoune Y, Kachenoura N, et al. (2009) Semi-automated cardiac
segmentation on Cine magnetic resonance images using GVF-snake deformable models. The
MIDAS Journal-Cardiac MR Left Ventricle Segmentation Challenge.

16. Folkesson J, Samset E, Kwong R, et al. (2008) Unifying statistical classification and geodesic
active regions for segmentation of cardiac MRI. IEEE Trans Inf Technol Biomed 12: 328–334.

c© 2015, Wenyang Liu, et al., licensee AIMS Press.
This is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Medical Science Volume 2, Issue 4, 295–302.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Method
	Variational segmentation formulation with a coupled length regularization and sparse composite shape prior
	Efidelity
	Ereg

	Parameter settings

	Experimental results
	Discussion and conclusion

