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Abstract: Background: Oxidative stress and detoxification mechanisms have been commonly 
studied in Prostate Cancer (PCa) due to their function in the detoxification of potentially damaging 
reactive oxygen species (ROS) and carcinogens. However, findings have been either inconsistent or 
inconclusive. These mixed findings may, in part, relate to failure to consider interactions among 
oxidative stress response related genetic variants along with pro- and antioxidant factors. Methods: 
We examined the effects of 33 genetic and 26 environmental oxidative stress and defense factors on 
PCa risk and disease aggressiveness among 2,286 men from the Cancer Genetic Markers of 
Susceptibility project (1,175 cases, 1,111 controls). Single and joint effects were analyzed using a 
comprehensive statistical approach involving logistic regression, multi-dimensionality reduction, and 
entropy graphs. Results: Inheritance of one CYP2C8 rs7909236 T or two SOD2 rs2758331 A alleles 
was linked to a 1.3- and 1.4-fold increase in risk of developing PCa, respectively (p-value = 0.006–
0.013). Carriers of CYP1B1 rs1800440GG, CYP2C8 rs1058932TC and, NAT2 (rs1208GG, 
rs1390358CC, rs7832071TT) genotypes were associated with a 1.3 to 2.2-fold increase in aggressive 
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PCa [p-value = 0.04–0.001, FDR 0.088–0.939]. We observed a 23% reduction in aggressive disease 
linked to inheritance of one or more NAT2 rs4646247 A alleles (p = 0.04, FDR = 0.405). Only three 
NAT2 sequence variants remained significant after adjusting for multiple hypotheses testing, namely 
NAT2 rs1208, rs1390358, and rs7832071. Lastly, there were no significant gene-environment or 
gene-gene interactions associated with PCa outcomes. Conclusions: Variations in genes involved in 
oxidative stress and defense pathways may modify PCa. Our findings do not firmly support the role 
of oxidative stress genetic variants combined with lifestyle/environmental factors as modifiers of 
PCa and disease progression. However, additional multi-center studies poised to pool genetic and 
environmental data are needed to make strong conclusions. 

Keywords: Prostate cancer; oxidative stress; multifactor dimensionality reduction; gene-gene 
interactions; gene-environment interactions; genome wide association study; Cancer Genetics 
Markers of Susceptibility 
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5'-diphospho-(UDP)-glucuronosyltransferase; SULT: sulfotransferase; NAT: N-acetyltransferase; GST: 
glutathione S-transferase; PhIP: 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine; MeIQx: 2-amino-
3,8-dimethylimidazo[4,5-b]quinoxaline; DiMeIQx: 2-amino-3,4,8-trimethylimidazo[4,5-f

 

]quinoxaline; 
SNP: single nucleotide polymorphism; CGEMS: Cancer Genetic Markers of Susceptibility; PLCO: 
Prostate, Lung, Colon, and Ovarian; PSA: Prostate Specific Antigen; DRE: Digital Rectal Exam; LR: 
logistic regression; OR: odds ratio; MAF: minor allele frequency; MDR: multifactor dimensionality 
reduction; CVC: cross validation consistency; ATA: average testing accuracy; IG: information gain  

1. Introduction 

Oxidative stress is a condition in which the amount of reactive oxygen species (ROS) produced 
by pro-oxidants exceeds the amount removed by anti-oxidants [1,2]. ROS are highly reactive 
electrophiles that cause damage to biomolecules (i.e., DNA and proteins) when elevated [1,2]. This 
imbalance may lead: (1) to oxidized DNA bases, disrupted cell signaling, cellular transformations, 
altered protein structure, function as well as activation; (2) increased cellular proliferation; (3) 
decreased cell death; (4) accumulation of cellular damage; (5) and ultimately tumorigenesis [1,2]. 
Several cancers, including Prostate cancer (PCa) are linked to imbalances between pro-oxidation and 
anti-oxidation factors [3–5]. Men with PCa possess lower antioxidant enzyme levels in prostate 
tissues compared to both healthy controls and men with benign prostatic hyperplasia (BPH) [3]. Also, 
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it has been demonstrated that PCa tissues contain higher amounts of ROS and oxidative DNA 
damage than normal prostate tissues [6]. In addition, in vitro studies have found ROS linked to PCa 
progression and more aggressive phenotypes (i.e., increased cell proliferation, anchorage-
independent growth, and migration) [7,8]. 

Pro-oxidant factors include endogenous metabolic enzymes and exogenous exposures, including 
but not limited to meat- and cigarette-derived procarcinogens. A number of observation and/or cell 
or animal model assays have evaluated pro-oxidant exposures from cigarette smoking and  
pro-oxidant agents from cooked meats [e.g., heterocyclic amines (HCAs)] in relation to prostate 
cancer [9–17]. Although cigarette smoke may contribute to carcinogenesis based on its chemical 
composition, its role in PCa remains controversial. On one hand, a cohort study with over 22,000 
men in the Physicians' Health Study (PHS) did not observe a significant association between 
smoking and overall PCa risk [18]. Conversely, a population-based case control study of 752 
subjects demonstrated a 2.7-fold increase in PCa mortality risk among patients who self-reported as 
cigarette smokers at the time of diagnosis compared to non-smokers [12]. In addition, another report 
revealed current smokers had a 69% higher risk of PCa mortality compared to non-smokers [HR 
(95%CI) = 1.69 (1.25–2.27)] [19]. Meat-derived pro-oxidants including HCAs, such as 2-amino-1-
methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-b]quinoxaline 
(MeIQx), and 2-amino-3,4,8-trimethylimidazo[4,5-f

15
]quinoxaline (DiMeIQx), induce various cancers 

in rodents, including prostate cancer [ ,20]. However, these pro-carcinogens must undergo 
metabolic activation to exert their genotoxic and carcinogenic effects by metabolic activation 
enzymes [9,15,20,21]. 

The body tries to protect itself from the carcinogenic effects of oxidative stress by maintaining 
homeostatic ROS levels. This entails the use of exogenous nutrients and endogenous 
metabolic/antioxidation enzymes (e.g., catalase, epoxide hydrolase, superoxide dismutase). 
Suppression of oxidative stress, presumably through a protective diet, retards cancer development 
and disease progression, including PCa [22–25]. For instance, intake of fruits and vegetables high in 
antioxidants (e.g., carotenoids, vitamins C & E, and selenium) protect cells from oxidative  
stress [22–24]. Compounds found in cruciferous vegetables (e.g., glucosinolates, isothiocyanates, 
flavonoids) protect cells from DNA damage, induce apoptosis, and inhibit cell proliferation of PCa [24]. 
Some flavonoids have antioxidant properties and bind to free radicals. Sequestration of ROS may 
ultimately decrease cancer development [24]. Vitamin E is a major lipid-soluble antioxidant in cell 
membranes with the capacity to scavenge free radicals, induce apoptosis, inhibit expression of 
Prostate Specific Antigen as well as Androgen Receptor mRNA, and reduce protein kinase C  
activity [23,25]. In addition, vitamin C is a potent ROS scavenger that can also induce apoptosis and 
reduce lipid peroxidation in cellular membranes [23,25]. Similar to Vitamin C, selenium has been 
shown to induce apoptosis, as well as inhibit cellular proliferation and angiogenesis [24]. 

Endogenous antioxidant enzymes are a major cellular oxidative stress defense mechanism in the 
removal of ROS [1,26]. These enzymes reduce ROS to less reactive species and thereby prevent 
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cellular damage [1,26,27]. For example, superoxide dismutases (SODs) scavenge superoxide radicals 
and convert them to hydrogen peroxide molecules [26]. Reactive hydrogen peroxide is then 
subsequently removed by either catalase (CAT) or glutathione peroxidases (GPX1) [2,26,27]. Other 
antioxidative-related gene products important in detoxification and/or metabolism of ROS or pro-
carcinogens include cytochrome P450s (CYPs), epoxide hydrolase (EPHX1), uridine 5'-diphospho-
(UDP)-glucuronosyltransferases (UGTs), sulfotransferases (SULTs), N-acetyltransferases (NATs) 
and glutathione S-transferases (GSTs) [15,20,28,29]. Phase II metabolizing enzymes (UGTs, GSTs, 
SULTs) conjugate oxidized xenobiotics or ROS by transferring a glucuronic acid, glutathione, and 
sulfate group, leading to the production of less reactive, water soluble compounds that are readily 
excreted into the bile and urine [20,28]. To produce less reactive water-soluble compounds, UGT 
enzymes transfer a glucuronic acid, SULTs catalyze sulfate conjugation, and GSTs catalyze the 
conjugation of ROS to glutathione to produce less reactive water-soluble compounds [20,27]. 
Following oxidation by CYPs [15,20], EPHX1 converts epoxides from aromatic compounds to more 
water soluble dihydrodiols that can be excreted into the urine or bile [28]. NATs (i.e., NAT1 and 
NAT2) are phase II-metabolizing enzymes that catalyze detoxification of aromatic amines [30–32]. 
Hence, NAT1 and NAT2 are particularly important to the detoxification of carcinogens found in 
cigarette smoke. 

Unfortunately, in some cases oxidative stress response related metabolic reactions can convert 
pro-oxidants derived from cigarette smoke or meat to more reactive intermediates [10]. For instance, 
when cigarette-derived PAHs, such as benzo[a]pyrene (B[a]P), undergo metabolic activation by 
cytochrome P450s this reaction leads to the generation of ROS, namely epoxides [33]. These highly 
reactive species can lead to oxidative DNA damage and possibly tumor formation, particularly by 
causing mutations in the tumor suppressor p53 gene [20]. Moreover, prior to exerting their genotoxic 
effects, meat-derived HCAs (e.g., PhIP, MeIQx, DiMeIQx) must undergo metabolic activation. 
CYPs catalyze the N-hydroxylation of HCAs, which undergo further metabolic activation by NATs 
or SULTs to form N2-acetoxylated or N2 34-sulfonyloxylated metabolites [ ,35]. Similar to B[a]P, 
these highly reactive compounds can form DNA adducts that may lead to tumor formation, if left 
unrepaired [34,35]. Bioactivation to damaging reactive metabolites can also occur with endogenous 
ROS generated from cellular processes (e.g., respiration, electron-transport chain) [6,20,33]. 
Although, SODs scavenge superoxide radicals, this reaction produces hydrogen peroxide, which can 
lead to the formation of more reactive ROS if not eliminated [6,20,33]. Without its removal by CAT 
or GPX1, hydrogen peroxide can interfere with cellular signaling [6,20,33]. 

Although oxidative stress response related genetic variants, as well as pro- and antioxidants 
have been implicated in PCa etiology, the associations are not accepted across all observational 
studies [3,10,15,17,22,36–43]. The lack of consistent findings is partially due to failure to consider 
multiple genetic and environmental factors along with dietary antioxidants that may jointly modify 
PCa susceptibility and disease aggressiveness. To address this shortcoming, we examined the single 
and joint modifying effects of 33 oxidative stress response related genetic variants and 26 pro- and 
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antioxidants in relation to prostate cancer using data available through the Cancer Genetic Markers 
of Susceptibility (CGEMS) and the National Cancer Institute (NCI) Prostate, Lung, Colon, and 
Ovarian (PLCO) Cancer Screening Trial databases [44–46]. Our analyses incorporated a 
comprehensive statistical strategy that included both traditional [i.e., logistic regression (LR)] and 
advanced [e.g., multifactor dimensionality reduction (MDR) and hierarchical interaction graphs] 
methodologies. These advanced tools not only allowed us to validate our LR models, but also 
provided a way to examine and visualize non-linear interactions. Furthermore, MDR has > 80% 
statistical power interactions to detect gene-gene and gene-environment interactions, even in the 
presence of small sample sizes (i.e., ≥ 200 cases, ≥ 200 controls). Studies such as this one are critical 
to enhancing our understanding of the role of oxidative stress in PCa development. Comprehensive 
analyses of genetic as well as environmental factors are needed in order to model complex 
interactions that contribute to this disease.  

2. Materials and Methods 

Our study population consists of nationally available genetic data from 2,286 men of European-
descent (488 non-aggressive and 687 aggressive cases, 1,111 controls) collected through the PLCO 
Cancer Screening Trial [45–47]. This randomized, well-designed, multi-center trial was coordinated 
by the NCI [44]. Between 1993 and 2001, the PLCO Trial recruited men ages 55–74 years to 
evaluate the effect of screening on disease specific mortality, relative to standard care. All 
participants signed informed consent documents approved by both the NCI and University of 
Louisville institutional review boards. Access to clinical and background data collected through 
examinations and questionnaires was approved for use by the PLCO. Selected data for this 
population is summarized in Supplemental Tables A–D. 

Several criteria were used for the selection of PLCO trial participants. Men were included in the 
current analysis if they had a baseline Prostate Specific Antigen (PSA) measurement before October 
1, 2003, completed a baseline questionnaire, returned at least one Annual Study Update, and had 
available SNP profile data through the CGEMS data portal (http://cgems.cancer.gov/). For PCa 
screening, blood samples were collected and men received a PSA test and Digital Rectal Exam 
(DRE). Subsequent to the initial screen, participants received a PSA and DRE annually for three to 
five years, consecutively. Men who had PSA levels > 4 ng/mL or abnormal DRE were referred to 
their health care provider for follow-up care. 

The PLCO Trial identified 1,175 PCa cases (488 non-aggressive and 687 aggressive). Incident 
cases were selected from various sources including: screening exams; reports from patients, 
physicians, or relatives; or linkage with the National Death Index or linkage with the state cancer 
registries. Incident PCa cases were pathologically confirmed with either aggressive (Gleason score ≥ 7 or 
tumor stage III/IV) or non-aggressive (Gleason score < 7 or tumor stage I/II) disease, based on 
Gleason Score and tumor stage at diagnosis. Since incident cases were defined as individuals 
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diagnosed after the first year of follow-up, men receiving a diagnosis prior to one year of follow-up 
were excluded from the study. 

2.1. Collection of dietary information and carcinogen exposure  

Data for dietary and life style habits as well as supplement usage were collected from 
comprehensive questionnaires completed by study participants around the time of enrollment into the 
trial. For patient characteristics and lifestyle factors, risk categories were designated using guidelines 
recommended by the United States Department of Agriculture (USDA) Report of Dietary Guidelines 
and the NIH Office of Dietary Supplements [48,49]. More specifically, a subject was considered 
high risk if they: had a body mass index (BMI) greater than 30; consumed more than 3000 calories 
daily; ate less than 4 servings of fruits and 5 servings of vegetables, per day; participated in less than 
30 minutes of physical activity each day; or consumed more than two alcoholic beverages daily 
[48,49]. Similarly, participants were considered high risk if they obtained less than the minimum 
daily recommended amount of Vitamins A, C, and E, Zinc, or Selenium. For variables related to 
meat consumption and cooking methods, as well as exposure to meat-derived carcinogens (i.e., 
MeIQx, DiMeIQx, PhIP, B[a]P) were divided into quartiles using data collected from the control 
subjects. The 1st quartile was used as the low risk category. These categories included daily total 
meat intake as well the amount of white (i.e., chicken and fish), processed, or red meats. Red meat 
consumption was also stratified by type or cooking duration into non-processed, rare/medium-well, 
and well-/very-well done. For meat-derived carcinogens, the minimal exposure group for each 
variable served as the low risk group. 

2.2. Gene selection 

A panel of 33 candidate genes was generated from genes involved in antioxidation and 
detoxification mechanisms based on published PCa epidemiology studies as well as pathway 
databases and tools, including KEGG, Kyoto Encyclopedia of Genes and Genomes 
(www.genome.jp/kegg), BioCarta (www.biocarta.com), ProteinLounge (www.proteinlounge.com), 
Ingenuity (www.ingenuity.com), and SNPs3D (www.SNPs3D.org) [50–55]. KEGG, BioCarta, and 
ProteinLounge were used to visualize protein-protein interactions essential to managing oxidative 
stress [50–54]. Ingenuity pathway analysis software was used to build a network of oxidative stress 
response related genes and interactive maps demonstrating important interactions based on published 
reports and/or other functional/pathway databases (e.g., KEGG and the Gene Ontology) [50–53]. 
These tools combined provide important molecular interactions and genes not readily found by 
literature search or other traditional methods. 

A query of 33 candidate genes generated a SNP list of 209 variants in the CGEMS database. 
From these results, we selected sequence variants that were: (1) detected within an exon, 2.5 kb 
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upstream of the gene, 2.5 kb downstream of intron 1, or 2.5 kb downstream of the gene; (2) had a 
minor allele frequency > 1% reported in the National Center for Biotechnology Information (NCBI) 
Entrez SNP, (www.ncbi.nlm.nih.gov); and (3) had an observed genotype frequency among controls 
that did not significantly deviate from the Hardy-Weinberg Equilibrium (HWE p < 0.005). This 
reduced our list of 209 SNPs in 33 genes to 33 SNPs detected in 19 pro- and antioxidative-related 
genes, which are listed in Supplemental Table E [28,56]. 

There was a minimal genotype failure rate (< 5%) for all 33 SNPs among disease-free men in 
the current study. The most commonly occurring genotype among controls was used to impute 
missing genotype data. 

2.3. The impact of individual oxidative stress response related factors on prostate cancer 

We evaluated 33 oxidative stress response related SNPs among 2,286 men of European descent 
(488 non-aggressive cases, 687 aggressive cases and 1,111 controls) in relation to PCa outcomes 
using LR analyses. To assess whether inheritance of at least one minor pro-/antioxidative allele 
modified the risk of developing PCa, we tested for significant differences in the distribution of 
homozygous major, heterozygous, or homozygous minor genotypes between cases and controls 
using the chi-square test of homogeneity. A case-case analysis was used to evaluate the relationship 
between oxidative stress-related alleles and aggressive PCa. For this analysis, we examined the 
distribution and inheritance of pro-/antioxidative genes comparing men with high tumor grade or 
stage (Gleason score ≥ 7 , stage III/IV) to those with a lower grade or stage of disease (Gleason  
score < 7, stage I/II).  

The associations between PCa outcomes and oxidative stress-related factors, expressed as odds 
ratios (ORs) and corresponding 95% confidence intervals (95% CIs), were estimated using 
unconditional multivariate LR models, adjusted for potential confounders (i.e., age and family 
history of PCa). LR analyses for PCa development were conducted using the major/common 
genotype or low risk lifestyle factor as the referent category. All chi-square test and LR analyses 
were conducted using SAS 9.2 (SAS Institute Inc, Cary, NC). Adjustments for multiple comparisons 
were made using False Discovery Rate (FDR). Models were considered significant if the FDR  
p-value ≤ 0.20. 

2.4. Statistical power 

We conducted calculations to determine the statistical power of our sample size to detect 
significant relationships between oxidative stress response-related sequence variants and PCa 
outcomes. The expected risk estimates of our study were estimated by specifying values for a 
number of parameters, including a minor allele frequency (MAF) of at least 20%, National Cancer 
Institute's estimate of PCa disease prevalence (19%), statistical power (80%), and pre-disposing 
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variant = 1. For risk models (case versus control), the number of cases was 1,175 and controls were 
1111. For the disease aggressiveness models (aggressive versus non aggressive), the number of cases 
was 687 (aggressive PCa cases) and the number of controls was 488 (non-aggressive cases). We 
assumed prostate cancer risk was in complete linkage disequilibrium with an oxidative stress 
response related predisposing variant (r2

58

 = 1.0). Based on our sample sizes, we have > 80% power to 
detect genetic markers with odds ratios (ORs) of ≥ 1.4 (or 0.71 for protective effects) for PCa risk 
and ≥ 1.5 (or 0.67 for protective effects) for aggressiveness. These estimates are based on the use of 
the additive genetic model with 1 degree of freedom (df). Calculations were performed using Power 
for Genetic Association Version 2 Software [ ]. 

2.5. Analysis of gene-gene and gene-environment interactions using multi-factor dimensionality 
reduction (MDR) 

We used MDR 2.0 (SourceForge, Inc, Sourceforge.net) to evaluate the single- and joint- modifying 
effects of genetic and environmental oxidative stress response related factors in relation to PCa and 
aggressive disease. The MDR software is open-source and freely available online [59]. This method 
is able to detect and characterize high-order interactions in case-control or case-only studies, and 
remain effective with relatively small sample sizes [60]. MDR has excellent statistical power (> 80%) 
to identify gene-gene or gene-environment interactions even in the presence of 5% genotyping error, 
5% missing data, and/or in small sample sizes (i.e., ≤ 200 cases and controls) [60]. With MDR, 
multi-locus genotypes are pooled into high-risk and low-risk groups, reducing high-dimensional data 
to a single variable dimension and permitting an investigation of gene-gene or gene-environment 
interactions. This one-dimensional multi-locus genotype variable is evaluated for its ability to 
classify and predict a disease outcome through cross-validation and permutation testing. Finally, 
among all of the gene-gene combinations a single model is selected that maximizes the case-to-
control ratio of the high-risk groups, while minimizing classification and prediction errors. MDR 
uses a 10-fold cross validation to estimate the testing accuracy of a model by leaving out one-tenth of 
the data as an independent test set. The model is developed on nine-tenths of the data and then 
evaluated on the remaining test set. This process is repeated for each one-tenth of the data, and the 
resulting prediction accuracies are averaged. The prediction accuracy is calculated as the average of 
prediction accuracies across each of the 10 cross-validation subsets [61,62]. The model with the 
greatest Cross Validation Consistency (CVC) [e.g. ≥ 8/10]  and highest prediction accuracies [e.g., 
Average Testing Accuracy (ATA)] is selected as the best predictor of disease outcome [61,62]. MDR 
models are validated by comparing the average CVC to the distribution of the average consistencies 
under the null hypothesis of no association, derived empirically from 1,000 permutations. The null 
hypothesis is rejected when the upper-tail Monte Carlo p-value is ≤ 0.05. The version of MDR used 
in this project allows for the incorporation and adjustment of multiple covariates [63]. To remove the 
covariate effect, we integrated two sampling methods (i.e., over- and under-sampling). This approach 
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is computationally efficient and allows for the adjustment of multiple covariates without significantly 
increasing computational burden.  Inclusion of covariates allows estimates of specificity, sensitivity, 
and overall predictive accuracy with and without the genetic or environmental factors in order to 
assess the gains in predictive ability afforded by the putative risk factors. 

In the current study, significant interaction models identified by MDR were further assessed by 
LR modeling to calculate interaction terms using a significance cut-off level of 0.05. 

2.6. Visualization of interaction models using interaction entropy algorithms, hierarchical graphs 
and statistical epistasis network 

Interaction entropy algorithm, based on information theory, is a method to verify, visualize, and 
interpret combination effects identified by MDR [60,64–66]. Orange software was used to perform 
interaction entropy analyses among selected genetic and environmental factors in relation to PCa risk 
and disease progression. Interaction entropy uses information gain (IG) to gauge whether interactions 
between two or more factors provide more information about PCa outcomes relative to each factor 
considered independently [60,64–66]. Individual as well as all possible pairwise loci are assigned an 
IG percentage score in relation to disease risk or aggressiveness (scores < 5% are typical) [60,64–66]. 
Pairwise SNP combinations were deemed important if the pairwise IG was greater than the IG for 
each individual locus [(IGSNP_1+ SNP_2 > IGSNP_1) and (IG SNP_1+ SNP_2 > IGSNP_2 60)] [ ,65–67].  

3. Results 

CGEMS and PLCO study participants consisted of middle-aged non-Hispanic men of European 
descent, ranging in ages between 55 and 81. Compared to controls, PCa cases were more likely to 
have a family history of prostate cancer (11.4% versus 6.3%) and PSA levels ≥ 4  ng/mL (48.5% 
versus 6.5%), as depicted in Supplemental Table A. There were no marked differences in body mass 
index (BMI) and lifestyle characteristics (i.e., physical activity, daily dietary or vitamin/mineral 
intakes, alcohol consumption), comparing cases to controls or aggressive and non-aggressive cases, 
as shown in Supplemental Tables A–D. However, there were more current smokers among the 
controls (p = 0.022) and more never smokers among the cases versus controls (p = 0.045). 

3.1. Impact of individual oxidative stress response related sequence variants on prostate cancer 
outcomes 

Out of 33 oxidative stress-related sequence variants obtained from the CGEMS database, we 
identified two targets that were individually associated with PCa risk. Inheritance of one minor 
CYP2C8 rs7909236 T allele was linked to a 1.3-fold increase in PCa risk [OR (95%CI) = 1.27 
(1.07–1.51); p = 0.006, p-trend = 0.033, FDR = 0.649], as summarized in Table 1. Additionally, 
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inheritance of the SOD2 rs2758331 AA genotype was associated with a 1.4-fold increase in PCa risk 
[OR (95%CI) = 1.36 (1.08–1.70); p = 0.013, p-trend = 0.016, FDR = 0.538], as shown in Table 1. 

Table 1. Association of selected antioxidative SNPs on prostate cancer risk. 

Marker (Alleles 

and position) 

Allele Cases N 

(%) 

Controls N 

(%) 

OR (95%CI) Adj OR 

(95%CI)* 

p-value p-trend FDR 

CYP2C8 GG 626 (54.2) 659 (59.6) 1.00 (reference) 1.00 (reference) 0.024 0.038 0.649 

rs7909236 TG 468 (40.5) 386 (35.0) 1.27 (1.07–1.51) 1.27 (1.07–1.51) 0.006  
 

G96819420T TT 61 (5.3) 60 (5.4) 1.07 (0.74–1.55) 1.05 (0.72–1.53) 0.730  
 

 
TG+TT 529 (45.8) 446 (40.4) 1.21 (0.96–1.53) 1.24 (1.05–1.47) 0.112  

 
SOD2 CC 292 (25.1) 316 (28.4) 1.00 (reference) 1.00 (reference) 0.051 0.016 0.538 

rs2758331 AC 574 (49.3) 555 (49.9) 1.12 (0.92–1.37) 1.13 (0.92–1.37) 0.250   

C160025060A AA 298 (25.6) 241 (21.7) 1.34 (1.06–1.69) 1.36 (1.08–1.72) 0.013   

 AC+AA 872 (74.9) 796 (71.6) 1.19 (0.98–1.43) 1.19 (0.99–1.44) 0.072   

*adjusted for age and family history. 

Table 2. Association of selected antioxidative SNPs with aggressive prostate cancer. 

Marker (Alleles 

and position) 

Allele Cases N 

(%) 

Controls N 

(%) 

OR (95%CI) Adj OR 

(95%CI)* 

p-value p-trend FDR 

CYP1B1 AA 774 (66.5) 766 (68.8) 1.00 (reference) 1.00 (reference) 0.089 0.388 0.939 

rs1800440 AG 350 (30.1) 309 (27.8) 0.95 (0.73–1.22) 0.94 (0.73–1.22) 0.667   

A38209790G GG 40 (3.4) 38 (3.4) 2.14 (1.03–4.44) 2.15 (1.04–4.46) 0.041   

 
AG+GG 390 (33.5) 347 (31.2) 1.02 (0.80–1.31) 1.02 (0.80–1.30) 0.861   

CYP2C8 CC 446 (65.7) 341 (71.5) 1.00 (reference) 1.00 (reference) 0.088 0.033 0.276 

rs1058932 TC 208 (30.6) 122 (25.6) 1.32 (1.01–1.72) 1.31 (1.01–1.71) 0.039   

C96786851T TT 25 (3.7) 14 (2.9) 1.38 (0.71-2.70) 1.37 (0.70–2.68) 0.344   

 
TC+TT 233 (34.3) 136 (28.5) 1.33 (1.03–1.71) 1.30 (1.01–1.68) 0.028   

NAT2 AA 221 (32.1) 169 (34.6) 1.00 (reference) 1.00 (reference) 0.001 0.007 0.119 

rs1208 AG 304 (44.2) 247 (50.6) 0.94 (0.72–1.22) 0.94 (0.72–1.22) 0.649   

A18302596G GG 163 (23.7) 72 (14.7) 1.73 (1.23–2.44) 1.75 (1.24–2.46) 0.002   

 
AG+GG 467 (67.9) 319 (65.3) 1.12 (0.87–1.43) 1.12 (0.88–1.44) 0.377   

NAT2 TT 230 (33.6) 173 (35.8) 1.00 (reference) 1.00 (reference) 0.000 0.008 0.088 

rs1390358 TC 310 (45.2) 251 (52.0) 0.94 (0.73–1.22) 0.94 (0.73–1.22) 0.657   

T18297035C CC 145 (21.2) 59 (12.2) 1.88 (1.31–2.69) 1.88 (1.31–2.70) 0.001   

 
TC+CC 455 (66.4) 310 (64.2) 1.09 (0.86–1.39) 1.10 (0.86–1.41) 0.483   

NAT2 GG 367 (53.6) 227 (47.0) 1.00 (reference) 1.00 (reference) 0.114 0.059 0.405 

rs4646247 AG 263 (38.4) 212 (43.9) 0.78 (0.61–0.99) 0.77 (0.60–0.98) 0.044   

G18303188A AA 55 (8.0) 44 (9.1) 0.78 (0.51–1.20) 0.77 (0.50–1.18) 0.266   

 
AG+AA 318 (46.4) 256 (53.0) 0.78 (0.62-0.98) 0.76 (0.60-0.96) 0.037   

NAT2 CC 222 (32.3) 172 (35.2) 1.00 (reference) 1.00 (reference) 0.001 0.005 0.158 

rs7832071 TC 307 (44.6) 247 (50.6) 0.96 (0.74–1.25) 0.96 (0.74–1.25) 0.776   

C18301560T TT 159 (23.1) 69 (14.1) 1.78 (1.26–2.52) 1.80 (1.27–2.55) 0.001   

 TC+TT 466 (67.7) 316 (64.7) 1.14 (0.89–1.46) 1.15 (0.90–1.46) 0.286   

*adjusted for age and family history. 
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In relation to disease aggressiveness, we found six SNPs associated with aggressive PCa, as 
shown in Table 2. Inheritance of two minor CYP1B1 rs1800440 G, CYP2C8 rs1058932 T, NAT2 
rs1208 G, NAT2 rs1390358 C, or NAT2 rs7832071 T allele was associated with a 1.3 to 2.2-fold 
increase in disease aggressiveness (p-values = 0.001–0.04, FDR = 0.088–0.939) relative to those 
with the referent genotype. Conversely, there was a 23% reduction in aggressive PCa among men 
who possessed at least one minor NAT2 rs4646247 A allele when compared to those with the 
reference genotype [OR (95%CI) = 0.77 (0.60–0.98); p = 0.044, FDR = 0.405]. Among the 
aforementioned PCa disease aggressiveness risk alleles, only NAT2 rs1208, NAT2 rs1390358 and 
NAT2 rs7832071 remained statistically significant after adjusting for FDR (p-value = 0.088–0.158).  

3.2. Combination effects of oxidative stress response related factors on prostate cancer outcomes 

Upon examination of the joint effects our genetic and environmental panel on PCa risk using 
MDR, we detected a significant interaction between CYP2C8 rs7909236 and GSTP1 rs1695. These 
SNPs were selected as the best two factor model for predicting disease risk [CVC = 10/10; ATA = 0.545; 
p = 0.013], as depicted in Table 3. However, this finding was not confirmed by LR analysis (p-value 
for interaction = 0.100; p-trend = 0.016), as shown in Supplemental Table F. However, the entropy 
graph revealed that this interaction was mainly driven by CYP2C8, as depicted in Supplemental 
Figure 1. More specifically, CYP2C8 alone had an IG value of 0.31%, while CYP2C8 and GSTP1 
yield an IG of 0.31%. Hence, there is no additional information gained comparing the two-factor 
model (i.e., CYP2C8-GSTP1) to CYP2C8 rs7909236 alone or GSTP1 rs1695 alone. There were no 
significant gene-environment or gene-gene interaction MDR models selected as effective predictors 
of PCa risk.  

 

Supplemental Figure 1. 
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Table 3. Multi-Dimensionality reduction models for antioxidative-related 
polymorphisms and prostate cancer risk. 

Best Model Cross Validation 
Consistency (CVC)* 

Average Testing 
Accuracy* 

Permutation 
Testing p-value* 

CYP2C8_rs7909236 
One Factor 

10/10 0.526 0.080 

CYP2C8_rs7909236  
Two Factor 

GSTP1_rs1695 
10/10 0.545 0.013 

CYP2C8_rs7909236 
GSTP1_rs1695 

Three Factor 

NAT1_rs4921581 

3/10 0.502 0.403 

GSTM2_rs638820 
GSTM3_rs7483 
GSTP1_rs6591256 
NAT2_rs1112005 

Four Factor 

5/10 0.536 0.021 

*Adjusted for age and family history of prostate cancer. 

Table 4. Multi-Dimensionality reduction models for antioxidative-related 
targets and prostate cancer aggressiveness. 

Best Model Cross Validation 
Consistency (CVC)* 

Average Testing 
Accuracy* 

Permutation 
Testing p-value* 

CYP2C8_rs7909236 
One Factor 

8/10 0.510 0.440 

CYP2C8_rs7909236 
DiMeIQx 

Two Factor 
3/10 0.504 0.375 

White_meat_intake 
Three Factor 

Processed_meat 
Well_done_red_Meat 

7/10 0.534 0.035 

White_meat_intake 
Processed_meat 

Four Factor 

Rare_red_Meat 
Well_done_red_meat 

5/10 0.525 0.117 

*Adjusted for age and family history of prostate cancer. 

With regards to disease aggressiveness, MDR did not show any significant gene-gene or gene-
environment interaction models linked to disease aggressiveness (p ≥ 0.375), as depicted in Table 4. 
Even though a complex interaction among daily intake of white, processed and well-done red meat 
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was selected as the best three factor MDR model, in relation to aggressive disease, the low cross 
validation consistency score (CVC < 8) preempted further consideration. 

4. Discussion 

Oxidative stress occurs when there is an increase in the production or decrease in the removal of 
ROS [1,2,33,68]. Endogenous and exogenous ROS sources can contribute to oxidative stress [1,2,33,68]. 
This includes products generated from normal cellular respiration and metabolic processes as well as 
exposure to environmental carcinogens including, PAHs and HCAs [1,33]. Excessive oxidative 
stress can produce DNA base changes, damage tumor suppressors, enhance proto-oncogene 
expression, and induce malignant transformation of cells [1,2,33,68]. The damaging effects of ROS 
may be further exacerbated by susceptibilities in antioxidation/detoxification genes and compromise 
the capacity to manage oxidative stress. Increased exposure to environmental ROS sources can 
exacerbate this effect. Consequently, oxidative stress response related gene variants associated with 
decreased ROS capacity, combined with elevated ROS levels due to environmental factors may 
increase the risk of PCa development. To evaluate this hypothesis we assessed the effects of 33  
pro-/antioxidative-related sequence variants along with 26 environmental oxidative stress response 
related factors in relation to PCa risk and disease aggressiveness. This analysis was performed using 
a comprehensive statistical approach that included traditional (i.e., LR) as well as advanced 
methodologies (i.e., MDR and entropy graphs). Data related to dietary habits, vitamin/ supplement 
intake, and exposure to meat- and cigarette-derived carcinogens was collected from 2,286 CGEMS 
project participants (687 aggressive and 488 non-aggressive cases, 1111 controls).  

Among the 33 sequence variants examined in the current study, three NAT2 loci were 
predictive of aggressive PCa among participants of the CGEMs GWAS study. Commensurate with 
our study findings, NAT2 (rs1208, rs1390358, rs7832071) were significantly related to PCa  
(p-value = 0.001). These markers remained significant after adjusting for multiple hypotheses testing 
(FDR p value ≤ 0.158). NAT2 enzyme activity can either detoxify or bioactivate many xenobiotics 
and these effects are largely substrate dependent [69]. NAT2 rs1208 has a substitution of G for A at 
position 803, which causes a lysine to arginine amino acid change at position 268 [69]. This variant 
is associated with the rapid acetylation phenotype similar to the referent NAT2*4 allele [69,70]. 
Previous studies have confirmed this variant does not alter mRNA or protein expression and  
activity [69,70]. However, this NAT2 rs1208 SNP exists with several slow NAT2 haplotypes (i.e., 
*5F, *5G, *6C) [71–75]. Unfortunately, the CGEMS project does not have genotype data available 
for these other variants within the aforementioned NAT2*5/*6 haplotypes. Therefore, we cannot 
eliminate the possibility that other NAT2 alleles may contribute to the positive association we 
observed between rs1208 and PCa and disease aggressiveness. To our knowledge, there are no 
published data or functional predictions regarding the other intronic NAT2 SNPs (i.e., rs1390358 and 
rs7832071). These two intronic SNPs may influence miRNA splicing or miRNA binding sites, 
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resulting in alterations in mRNA and/or protein levels [56]. Therefore, the increased risk of 
developing aggressive PCa among carriers of the NAT2 (rs1390358 and rs7832071) variant alleles 
may be linked to decreased detoxification or increased bioactivation of pro-oxidants. 

The role of oxidative stress response related factors in relation to PCa outcomes has undergone 
evaluation within a few observational studies. However, reported findings are inconsistent. Koutros 
and colleagues evaluated gene-environment interactions among nearly 120 polymorphisms across 
multiple metabolizing genes (CYP1A1, CYP1A2, CYP1B1, GSTA1, GSTM1, GSTM3, GSTP1, NAT1, 
NAT2, SULT1A1, SULT1A2, and UGT1A locus) and meat-derived HCAs in relation to PCa 
susceptibility within a subset of participants selected from the PLCO Trial [15]. Meat-derived 
carcinogen exposures were estimated using questionnaire data regarding meat consumption and 
cooking method for a study population of 1126 cases (473 non-aggressive, 654 aggressive) and 1127 
controls [15]. From this analysis, possession of at least one or more variant GSTM3 rs11102001 was 
associated with increased PCa risk among subjects in the highest percentile of DiMeIQx intake 
compared to subjects in the lowest percentile [OR (95%CI) = 2.3 (1.2–4.7). HCA-SNP analyses 
revealed a significant interaction among GSTM3 rs11102001, MeIQx, and DiMeIQx (p = 0.001). 
This relationship remained significant after adjusting for multiple hypothesis testing (false discovery 
rate (FDR) = 0.20) [15]. Additional data from this same study suggests joint risk effects may exist 
among GSTP1 105

15
Val or the UGT1A locus; however, this interaction did not survive after adjusting 

for multiple comparisons (FDR > 0.03) [ ]. Sharma and co-workers (2010) examined eight NAT1 
and seven NAT2 polymorphic alleles, along with well-done red meat consumption in relation to PCa 
risk using a multi-ethnic cohort population (2106 cases, 2063 controls) [76]. Individual and 
multivariate statistical analyses were conducted using possession of NAT1*10 or ‘slow’ NAT2 
phenotypes and frequent consumption of well-done red meat designated as the high risk groups [76]. 
No single or combined risk effects were observed between variant NAT1 or NAT2 acetylators and 
well-done red meat intake in relation to PCa [76]. 

Unlike previous reports that examined the role of pro-/antioxidative targets in PCa susceptibility, 
our study utilized a sophisticated statistical approach to evaluate single and joint modifying effects of 
genetic as well as environmental factors in relation to PCa and aggressive disease. MDR and entropy 
graphs allowed us to model gene-gene as well as gene-environment interactions within a large panel 
of factors and study population. Furthermore, we were able to evaluate several markers that have not 
been investigated in previous publications using SNP data collected through the CGEMS project. 
Consistent with previously published reports, we were not able to detect significant gene-
environment and gene-gene interactions associated with PCa risk or disease aggressiveness [15,76–
78]. Our inability to detect significant joint modifying effects was partially attributed to the lack of 
commonly studied or functional genetic variants within the CGEMS database. For instance, it may 
be worthwhile to analyze SNPs in genes such as, glutathione peroxidases, peroxiredoxins, and 
thioredoxins. Future studies can address this concern by utilizing targeted sequencing strategies to 
secure additional markers relevant in metabolic activation, antioxidation, and detoxification 
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pathways. Also, actual exposure levels from cigarette- and meat-derived carcinogens instead of 
questionnaire estimates may permit more significant gene-environment interactions. The addition of 
more oxidative stress related genetic variants and more accurate exposures will strengthen 
epidemiological studies and help elucidate the role of oxidative stress mechanisms in prostate 
carcinogenesis. 
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Supplemental Table 

Supplemental Table A. Baseline characteristics by disease status among male 
participants of the CGEMS study. 

Characteristics Cases Controls p valuea 
Number of Participants, n 1,175 1,111 --- 
Age at diagnosis (yrs), median (range) 67 (55–81) 67 (55–80) 0.299 
Age at enrollment (yrs), median (range) 65 (55–74) 64 (55–74) 0.094 
Family History of Prostate Cancer, n (%) 
      Yes 
      No   

 
133 (11.4) 
1031 (88.7) 

 
70 (6.3) 

1041 (93.7) 

 
< 0.0001 

PSA (ng/ml),b
      < 4 

 n (%) 

      ≥ 4 
      Missing 

 
569 (48.9) 
564 (48.5) 

22 (1.9) 

 
1022 (93.5) 
  71 (6.5) 
18 (1.6) 

 
< 0.0001 

DRE results,b
      Normal 

 n (%) 

      Abnormal, suspicious 
      Abnormal, non-suspicious    
      Missing 

 
398 (34.2) 
472 (40.6) 
234 (20.1) 
59 (5.1) 

 
537 (48.3) 
438 (39.4) 
75 (6.8) 
61 (5.5) 

 
< 0.0001 

Lifestyle    
Body Mass Index (BMI),c
     Underweight or normal 

 n (%)  
305 (26.2) 

 
271 (24.4) 

 
0.244 
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     Overweight  
     Obese 
     Missing 

612 (52.6) 
246 (21.2) 

0 (0.0) 

574 (51.7) 
266 (23.9) 

0 (0.0) 

0.648 
0.111 

Kcal from diet (g/day),c 

      2000–3000 
n (%) 

      < 2000 
      > 3000 
      Missing 

 
559 (47.6) 
395 (33.6) 
209 (17.8) 
12 (1.0) 

 
522 (47.0) 
391 (35.2) 
198 (17.8) 

0 (0.0) 

 
0.821 
0.538 
0.926 

 
Fat from diet (g/day), 
      Fat 

median (IQR) 

      Saturated 
      Missing 

 
73.1 (95.5–56.4) 
25.0 (32.4–18.6) 

1 (0.4) 

 
72.7 (99.2–55.7) 
24.6 (34.0–18.5) 

2 (0.9) 

 
0.884 
0.790 

Physically Active (at least 30 min/day),c

     Currently 

 n 
(%) 

     Since age 40 
     Missing 

 
556 (47.3) 
559 (47.6) 

1 (0.1) 

 
494 (44.5) 
620 (55.8) 

2 (0.2) 

 
0.177 
0.224 

Tobacco Use, n (%) 
     Never 
     Former  
     Current 
     Ever (Former & Current) 

 
477 (40.6) 
593 (50.5) 
93 (7.9) 

686 (58.4) 

 
421 (37.9) 
570 (51.3) 
120 (10.8) 
690 (62.1) 

 
0.045 
0.880 
0.022 
0.128 

Alcohol Consumption (drinks/day),b
      ≤ 2 

 n (%) 

      > 2 
     Missing 

 
960 (81.7) 
203 (17.3) 
12 (1.0) 

 
923 (83.1) 
188 (16.9) 

0 (0.0) 

 
0.736 

Abbreviations: PSA, prostate specific antigen; DRE, digital rectal examination; aDifferences in frequencies were tested 
by a Chi-square test of heterogeneity; Differences in continuous variables between cases and controls were tested using 
the Wilcoxon sum Rank test; bPSA given between year 0–5 & DRE given between year 0-3 of PLCO study; c

Supplemental Table B. Dietary characteristics by disease status among male 
participants of the CGEMS study. 

Risk 
categories  are based on values established in the 2005 USDA dietary guidelines & NIH office of dietary supplements. 

 Cases Controls p valuea 
Meat Consumption (g/day), median (IQR)  
      Total meat  
      White Meat (chicken & fish) 
      Processed meat  
      Red Meat group 
      Red meat not processed 
      Red meat rare/med done 
      Red meat well/very well done  

 
173.9 (118.4–254.2) 

42.6 (25.1–71.9) 
11.4 (6.1–21.0) 

80.9 (47.6–125.0) 
62.1 (38.6–95.7) 
15.0 (3.8–33.6) 
9.3 (4.1–19.8) 

 
174.5 (129.3–252.9) 

44.6 (26.2–71.8) 
11.4 (6.1–21.0) 

82.7 (53.9–124.2) 
62.1 (38.6–95.7) 
16.0 (3.9–32.4) 
9.8 (4.9–19.8) 

 
0.166 
0.478 
0.646 
0.278 
0.396 
0.567 
0.141 

Meat-derived carcinogen exposure, median (IQR) 
     MeIQx (ng/day) 
     DiMeIQx (ng/day) 
     PhIP (ng/day) 
     B[a]P (ng/day) 

 
22.3 (10.8–44.6) 

1.0 (0.3–2.4) 
73.6 (32.9–141.7) 

8.4 (1.4–42.2) 

 
23.9 (13.1–46.6) 

1.2 (0.4–2.6) 
74.0 (36.7–156.8) 

9.1 (1.7–44.6) 

 
0.009 
0.016 
0.266 
0.084 

Fruit (servings/day),b 

      ≥ 4 
n (%) 

      < 4 
      Missing 

 
975 (83.0) 
188 (16.0) 
12 (1.0) 

 
952 (85.7) 
159 (14.3) 

0 (0.0) 

 
0.219 

Vegetables (servings/day),b 

      ≥ 5 
n (%) 

      < 5 
      Missing 

 
907 (77.2) 
256 (21.8) 
12 (1.0) 

 
831 (74.8) 
280 (25.2) 

0 (0.0) 

 
0.073 

Vitamin A (μg/day),b 

     ≥ 900 
n (%) 

     < 900 
     Missing   

 
1054 (89.7) 
109 (9.3) 
12 (1.0) 

 
1008 (90.6) 
103 (9.3) 
0 (0.0) 

 
0.990 
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Vitamin C (mg/day),b 

      ≥ 75 
n (%) 

      < 75 
      Missing 

 
1103 (93.9) 

61 (5.2) 
11 (0.9) 

 
1042 (93.8) 

71 (6.4) 
0 (0.0) 

 
0.245 

Vitamin E (IU/day),b 

      ≥ 15 
n (%) 

      < 15 
      Missing 

 
1014 (86.3) 
150 (12.8) 
11 (0.9) 

 
952 (85.7) 
161 (14.5) 

0 (0.0) 

 
0.273 

Zinc (mg/day),b 

      ≥ 11 
n (%) 

      < 11 
      Missing 

 
837 (71.2) 
325 (27.7) 
13 (1.1) 

 
775 (69.8) 
336 (30.2) 

0 (0.0) 

 
0.215 

Selenium (μg/day),b 

      ≥ 55 
n (%) 

      < 55 
      Missing 

 
1128 (96.0) 

34 (2.9) 
13 (1.1) 

 
1085 (97.7) 

26 (2.3) 
0 (0.0) 

 
0.324 

Abbreviations: IQR, Interquartile Range; aDifferences in frequencies were tested by a Chi-square test of heterogeneity; 
Differences in continuous variables between cases and controls were tested using the Wilcoxon sum Rank test; b

Supplemental Table C. Baseline disease & lifestyle characteristics for PCa patients. 

Risk 
categories are based on values established in the 2005 USDA dietary guidelines & NIH office of dietary supplements. 

Characteristics Aggressive Cases Non-Aggressive Cases  p valuea 
Number of Participants, n 687 488 --- 
Age at diagnosis (yrs), Median (range) 67 (55–81) 66 (55–78) 0.083 
Age at enrollment (yrs), Median (range) 64 (55–74) 65 (55–74) 0.080 
Family History of Prostate Cancer, n (%) 
      Yes 
      No   

 
605 (88.1) 
83 (12.1) 

 
435 (89.1) 
53 (10.9) 

 
0.525 

PSA (ng/ml),b
      < 4 

 n (%) 

      ≥ 4 
      Missing 

 
347 (50.5) 
319 (46.4) 

21 (3.0) 

 
230 (48.0) 
249 (52.0) 

9 (1.8) 

 
0.173 

Gleason Score,b
      4 

 n (%) 

      5 
      6 
      7 
      8 
      9 
      10 

 
4 (0.6) 

18 (1.4) 
86 (12.5) 

459 (66.8) 
68 (9.9) 
44 (6.4) 
3 (0.4) 

 
45 (9.8) 

133 (29.0) 
271 (59.2) 

8 (1.8) 
1 (0.2) 
0 (0.0) 
0 (0.0) 

 
< 0.0001 

DRE results,b
      Normal 

 n (%) 

      Abnormal, suspicious 
      Abnormal, non-suspicious    
      Missing 

 
241 (35.1) 
282 (41.0) 
130 (18.9) 
34 (4.9) 

 
159 (34.4) 
197 (42.6) 
106 (23.0) 
26 (5.3) 

 
0.435 

 
 

 Lifestyle    
Body Mass Index (BMI),c
     Underweight or normal 

 n (%) 

     Overweight  
     Obese 
     Missing 

 
180 (26.2) 
350 (50.9) 
157 (22.9) 

0 (0.0) 

 
127 (26.0) 
272 (55.8) 
89 (18.2) 
0 (0.0) 

 
0.126 
0.105 
0.055 

Kcal from diet (g/day),c 

      2000–3000 
n (%) 

      < 2000 
      > 3000 
      Missing 

 
336 (48.9) 
237 (34.5) 
114 (16.6) 

1 (0.9) 

 
230 (47.1) 
161 (33.0) 
97 (19.9) 
0 (0.0) 

 
0.352 
0.591 
0.149 

Fat from diet (g/day), 
     Fat 

median (IQR) 

     Saturated 
     Missing 

 
73.1 (57.7–94.6) 
25.0 (19.2–32.5) 

1 (0.9) 

 
73.1 (56.4–98.2) 
25.0 (18.9–34.2) 

0 (0.0) 

 
0.196 
0.114 
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Physically Active (at least 30 min/day),c
     Currently 

 n (%) 

     Since age 40 
     Missing 

 
333 (48.5) 
354 (51.5) 

0 (0.0) 

 
229 (46.9) 
254 (52.1) 

5 (1.0) 

 
0.601 
0.508 

Tobacco Use, n (%) 
     Never 
     Former  
     Current 
     Ever (Former & Current) 

 
296 (43.1) 
335 (48.8) 
56 (8.2) 

391 (56.9) 

 
186 (38.1) 
265 (54.3) 
37 (7.6) 

302 (61.9) 

 
0.169 
0.061 
0.722 
0.088 

Alcohol Consumption (drinks/day),b
      ≤ 2 

 n (%) 

      > 2 
     Missing 

 
579 (84.3) 
108 (15.7) 

0 (0.0) 

 
390 (79.9) 
98 (20.1) 
0 (0.0) 

 
0.053 

Abbreviations: PSA, prostate specific antigen; DRE, digital rectal examination; aDifferences in frequencies were tested 
by a Chi-square test of heterogeneity; Differences in continuous variables between cases and controls were tested using 
the Wilcoxon sum Rank test; bPSA given between year 0– & DRE given between year 0–3 of PLCO study, Gleason 
Score represents best Gleason Score taken at prostatectomy or biopsy; c

Supplemental Table D. Dietary characteristics by disease aggressiveness 
among male participants of the CGEMS study. 

Risk categories are based on values established 
in the 2005 USDA dietary guidelines & NIH office of dietary supplements. 

 Aggressive Cases Non-Aggressive Cases  p valuea 
Meat Consumption (g/day), median (IQR)  
      Total meat  
      White Meat (chicken & fish) 
      Processed meat  
      Red Meat group 
      Red meat not processed 
      Red meat rare/med done 
      Red meat well/very well done  

 
174.5 (124.3–240.7) 

44.6 (25.6–66.6) 
11.4 (5.9–21.4) 

82.7 (50.8–122.8) 
62.1 (36.2–93.6) 
16.0 (3.9–32.7) 
9.8 (4.7–19.4) 

 
174.5 (118.1–245.6) 

44.6 (27.6–71.4) 
11.4 (5.2–23.5) 

82.7 (50.2–119.8) 
62.1 (36.7–91.9) 
16.0 (3.8–31.6) 
9.8 (4.2–16.9) 

 
0.918 
0.129 
0.928 
0.992 
0.831 
0.838 
0.496 

Meat-derived carcinogen exposure, median (IQR) 
     MeIQx (ng/day) 
     DiMeIQx (ng/day) 
     PhIP (ng/day) 
     B[a]P (ng/day) 

 
23.6 (11.9–44.6) 

1.2 (0.4–2.3) 
74.0 (35.4–125.2) 

9.1 (1.7–37.4) 

 
22.0 (11.0–39.0) 

1.0 (0.3–2.1) 
77.0 (38.0–142.5) 

9.1 (1.5–42.3) 

 
0.155 
0.462 
0.081 
0.968 

Fruit (servings/day),b 

      ≥ 4 
n (%) 

      < 4 
      Missing 

 
584 (85.0) 
103 (15.0) 

0 (0.0) 

 
403 (82.6) 
85 (17.4) 
0 (0.0) 

 
0.264 

Vegetables (servings/day),b 

      ≥ 5 
n (%) 

      < 5 
      Missing 

 
547 (79.6) 
140 (20.4) 

0 (0.0) 

 
370 (75.8) 
118 (24.2) 

0 (0.0) 

 
0.121 

Vitamin A (μg/day),b 

     ≥ 900 
n (%) 

     < 900 
     Missing   

 
619 (90.1) 
68 (9.9) 
0 (0.0) 

 
444 (91.0) 
44 (9.0) 
0 (0.0) 

 
0.636 

Vitamin C (mg/day),b 

      ≥ 75 
n (%) 

      < 75 
      Missing 

 
40 (3.4) 

647 (94.2) 
0 (0.0) 

 
22 (4.5) 

466 (95.5) 
0 (0.0) 

 
0.324 

Vitamin E (IU/day),b 

      ≥ 15 
n (%) 

      < 15 
      Missing 

 
93 (13.5) 
594 (13.5) 

0 (0.0) 

 
59 (12.1) 

429 (87.9) 
0 (0.0) 

 
0.472 

Zinc (mg/day),b 

      ≥ 11 
n (%) 

      < 11 
      Missing 

 
491 (71.5) 
196 (28.5) 

0 (0.0) 

 
351 (71.9) 
137 (28.1) 

0 (0.0) 

 
0.876 
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Selenium (μg/day),b 

      ≥ 55 
n (%) 

      < 55 
      Missing 

 
24 (3.5) 

663 (96.5) 
0 (0.0) 

 
11 (2.3) 

477 (97.7) 
0 (0.0) 

 
0.218 

Abbreviations: IQR, Interquartile Range; aDifferences in frequencies were tested by a Chi-square test of heterogeneity; 
Differences in continuous variables between cases and controls were tested using the Wilcoxon sum Rank test; b

Supplemental Table E. Selected antioxidative-related polymorphisms. 

Risk 
categories are based on values established in the 2005 USDA dietary guidelines & NIH office of dietary supplements. 

dbSNP ID† Gene Chr Chr 
Position Location Nucleotide 

Change MAF (%) Amino Acid 
Change 

Predicted Functional 
Consequence [54] 

rs1001179 CAT 11 34416807 5'near gene (−206) G > A 3.2–9.1  TFBS 

rs564250 CAT 11 34415437 5'near gene (−1616) C >T 1.7–4.5  TFBS 

rs2470893 CYP1A1 15 72806502 3'near gene (+1540) G > A 2.0–7.1  TFBS 

rs1800440 CYP1B1 2 38209790 Exon 2 A > G 3.2–5.0 Asn453Ser Possibly Damaging 

rs11673270 CYP2B6 19 46212684 Intron 1 A > C 7.1   

rs2860840 CYP2C18 10 96485222 3'UTR (mRNA 1830) C > T 11.6–13.3  miRNA 

rs10509681 CYP2C8 10 96788739 Exon 8 T > C 1.7–4.2 Lys399Arg Benign 

rs1058932 CYP2C8 10 96786851 3'UTR (mRNA 1592) C > T 2.7  mRNA 

rs7909236 CYP2C8 10 96819420 5'near gene (−120) G > T 3.3–4.4  TFBS 

rs2480258 CYP2E1 10 135240981 Intron 1 G > A 3.5–4.2   

rs2515642 CYP2E1 10 135240894 Intron 1 T >C 3.5–4.3   

rs6413420 CYP2E1 10 135229710 5'near gene (−38) G > T 3.4–4.2  
Splicing; possibly 

damaging 
rs1051740 EPHX1 1 222326368 Exon 4 T > C 10–12.5 Tyr113His  

rs1051741 EPHX1 1 222338964 Exon 2 C > T 1.8 Asn357Asn Splicing; benign 

rs2234922 EPHX1 1 222333141 Exon 5 A > G 5.3–7.1 His139Arg  

rs6917325 GSTA1 6 52774232 Intron 1 C > T 15.3–16.8  TFBS 

rs563464 GSTA3 6 52883831 5'near gene (−1387) C > T 4.2  TFBS 

rs638820 GSTM2 1 109921948 5'near gene (−765) C > T 25.9  Benign 

rs7483 GSTM3 1 109991743 Exon 7 G > A 6.5–18.2 Val224Ile Benign 

rs1695 GSTP1 11 67109265 Exon 5 A > G 9.7–21.7 Ile105Val  

rs6591256 GSTP1 11 67106475 5'near gene (−1197) A > G 16.7–25.0  miRNA 

rs10888150 NAT1 8 18110406 5'near gene(−1489) C > T 18.6–20   

rs4921581 NAT1 8 18115375 Intron G > A 6.7–9.7   

rs7003890 NAT1 8 18121590 Intron 1 T > C 23.3–29.2   

rs7017402 NAT1 8 18112354 Intron 1 G > A 9.2–10.6  TFBS 

rs8190870 NAT1 8 18125552 3'near gene (+452) C > T 2.7–3.3   

rs1112005 NAT2 8 18300156 Intron 1 C > T 11.5–20   

rs1208 NAT2 8 18302596 Exon 2 A > G 16.1–20.6 Lys268Arg Benign 

rs1390358 NAT2 8 18297035 Intron 1 T > C 13.6–16.7   

rs4646247 NAT2 8 18303188 3'near gene (+224) G > A 8.8–13.6   

rs7832071 NAT2 8 18301560 Intron 1 C > T 15.3–16.7   

rs2758331 SOD2 6 160025060 Intron 1 C > A 20–21.7   

rs6717546 UGT1A1 2 234464119 3'near gene (+174) G >A 4.5–16.7  TFBS 

Abbreviations: Chr, chromosome; UTR, untranslated region; TFBS, transcription factor binding site; miRNA, microRNA. 
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Supplemental Table F. Interaction models for antioxidative-related targets 
and prostate cancer risk. 

Model Minor Allele/ 
Group 

# Minor 
Alleles/ Group 

OR (95%CI) Adj OR 
(95%CI)* 

p value Interaction  
p value 

p trend 

CYP2C8_rs7909236 T 0–1 1.00 (reference) 1.00 (reference)    
GSTP1_rs1695 G 2 1.30 (1.08–1.58) 1.30 (1.07–1.58) 0.007 0.100 0.016 

  ≥ 3 0.92 (0.67–1.26) 0.91 (0.66–1.26) 0.578   

 *adjusted for age and family history.  
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