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Abstract: The major problem leading to substantial waste in the food industry is the spoilage of food 

products during transportation and storage periods. Consequently, the scope of this research focuses 

on the development and preparation a pH responsive monitoring films based on biodegradable 

materials of poly(vinyl alcohol) (PVA) and natural colorant extract from Caesalpinia sappan L. 

heartwood (SP). These monitoring films were prepared by a solution casting method and the film 

stability was improved by crosslinking with citric acid (CA). The red tone of monitoring film without 

CA was observed, while the crosslinked monitoring film showed a yellow color, which occurs from 

the structural change of brazilin (structure presenting in SP) to brazilein under acidic conditions. 

From the SEM and FTIR results, the monitoring film showed high compatibility between phases, 

improvements in light barrier properties and good WVTR performance. The tensile strength and 

elongation at break were slightly increased. For pH responsive properties, the monitoring films 

showed a high response with NH3 gas detection with the change in color from a yellow tone to a red 

tone. These results indicated that the monitoring films have potential to be applied as food packaging 

for meat, fish, pork, chicken, and other foods that generate ammonium gas during spoilage. 

Therefore, these high stable, and non-toxic biodegradable PVA films that incorporated with SP 

extract and crosslinked by CA have the potential to be used for food spoilage detection in packaging. 
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1. Introduction 

The freshness of a product while stored on a shelf is primarily determined by the quality of its 

fresh food components. Items such as meat, fish, pork, and chicken contain vital nutrients like 

protein, carbohydrates, fat, and vitamins. Unfortunately, these beneficial compounds can degrade or 

spoil over time, especially with extended storage [1–3]. Protein and high-fat products, in particular, 

have a shorter shelf life and tend to deteriorate more quickly. Generally, fresh food storage times are 

around 1–2 d at room temperature, 3–7 d below 4 ℃ (refrigeration) before deterioration, and  

around 1–3 months in the freezer. Several researchers have reported on the use of smart packaging 

for product protection, prevention, transportation, and indication [4,5].  

A method for evaluating the quality of food products is through the use of a food freshness 

indicator. This monitoring technique involves the preparation of intelligent film sensors, which are 

capable of detecting various factors affecting food freshness, such as temperature, time, humidity, 

oxygen levels, pH, microorganisms, and specific chemicals. These sensors are typically utilized in 

combination to provide accurate and comprehensive information about the freshness of a particular 

food product [6]. Of these factors pH-response is a popular and suitable technique for monitoring 

food freshness. As reported previously, the degradation of protein and fat in food products can lead to 

the generation of volatile nitrogen, which can serve as a source of bacteria. Additionally, the spoilage 

of food items such as meat, pork, chicken, and seafood can result in changes to their color and 

composition, as noted in studies [7–9]. Numerous studies have focused on the development of 

intelligent film indicators using biodegradable polymers, such as chitin-chitosan [10], starch [3,11], 

wheat protein [12,13] cellulose and its derivative [14,15], also poly(vinyl alcohol) (PVA) [16–20].  

PVA is a biodegradable and commercial polymer that finds widespread use in various 

applications among other biodegradable polyesters, such as poly(lactic acid), polycaprolactone, 

poly(butylene succinate) [21–25]. The use is including medical, cosmetic, and food products, due to 

its non-toxic, biodegradable, biocompatible, and water-soluble properties [26–28]. However, PVA 

also exhibits limitations in terms of its properties such as mechanical, barrier, thermal and heat 

stability. An important factor in the responsiveness of intelligent films is the use of sensitive dyes and 

pigments. Typically, synthetic dyes such as methyl red, cresol red, bromocresol green, bromocresol 

purple, chlorophenol, bromine thymol blue, and xylenol are incorporated as pH-responsive color 

sensors [1,29,30]. However, the toxicity of synthetic dyes has raised concerns about contamination in 

food and other products. As a result, many researchers have focused on developing eco-friendly dyes 

and replacing synthetic dyes with natural alternatives [2,5,13,19,31,32].  

Natural dyes can be derived from various sources, including minerals, animals, vegetables, 

fruits, and plants. Plant-based natural dyes are typically obtained from various plant parts such as the 

bark, flower, leaf, root, peel, and fruit, which are rich in polyphenolic compounds and responsive 

compounds such as flavonoids and anthocyanins [1,2,30–33]. Caesalpinia sappan L., also known as 

Sappan wood, is a traditional medicinal plant in the Leguminosae family. Its heartwood has been 

used in various applications, including cosmetics, food and beverage, medical, and         

coloring [3,34–36]. The heartwood of Sappan (Caesalpinia sappan L.) exhibits an orange-red color 

after extraction with either water or an ethanolic solvent. It has been found to contain a high 
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concentration of polyphenolic compounds, with the main chemical constituent being brazilin. 

Brazilin appears orange in color and undergoes a chemical structure change to brazilein, which turns 

the color to red [37,38].  

The use of Sappan heartwood extract in pH-responsive research is less common compared to 

anthocyanins, which undergo a broad spectrum of color transformations. The heartwood of the 

Sappan tree has been utilized in the development and integration of packaging films for various 

purposes, such as those used in meat packaging [3], food sensors [38]. This is due to its ability to 

effectively absorb UV light and its responsiveness to changes in pH. Therefore, this study aims to 

create a monitoring film that can respond to changes in pH, suitable for use in fresh food applications. 

The film is made using poly(vinyl alcohol) (PVA) and sappan heartwood extract (SP), and its 

stability is ensured by incorporating citric acid (CA) as a crosslinking agent. The biodegradable 

monitoring film is prepared using the solution casting method for film formation. The 

physicochemical properties of the monitoring film, including film appearance, color index, 

morphology, water vapor transmission rate (WVTR), mechanical properties, and pH-responsiveness, 

are observed and reported in this study. 

2. Materials and methods 

2.1. Raw material 

Commercial grade poly(vinyl alcohol) (PVA) powder was purchased from Ajax Finechem Pty 

Ltd, with molecular weight of 30,000–50,000 Da. Citric acid (food grade) was used the crosslinking 

agent. Sappan heartwood (SP) was purchased from Niyom Osot, a local medicinal plant shop located 

in Phitsanulok province, Thailand. Glycerol was used as a plasticizing agent supplied by Fisher 

chemical company. 30% NH3 ammonia solution (AR/ACS) was purchased from LOBA CHEMIE 

PVT.Ltd. 

2.2. Sample preparations 

2.2.1. Sappan heartwood extraction  

Dried Sappan heartwood (SP) was chopped into small pieces with sizes of 5 mm × 80 mm. 50 g 

of SP were immersed into 300 mL of 80%v/v ethanol (weight ratio of 1:6) and kept at room 

temperature for 72 h without exposure to light. After that, the SP heartwood was subsequently 

removed from the ethanolic solution by Whatman filter paper No 40. The obtained solution was 

evaporated at a temperature of 50 ℃ using rotating evaporator (100 rpm). After completion, 2 g of 

crude ethanolic SP extract was dissolved in 95% ethanol and the concentration was adjusted       

to 20 %w/v before use [39]. 

2.2.2. Fabrication of biodegradable monitoring films 

7.5 g PVA powders were dissolved in 100 mL de-ionized water before addition of 20 %wt of 

glycerol. The solution was heated in a water bath with the applied temperature of 60 ℃ and 

continuously stirred for 3 h. The 20 %w/v SP extracts at 0.1, 0.2 and 0.3 %wt were then added into 
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the mixture of PVA. Different concentrations of citric acid (crosslinking agent) at 0, 2, 4, 6, 8 and 

10 %wt were loaded into the mixture of PVA and SP extracts, and continuously stirred for 30 min. 

After that, 20 mL of mixture was poured into silicon molds with dimensions of 3 cm × 15 cm. The 

film thickness was controlled by the volume of solution and measured by digital micrometer. The 

resultant film was then dried in laboratory hood at room temperature for 24 h and kept in zip lock 

plastic bags for 2 d before testing. The films from PVA and PVA incorporated with SP extracts were 

labeled as PVA, 0.1SP, 0.2SP, 0.3SP. Whereas, films crosslinked by CA were labeled first using the 

concentration of SP extract followed by the concentration of CA, for example, 0.1SP+2CA, 

0.2SP+6CA, 0.3 SP+10CA. 

2.3. Characterizations 

2.3.1. Color index and opacity 

The color index of the films was measured by a color reader CR-20 via computer data analysis. 

The films were measured at 5 points per sample and the data was shown in term of lightness (L), 

redness (a) and yellowness (b). The color difference (E) was calculated by Eq 1 [39].  

                                              (1) 

UV-Vis light absorption was characterized by the UV-Vis spectroscopy (SPECORD 200 PLUS 

model). Wavelength covered the UV and visible regions (200–800 nm). The films were cut to a 

square shape of 2.0 cm × 2.0 cm before testing. The opacity of films was measured by the UV-vis 

and used Eq 2, where Abs600 is an absorbance of film at 600 nm [40]. 

         
       

                      
                       (2) 

2.3.2. Morphology 

Morphology of the films was characterized by scanning electron microscope (SEM) 

(LeO1455VP model). The sample was cut into a square shape and fixed on to the SEM stub sample 

holder with double-side adhesive carbon tape before being coated by the gold and tested. 

2.3.3. Water vapor transmission 

The water vapor transmission rate (WVTR) was measured following previous work and ASTM 

E96 [41] (gravimetric method). Briefly, the films were cut into a square shape of 2.0 cm × 2.0 cm 

and average film thickness of 0.3 mm. The films then covered a centrifuge tube (volume of 15 mL) 

that contained 10.00 g of dried desiccant. Afterward, they were kept in a desiccator at room 

temperature with a humidity of 50%. The weight change in the films was monitored every 24 h   

for 168 h, with WVTR values calculated following Eq 3 [42]. 

      
  

       
                                                         (3) 
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Where, ∆W is the weight change (g), A is a film area (mm
2
) and Time is the tested date (day). 

2.3.4. Chemical functional group 

Chemical functional group of the films was characterized by Fourier transform infrared 

(ATR-FTIR) technique (model Spectrum GX, Perkin Elmer). SP extracts and films were dried in a 

hot air oven at 45 ℃ for 24 h before FTIR testing. The wavenumber measurement was collected at 

Mid-IR wavelengths (4,000–400 cm
−1

) at room temperature. 

2.3.5. Mechanical properties 

Mechanical properties of films were tested using a universal tensile testing machine (Instron 

5965), following the ASTM D882 procedure. Films were cut into a square shape of 1.00 cm × 5.00 cm 

and the film thickness was measured by digital vernier calipers. The tensile test method used a cross 

ahead speed of 40 mm/min, load force of 0.1 kN and gauge length of 20.00 mm. The film samples 

were prepared with 5 specimens per sample. The data was calculated with average value and 

standard deviation (SD) of tensile strength at break (TS), %elongation at break (EB) and tensile 

modulus (TM).  

2.3.6. NH3 response 

NH3 response was tested by a modified head space detection method [43]. 30% NH3 solution 

was diluted to 10 %v/v and 5 mL of the solution was added in a glass container. Film samples were 

cut into square shapes sized 2.00 cm
2
 and then stuck to the inside of the lid of glass container. The 

container was then closed with the sample containing lid and left at room temperature at 55% 

humidity. NH3 detection was measured by monitoring the change of the film color at different times 

of 0, 5, 10, 15, 20, 30 and 60 min. Optical photographs were taken to observe the film’s color change 

by mobile phone (iPhone 11) 2× magnification. 

3. Results and discussion 

The color of the produced biodegradable monitoring films were measured and reported as the 

color parameter index: lightness (L), redness (a), yellowness (b), and total color difference (∆E) 

(Table 1). Pure PVA film color index depicted high lightness, high transparency and no color change, 

while PVA films incorporated with SP extracts at 0.1, 0.2, and 0.3 %wt exhibited a decrease in 

lightness value and an increase in redness (a) and yellowness (b) values, which were influenced by 

the brazilein content of SP extract. Generally, the natural colors of brazilin and brazilein ranges from 

yellow to red color, and they are capable of undergoing a chemical transformation when the 

conditions are changed [44]. PVA films with 0.1, 0.2 and 0.3 %wt SP extract and crosslinking agent 

at 2, 4, 6, 8 and 10 %wt showed the color parameter index slightly shifted to yellow due to the film 

becoming more acidic. The L value of monitoring films crosslinked by CA showed an increase in 

transparency when compared with PVA film without CA. Similarly, the redness (a) and yellowness 

(b) values of films increased when higher amount of CA were added. Under acidic conditions, the 

chemical structure of brazilein is converted into the brazilin structure, which in turn is the underlying 
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reason for the differences in color parameter. Moreover, total color difference (∆E) of films with SP 

extract and CA showed much higher values than pure PVA film.  

Table 1. Color parameter index of biodegradable monitoring film from PVA and SP extracts. 

Sample L (Lightness) a (green-red) b (blue-yellow) ∆E 

7.5PVA 86.98 ± 0.41 −0.48 ± 0.04 −3.36 ± 0.18 Ref 

0.1SP 41.70 ± 2.99 47.18 ± 1.47 40.24 ± 2.09 78.88 

0.1SP + 2CA 30.48 ± 0.64 46.58 ± 1.44 26.72 ± 1.65 79.45 

0.1SP + 4CA 36.88 ± 1.57 54.24 ± 2.54 36.14 ± 4.79 84.05 

0.1SP + 6CA 72.30 ± 2.38 22.12 ± 1.65 91.36 ± 4.72 98.48 

0.1SP + 8CA 72.28 ± 0.72 24.10 ± 1.11 88.46 ± 2.29 96.18 

0.1SP + 10CA 76.72 ± 1.75 11.94 ± 1.98 76.46 ± 4.49 81.43 

0.2SP 77.02 ± 0.33 13.06 ± 0.38 77.96 ± 0.61 83.04 

0.2SP + 2CA 72.80 ± 1.69 23.66 ± 2.21 95.18 ± 3.15 102.44 

0.2SP + 4CA 68.82 ± 0.92 27.22 ± 0.88 83.28 ± 3.05 92.76 

0.2SP + 6CA 71.92 ± 0.71 24.54 ± 1.38 87.80 ± 1.87 95.72 

0.2SP + 8CA 71.90 ± 0.66 22.34 ± 1.07 90.10 ± 2.89 97.38 

0.2SP + 10CA 70.08 ± 1.57 26.74 ± 2.63 82.98 ± 5.78 92.09 

0.3SP 70.46 ± 0.80 27.58 ± 1.77 87.94 ± 4.66 96.93 

0.3SP + 2CA 65.10 ± 1.34 32.68 ± 1.71 73.60 ± 4.32 86.61 

0.3SP + 4CA 67.00 ± 1.32 30.58 ± 1.59 78.24 ± 5.20 89.57 

0.3SP + 6CA 64.70 ± 0.83 29.46 ± 0.96 83.10 ± 8.76 94.17 

0.3SP + 8CA 66.98 ± 0.89 26.56 ± 0.32 90.92 ± 2.95 100.10 

0.3SP + 10CA 69.26 ± 1.62 26.32 ± 1.78 89.54 ± 3.91 98.30 

The UV-Vis light absorption of the biodegradable monitoring films is observed in Figure 1. The 

PVA films incorporated with SP extract at 0.1, 0.2 and 0.3 %wt exhibited two absorption peaks    

at 458 nm and 550 nm (Figure 1a). These absorption peaks corresponded to the absorption of 

chemical structures of brazilin (458 nm) and brazilein (550 nm), which are the natural pigments 

presented in SP extract [44]. However, the absorbance intensity depended on the amount of brazilin 

contents in monitoring film, in which higher SP contents promoted higher absorbance intensity. The 

PVA films incorporated with SP extracts and CA at different concentrations were also observed 

(Figure 1b–d). The absorption peak was observed at 454 nm, which was an absorption peak from the 

chemical structure of brazilin. The disappearance of absorption peak from brazilein (at 

approximately 550 nm) is due to the deprotonation of the brazilein chromophore to brazilin under 

acidic conditions when crosslinking with CA [44,45].  
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Figure 1. UV-vis light absorbance of biodegradable monitoring films: (a) PVA and PVA 

incorporated with 0.1, 0.2 and 0.3 %wt of SP extract, (b) PVA incorporated with 0.1 %wt 

SP extract with CA, (c) PVA incorporated with 0.2 %wt SP extract with CA and (d) PVA 

incorporated with 0.3 %wt SP extract with CA. For (b, c and d), different concentrations 

of CA were used at 2, 4, 6, 8 and 10 %wt. 

The opacities of biodegradable monitoring films were reported by dividing the absorbance of 

films at 600 nm (A600) by film thickness (Figure 2). The PVA film incorporated with SP extracts 

showed higher opacity (lower transparency) than that of pure PVA. The increase in opacity was 

observed when higher content of SP extract was applied to the film. However, a decrease in opacity 

(increase in transparency) was observed when CA was added into the high SP content films. The 

concentrations of CA did not significant effect the opacity of the monitoring films.  

The surface morphology of the monitoring films with different SP extracts were observed in 

Figure 3 by SEM at 500× magnification. PVA film without SP extract showed a smooth surface, 

while PVA films incorporated with SP extracts at 0.1, 0.2 and 0.3 %wt showed small particles 

distributed within the PVA matrixes with different electron densities, in which higher amounts of SF 

extracts (white phase) exhibited higher numbers of particles with bigger sizes due to particle 

agglomeration.  

 



472 

AIMS Materials Science  Volume 10, Issue 3, 465–483. 

 

Figure 2. Opacity of biodegradable PVA and monitoring films with different 

concentrations of SP extracts (0.1, 0.2 and 0.3 %wt) and citric acid (0, 2, 4, 6, 8 and 

10 %wt). 

 

Figure 3. SEM images of PVA film (a), and biodegradable monitoring films at 0.1 %wt 

SP (b), 0.2 %wt SP (c), and 0.3 %wt SP (d), at magnification of 500×. 

Figure 4 shows the measurement of the water vapor transmission rate (WVTR) using a 

gravimetric method, which is a crucial physical property of films utilized in the food industry. PVA 

films with and without SP extracts (0.1–0.3 %wt) showed similar values of WVTR with all films 

showing an increase in WVTR with longer testing times (Figure 4a). However, films incorporated 
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with SP extracts (especially at 0.1 %wt) seems to have slightly lower WVTR values than the pure 

PVA film. Generally, WVTR of films is affected by many factors such as nature of the barrier 

(polymer, crystallinity, homogeneity, molecular weight, hydrophilicity, etc.), film structure 

(homogeneous, multilayer, etc.), and thermodynamics (temperature, vapor pressure, physical state of 

water in contact to the films, etc.). In this case of PVA and SP extracts, there is possible formation of 

strong hydrogen bonding between hydroxyl groups of PVA and brazilin that cause changes in film 

structure to behave as a better barrier to water (lower in WVTR value) than pure PVA. This result 

was similar to the previous reported research, which prepared active films mixed with natural active 

compounds that are the rich source of polyphenolic compounds [46,47].  

The WVTR values of the biodegradable monitoring films with different concentrations of SP 

extracts (0.1, 0.2 and 0.3 %wt) and CA (2, 4, 6, 8 and 10 %wt) were also studied (Figure 4b–d). 

These films showed a significant decrease in WVTR values when compared to the PVA and PVA 

incorporated with SP extracts (Figure 4a). For 0.1 %wt SP extract (Figure 4b), there was a decrease 

in WVTR values with higher contents of CA. For 0.2 and 0.3 %wt SP extract (Figure 4c,d, 

respectively), the changes in WVTR were similar when different concentrations of CA were used. 

The reason for the dramatical decrease in WVTR values of the monitoring films of PVA incorporated 

with SP extracts and crosslinked with CA was similar to the results from PVA and SP extracts but 

there is more influence from greater strong hydrogen bonding, and crosslinked structures 

(prohibiting the alignment of PVA chains). In addition, this would be effect to the hydrophilicity of 

films, therefore, the measurement of contact angle of films was necessary. 

 

Figure 4. Water vapor transmission rate (WVTR) of biodegradable monitoring films 

with different tested time (a) PVA film and PVA mixed with SP extracts, (b) 0.1%wt SP 

with CA, (c) 0.2%wt SP with CA, and (d) 0.3%wt SP with CA. 



474 

AIMS Materials Science  Volume 10, Issue 3, 465–483. 

Hydrophilicity of biodegradable monitoring films was measured by contact angle and the  

results are presented in Figure 5. Pure PVA film showed the highest surface contact angle 

(approximately 90º), which proved the films are hydrophilic. After incorporation of SP extract, the 

films showed lower contact angles, demonstrating the increase in hydrophilicity (more hydrophilic) 

(Figure 5a). All films of PVA incorporated with different concentrations of SP extracts and CA 

(Figure 5b–d) showed contact angle values lower than PVA film and PVA films incorporated with SP 

extracts (without CA). However, at high concentrations of CA seems to affect to the hydrophilicity of 

films, as the excess CA molecules (a high-water surface absorption and solubility) are possible to 

migrate to the surface of film and then enhanced the increase of contact angle (more hydrophobic). 

 

Figure 5. Hydrophilicity of biodegradable monitoring films: (a) PVA and PVA 

incorporated with 0.1, 0.2 and 0.3 %wt of SP extract, (b) PVA incorporated with 0.1 %wt 

SP extract with CA, (c) PVA incorporated with 0.2 %wt SP extract with CA and (d) PVA 

incorporated with 0.3 %wt SP extract with CA. For (b,c and d), different concentrations 

of CA were used at 2, 4, 6, 8 and 10 %wt. 

ATR-FTIR spectra of biodegradable monitoring films based on PVA incorporated with SP 

extract and crosslinked by citric acid was observed and compared with pure PVA and pure SP 

extracts (Figure 6). The frequency broad bands of PVA film was observed at 3270 cm
−1

, which 

attributed to the –OH stretching and hydrogen bonded. Peak at 2918 cm
−1

 was the C–H stretching on 

the PVA backbone. The strong vibration peak at 1713 cm
−1

 attributed to C=O of vinyl acetate    

and 1246 cm
−1

 related to the C–O bending of alcohol functional group of PVA. The SP extract 

showed characteristic peaks at 3250 cm
−1

 (–OH stretching and hydrogen bonded) and 2900–2800 cm
−1

 

(CH3, CH2 stretching). Peaks at 1606 cm
−1

, 1466 cm
−1

 and 1085 cm
−1

 were attributed to C=C 
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stretching of brazilin backbone, C–H bending, and C-O stretching vibration, respectively. Films of 

PVA incorporated with different concentrations of SP extracts (0.1SP, 0.2SP and 0.3 SP) showed the 

same characteristic peaks of PVA and SP extracts. A small shift of the peaks at 1713 cm
−1

 (C=O 

stretching of vinyl acetate) and 1085 cm
−1

 (C–O stretching) was observed when compared PVA 

incorporated SP extracts with pure PVA and SP extract. The monitoring film crosslinked by citric 

acid showed the characteristic peaks of PVA and SP extract with the frequency shift of peaks at 1713 

cm
−1

 and a broader band of –OH stretching and hydrogen bonded at 3270 cm
−1

. The reason for the 

frequency shift and a broader band was due to the formation of ester linkage intermolecular forces 

that was formed by hydrogen bonding in these films [48]. This causes a change in the electron cloud 

that alters the resonant frequency of that particular bond to have slightly different hydrogen bonding 

states leading to different frequencies and a broad band [49]. 

 

Figure 6. ATR-FTIR spectra of biodegradable monitoring films of PVA, SP extract, PVA 

incorporated with SP extracts at 0.1, 0.2 and 0.3 %wt SP and PVA incorporated with SP 

extract and citric acid. 

Mechanical properties of the biodegradable monitoring films were observed by tensile testing 

and the results were reported as tensile strength (TS), %elongation at break (EB), and tensile 

modulus (TM). From Figure 7a, tensile strength of pure PVA film had a TS at 24.20 MPa, after the 

addition of SP extract at 0.1 %wt and 0.3 %wt there was a very small increase in TS at 28.76     

and 24.66 MPa, respectively. However, a decrease in TS of film at 0.2 %wt SP extract (19.68 MPa) 

was observed when compared with pure PVA, which might be due to the effect of plasticizing 

behavior of SP extract. This can be confirmed by %elongation at break (Figure 7b). %Elongation at 

break of pure PVA film is depicted at 255.20%, while that of PVA film incorporated with 0.1, 0.2, 

and 0.3 %wt SP extract showed at 591.80, 648.00, and 613.20% respectively. In addition, the tensile 

modulus of all films was significantly lower than pure PVA film (Figure 7c). One possible 

explanation of the increase in %elongation at break and decrease in tensile modulus of films was due 
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to the plasticizing effect interaction generated between the hydroxyl group of glycerol, brazilin and 

the PVA polymer chains. This results in a greater flexibility of the polymer chains, allowing for the 

increase in polymer chain’s mobility and improved overall flexibility of the polymer materials. The 

previous research work reported chemical structures that are rich-polyphenol compounds to act as 

plasticizing agent and improve the film mechanical properties [50]. Tensile strength, %Elongation at 

break and tensile modulus of all these films were slightly affected by the concentrations of SP 

extracts and CA, therefore the optimum concentrations should be considered depending on the 

require application. 

 

Figure 7. Tensile properties of biodegradable monitoring films (a) tensile strength at 

break (TS), (b) %Elongation at break (EB), and (c) tensile modulus (TM).  

pH responsive is a main factor in films used for food spoilage detection. The color response of 

the biodegradable monitoring films was observed when exposed to ammonia (NH3). The volatile 

NH3 was detected by the monitoring film as a color change which is shown schematically in   

Figure 8a. Figure 8b showed the chemical structure change of brazilin to brazilein under oxidation, 

which changes color from yellow (brazilin) to red (brazilein). The monitoring film based on PVA 

was reacted with citric acid and brazilin in SP extract. The hydroxyl group of PVA reacted with 

carbonyl group of citric acid and hydroxyl group of brazilin (Figure 8c) [38,51].  
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Figure 8. Cartoon schematic of monitoring film before and after pH response, chemical 

structure change of brazilin to brazilein, and possible chemical structure of film 

fabricated from PVA, SP extract and CA.  

The pH response was detected at different detection times and the results are shown in Figure 9. 

Monitoring films incorporated with SP extract showed an orange to red color depending on the SP 

extract concentration before NH3 detection. After 5 min detection time, the color of monitoring film 

is slightly shifted from the orange-red color to dark red because of the brazilin structure hydrogen 

deprotonation [36,51].  

Figure 10 depicts the pH-responsive monitoring films at 0.1 %wt SP–0.3 %wt SP extract 

content and crosslinked with 2–10 %wt CA. The monitoring film color shows a yellow color before 

NH3 detection. After NH3 detection the color shifts from a yellow color to the orange and then dark 

red as the exposure time increases from 5 to 60 min. Furthermore, the color response of 0.2 %wt  

and 0.3 %wt SP extract withs different CA concentrations are shown in Figure 10b,c, respectively. 

These results show the same trend as the non-crosslinked films with a yellow color before detection 

and after detection the color changes to orange and dark red. The high concentration of crosslinking 

agent influences the color response and detection due to the acidic medium inhibited the 

deprotonating on the brazilin chemical structure [51]. However, high concentrations of SP extract 

improved the real-time detection and high crosslinking agent concentrations improved the film 
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stability. Thus, these results enable the films to monitor food spoilage with NH3 sensitive detection. 

Moreover, the monitoring film shows high stability with water contact more than 7 d without 

microbial contamination and showed more than 3 months stability at room temperature and 

atmospheric conditions. 

 

Figure 9. pH response of biodegradable monitoring film incorporated with 0.1 %wt, 

0.2 %wt, and 0.3 %wt SP extract (captured by iPhone 11 at 2×). 

 

Figure 10. pH response of biodegradable monitoring film incorporated with SP extract 

crosslinked by CA at 2–10 %wt (a) 0.1 %wt SP, (b) 0.2 %wtSP, and (c) 0.3%wt SP 

(captured by iPhone 11 at 2×). 
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4. Conclusions 

A biodegradable monitoring film based on polyvinyl alcohol (PVA) was developed by 

incorporating sappan heartwood extract (SP) as a food deterioration indicator. The film’s stability 

was improved through crosslinking with citric acid (CA). SP extract contains brazilin, a key 

chemical compound that undergoes color changes upon chemical structure transformation. The 

physical properties of the monitoring film, including color parameters, water vapor transmission rate 

(WVTR), light transmission, and light absorption, as well as its morphology, hydrophilicity, 

chemical structure, tensile strength, and flexibility, were investigated using techniques such as 

scanning electron microscopy, contact angle measurement, FTIR-ATR, and tensile testing. The film’s 

pH responsiveness was also evaluated through headspace NH3 volatile detection. The research results 

showed that the incorporation of SP extract improved the optical properties of the monitoring film, 

including enhanced UV light absorption and reduced WVTR values, which could be attributed to the 

strong hydrogen bonding interactions between SP extract and the polymer’s side chains. 

Additionally, the film’s stability was improved through crosslinking with CA, as evidenced by the 

mechanical property results. The pH responsiveness of the film was demonstrated through real-time 

color changes from yellow to dark red upon NH3 volatile detection. Specifically, the film 

incorporating 0.2 %wt SP extract and crosslinked with CA at 4–8 %wt exhibited favorable properties 

in terms of optical properties, stability, and pH responsiveness, making it suitable for food freshness 

detection while ensuring non-toxicity to customers. Overall, the biodegradable monitoring film 

developed in this study shows great potential for effective detection of fresh food spoilage and could 

be applied in food packaging applications to ensure food quality and safety. 
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