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Abstract: The effect of chlorotrifluoroethylene (CTFE) on dynamic relaxations of 

poly(vinylidenefluoride-co-chlorotrifluoroethylene) films (P(VDF-CTFE)) containing 0, 10, 15 and 

20% of CTFE was investigated via broadband dielectric spectroscopy (DRS) and dynamic 

mechanical analysis (DMA). The interpretation was accompanied by the crystal structure obtained 

from Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, small-angle X-ray 

scattering and differential scanning calorimetry. Increment of CTFE contents caused reducing the 

degree of crystallinity but did not impact the long period, lamellar thickness, and amorphous layer 

thickness. Four dynamic processes were clearly observed in DRS spectra for the neat poly(vinylidene 

fluoride) and P(VDF-CTFE) which were attributed to the local motion of amorphous chains (β), the 

segmental relaxation of amorphous chains (α1), the local conformational rearrangement of the 

TGTGʹ conformation (α2) and the process associated with Maxwell–Wagner–Sillars interfacial 

polarization (αMWS). The extra relaxation was observed for P(VDF-CTFE), which was more likely 

associated to the molecular motion of CTFE chain segments (αc), correspondent with DMA results. 

These PVDF and P(VDF-CTFE) conducted as self-antibacterial materials. 

Keywords: fluoropolymer; smart polymer; dielectric relaxation; conformational disorder; lamellar 

thickness; antibacterial activity 
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1. Introduction  

Poly(vinylidene fluoride) (PVDF) and its copolymers are smart polymers and well known as 

ferroelectric materials. They are potential for the energy storage capacitors [1–4]. These polymers 

have a high dielectric constant, high dielectric breakdown strength and high electrical energy density 

(>20 J/cm
3
) [5]. To reduce the cooperative ferroelectricity in the PVDF crystals, various amounts of 

comonomers such as chlorotrifluoroethylene (CTFE), hexafluoropropylene (HFP) and 

trifluoroethylene (TrFE) are added at the beginning of the polymerization and randomly incorporated 

in PVDF [4–8]. It has been reported that both poly(vinylidene fluoride-co-chlorotrifluoroethylene) 

(P(VDF-CTFE)) and poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) provide a 

high energy density of ~25 J/cm
3
 and break down field >600 MV/m [5,6], which achieved by 

reducing a crystalline size of the α-phase [9]. P(VDF-CTFE) shows a dramatic increase of the energy 

density with the electric field without saturation until reaching the breakdown field, which is 

different from a neat PVDF [10]. P(VDF-CTFE) random copolymers may have semicrystalline or 

amorphous structure dependent on CTFE contents. P(VDF-CTFE) containing a small amount of 

CTFE displays a hexagonal or monoclinic crystalline structure and becomes amorphous when CTFE 

is higher than 30% [11]. According to the beneficial property of P(VDF-CTFE), the main objective 

of this work is to investigate the effect of CTFE contents on dynamic relaxations of P(VDF-CTFE) 

copolymers as a function of temperature and frequency. This investigation would help to understand 

crystal structure and property relationships of these smart polymers. In addition, other than chemical, 

physical and ferroelectric properties of fluoropolymers, the antibacterial property has been 

previously found in polymers containing fluorine such as poly(ethylene terephthalate) coated with 

2,3,5,6-tetrafluoro-p-phenylenedimethanol and polytetrafluoroethylene [12,13]. This is due to 

fluorine atoms in fluoropolymers hindering the bacterial adhesion. However, there are a few 

investigations of antibacterial activity of commercial fluoropolymers have been reported. Therefore, 

in this research, a self–antibacterial property of P(VDF-CTFE) films, containing both fluorine and 

chlorine atoms was preliminarily studied, compared to neat PVDF. This preliminary result would 

further help to elucidate about the novel antibacterial polymers in nature.  

In this current paper, the crystal structure and thermal property of PVDF and P(VDF-CTFE) 

were examined using Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction 

(WAXD), small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC). The 

dynamic relaxations were investigated using dynamic mechanical analysis (DMA) and broadband 

dielectric relaxation spectroscopy (DRS). These findings set the stage for understanding the crystal 

structure, properties, and dynamic behaviors of antibacterial PVDF containing CTFE. 

2. Materials and methods 

2.1. Materials 

Solef® 1008 PVDF and Solef® 31008, 31508 and 32008 P(VDF-CTFE) copolymers were 

obtained and prepared in blown films. The blown films were produced by Brabender single screw 

extruder with extrusion and die temperature of 250 ℃. P(VDF-CTFE) 31008, 31508 and 32008 

blown films containing 10, 15, and 20% of CTFE are referred to as PCTFE10, PCTFE15 and 

PCTFE20, respectively. 
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2.2. Antibacterial activity test 

To verify the effect of CTFE on antibacterial property of PVDF and P(VDF-CTFE) films, the 

antibacterial activity test was performed. Briefly Escherichia coli (E.coli) and Staphylococcus aureus 

(S. aureus) bacteria were cultured in Nutrient agar. Then 3–5 colonies were suspended into Mueller 

Hinton Broth (MHB) and incubated at 37 ℃ for 3 h. Each culture was diluted with phosphate buffer 

solution to 1.5 × 10
8
 colony forming unit per milliliter (CFU/mL). An amount of 100 µL of diluted 

suspension was transferred to 3 mL of MHB. Each sterile disc (6 mm in diameter) was transferred to 

the prepared E. coli and S. aureus suspension. After incubation at 37 ℃ for 24 h, the bacterial 

suspension was serially diluted with phosphate buffer solution. The bacteria in the diluted suspension 

were counted by a spread plate method. All tests were analyzed in triplicate. The effectiveness of the 

antibacterial activity (EAA) was calculated according to Eq 1 [14]: 

       
     

  
                                 (1) 

where N0 and NS refer to the number of CFU/mL for blank (MHB) and the sample respectively. 

2.3. Sample characterization 

2.3.1. Crystal structure and thermal property 

Attenuated total reflectance-Fourier transform Infrared (ATR-FTIR) spectra were acquired 

using a Thermo Scientific Nicolet 6700 spectrometer, signal averaging 200 scans at a resolution   

of 2 cm
−1

.  

Wide-angle X-ray diffraction (WAXD) patterns were collected on a Rigaku DMAX/rapid micro 

diffractometer in transmission mode using a copper point focused source (λ = 0.154 nm) at 50 kV 

and 40 mA.  

Degree of crystallinity and thermal characteristics of PVDF and P(VDF-CTFE) films were 

performed with a Seiko differential scanning calorimetry (DSC) in the temperature range from −90 

to 200 ℃, at a heating rate of 10 ℃/min.  

Small-angle X-ray Scattering (SAXS) profiles were collected on a Rigaku SAXS instrument 

with a CuKα radiation source (λ = 0.154 nm) and a two-dimensional multi-wire detector with the 

sample-to-detector distance of 1.5 m. The diameter of the incident X-ray beam at the sample position 

is approximately 0.8 mm. The diameter of the sensitive area of the detector is 120 mm. Absolute 

scattering intensities were calculated by comparing the spectra of samples to that of a precalibrated 

polyethylene (S-2907) secondary standard. Data were azimuthally averaged to yield a 

one-dimensional profile of the absolute intensity I(q) versus scattering vector q (q = (4π/λ)sinθ, 

where 2θ is the scattering angle). Lorentz-corrected SAXS intensity (Iq
2
) versus q will be plotted to 

gain the details of crystalline microstructures. The one-dimensional correlation function K(r) versus 

the correlation distance r will calculated based on Eq 2 [15]: 

      
 

                   
 

 
                         (2) 

The lamellar thickness, amorphous layer thickness and the linear degree of crystallinity in the 
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lamellar stack were determined from the one-dimensional correlation function base on the first 

intercept of K(r) with the abscissa B and the long period Lp (Lp = B/xcxa, where xc, xa are the 

crystalline and amorphous volume fraction). The Lp obtained from the first maximum of the 

one-dimensional correlation function. 

2.3.2. Dynamic properties 

Dynamic mechanical properties were determined in the tension mode using a TA-Q800 

dynamic mechanical analysis (DMA), at frequency of 1 Hz and a heating rate of 5 
o
C/min. The 

storage (E') and loss moduli (E") were determined as a function of the temperatures range from −70 

to 160 ℃. The rectangular films of 17 × 6.5 mm and 0.03–0.09 mm thick were used. 

Broadband dielectric relaxation spectroscopy (DRS) measurements were performed on a 

Novocontrol GmbH Concept 40 broadband dielectric spectrometer in the frequency domain range 

from 0.01 Hz–1 MHz in the temperature range from −100 to 160 ℃. Temperature stability was 

controlled within ±0.2 ℃. Sample films were sandwiched between brass electrodes of 10 mm in 

diameter. 

3. Results and discussion 

3.1. Antibacterial activity test  

The verified antibacterial property of PVDF and P(VDF-CTFE) is provided in Table 1. The 

antibacterial efficiency of MHB (blank), PVDF and P(VDF-CTFE) copolymers against E. coli and   

S. aureus was reported as the effectiveness of the antibacterial activity (% EAA) and the average 

number of survival bacteria colonies (CFU/mL). PVDF and all P(VDF-CTFE) displayed the 

antibacterial efficiency against both E. coli and S. aureus and the effectiveness increases with 

increasing CTFE contents. P(VDF-CTFE) samples designated the better effectiveness against       

S. aureus than E. coli, compared to neat PVDF. PCTFE20 yielded the antibacterial effectiveness up 

to 73.01 and 70.21% for S. aureus and E. coli, respectively. In addition, the findings presented that 

the EAA of PVDF is higher than 50% for both S. aureus and E. coli. This indicates that PVDF itself 

has rather a good antibacterial property. The finding also shows that introducing chlorine atoms on 

polymer chains helps improving the antimicrobial activity. This might be due to chlorine atoms of 

CTFE enhancing antifouling performances by precluding the protein accumulating on polymer 

surfaces. The mechanisms how to kill bacteria is still unclear. However, from our preliminary 

experiments it is more likely that polymers containing fluorine and chlorine atoms act as 

anti-biofilms and then reject the adhesion of bacteria [12,13,16]. This preliminary investigation 

indicated that polymers containing both chlorine and fluorine atoms are more efficiency to prevent 

the adhesion of bacteria on the surface [17] than that having only fluorine atoms. 
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Table 1. Antibacterial activity of PVDF and P(VDF-CTFE) copolymers. 

Sample E. coli S. aureus 

Log CFU/mL EAA (%) Log CFU/mL EAA (%) 

MHB 11.01 blank 11.56 blank 

PVDF 5.10 53.68 5.58 51.73 

PCTFE10 3.90 64.58 4.00 65.40 

PCTFE15 3.67  66.67 3.75 67.73 

PCTFE20 3.37 70.21 3.12 73.01 

3.2. FTIR characterization 

FTIR spectra was used to confirm the state of crystalline phases of PVDF and P(VDF-CTFE).  

Figure 1 displays the comparative FTIR spectra of PVDF and P(VDF-CTFE) in the region from 550 

to 1500 cm
−1

. All films exhibit strong absorption bands at ~614 and 763 cm
−1

, which have been 

assigned to CF2 bending in the α-phase PVDF. The peaks at ~795 and 854 cm
−1

 correspond to CH2 

in-plane bending. The absorption bands at ~975, 1148, and 1210 cm
−1

 is attributed respectively to the 

CH2 out-of-plane bending, CF2 symmetric stretching, and CF2 asymmetric stretching. These bands 

have been found to be the characteristic of the vibration absorption of the TGTGʹ conformation, 

anti-parallel orientation of C–F bonds (nonpolar α-phase) [11,18–21]. P(VDF-CTFE) samples exhibit 

a small peak at 840 cm
−1

, which correspond to the vibrational frequencies of an all-trans 

conformation, two neighboring chains parallel to each other called polar β-phase [22]. 

 

Figure 1. FTIR spectra for PVDF and P(VDF-CTFE) films in the region from 550–1500 cm
−1

. 
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3.3. WAXD 

Figure 2 displays WAXD pattern of PVDF compared to P(VDF-CTFE) films at 2θ region   

from 10º to 50º. Owing to the previous investigation [23], the prominent peaks were assigned to the 

peaks of the α-crystalline phase. Neat PVDF shows the prominent peaks of α (100), α (020), α (110), 

α (120), α (130) and α (200) [19]. Compared to neat PVDF, P(VDF-CTFE) exhibits three prominent 

peaks of α (100), α (110) and α (200). The crystal plane of (020), (120) and (130) disappeared for 

P(VDF-CTFE) due to the CTFE molecules disrupt the molecular chain packing of neat PVDF, which 

confirms by the degree of crystallinity shown in Table 2. Unlike FTIR results, no β-crystalline phase 

was observed for P(VDF-CTFE) copolymers. This is probably due to a tiny β-crystalline phase was 

formed. 

 

Figure 2. WAXD patterns of PVDF and P(VDF-CTFE) films. 

Diffraction peaks were deconvoluted with PeakFit® software by fitting with a Gaussian curve, 

using a linear baseline. The degree of crystallinity (Xcw) was obtained from the fraction of the area 

under the crystalline peaks to the total area of the amorphous halo and crystalline [24]. As results 

given in Table 2, the Xcw decreases with increasing CTFE contents, which is in good agreement with 

that observed from DSC technique, illustrating how the bulky CTFE disrupts crystal formation. 
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Table 2. Degree of crystallinity for PVDF and P(VDF-CTFE) films. 

Sample WAXD DSC 

Xcw (±5%) Xc (±3%) 

PVDF 0.36 0.53 

PCTFE10 0.30 0.27 

PCTFE15 0.27 0.22 

PCTFE20 0.23 0.16 

3.4. DSC 

As seen in Figure 3a, the melting temperature (Tm), a small endothermic transition (Tcd) and 

glass transition temperature (Tg) are commonly observed for all PVDF and P(VDF-CTFE) samples. 

Upon cooling, the polymers show sharp exotherms associated with the recrystallization temperature 

at temperatures lower than Tm (Figure 3b). The inset in Figure 3a displays the glass transition 

temperature of the samples, which about −37, −36, −26 and −20 ℃, respectively. The transition 

around 50–60 ℃, denoted as Tcd, has been previously assigned to the conformation disorder (Tcd) 

transition in the PVDF crystals [19], which is clearly observed for P(VDF-CTFE) compared to neat 

PVDF. Although this peak has been assigned to the Curie transition (Tc), ferroelectric-paraelectric 

transition (TF-P), or the transformation of polar (β, γ, and δ) phases to nonpolar α-phases [15], it is 

not the case for our investigation. To prove this case, a stretched PVDF film (ST-PVDF), containing 

almost completely polar β-crystalline phases and an unstretched PVDF film, containing only 

nonpolar α-crystalline phases (see inset in Figure 3c) were prepared and tested. As seen in Figure 3c, 

this transition remained the same enthalpy for both stretched and unstretched PVDF films. Therefore, 

this peak cannot be the transformation of polar to nonpolar phases and the strong transition was 

observed for all P(VDF-CTFE) copolymers, which contain tiny β-crystalline phases compared to the 

neat PVDF. In addition, this transition cannot be a Curie temperature, since Tc was previously 

reported that it relates to mole fractions of VF2 in PVDF copolymers so Tc of neat PVDF was 

expected to near 200 ℃ [25]. In addition, Tc of P(VDF-CTFE) should be higher than 50 ℃ and 

suppose to reduce with increasing CTFE contents. Therefore, from our finding, we proposed that this 

transition (Tcd) is attributed to the conformation disorder in the nonpolar α-crystalline phases. 

To confirm the degree of crystallinity obtained from WAXD, the degree of crystallinity was 

estimated from the enthalpy of Tm peaks (in the temperature range of 100−190 ℃) divided by the 

ideal melting enthalpy of 100% crystallinity PVDF (=104.5 J/g) [19,26]. Compared with WAXD 

result, similar trend was observed; the degree of crystallinity (Xc) decreases as the amount of CTFE 

increases (see Table 2). 
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Figure 3. DSC thermograms of (a) PVDF and P(VDF-CTFE) copolymers (heating), (b) 

PVDF and P(VDF-CTFE) copolymers (cooling) and (c) unstretched (PVDF) and 

stretched PVDF (ST-PVDF) films. The inset is FTIR spectra of an unstretched (PVDF) 

and stretched PVDF (ST-PVDF) films. 
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3.5. SAXS 

Figure 4 shows the Lorentz-corrected SAXS intensity (Iq
2
) vs. q and the one-dimensional 

correlation function for PVDF and P(VDF-CTFE) samples. As seen in Figure 4, there is no 

significant difference between P(VDF-CTFE) and PVDF films. The long period (Lp), lamellar 

thickness (lc = xcLp), amorphous layer thickness (la = xaLp) and the linear degree of crystallinity in the 

lamellar stack (XL = lc/(lc + la)) were determined, which are about 89, 69, 26 and 0.73 Å, respectively. 

The findings suggest that the amount of CTFE does not significantly impact on the value of the long 

period, lamellar thickness, amorphous layer thickness and linear degree of crystallinity of neat 

PVDF. This verified that for neat PVDF and P(VDF-CTFE) copolymers with different amounts of 

CTFE 10–20% (PCTFE10, PCTFE15 and PCTFE20), CTFE molecules do not affect the overall 

shape of copolymers but to an extent alter the internal arrangements of the PVDF chain. As a result, 

PVDF and P(VDF-CTFE) have very similar SAXS profiles and different WAXD patterns in some 2θ 

positions. 

 

 

Figure 4. (a) Lorentz-corrected SAXS profiles and (b) one-dimensional correlation 

function estimated from SAXS patterns for PVDF and P(VDF-CTFE) copolymers. 
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3.6. DMA 

The plots of storage (E') and loss moduli (E") vs. temperatures for PVDF and P(VDF-CTFE) 

samples are shown in Figure 5. At temperatures above the Tg (about –37 ℃), two relaxations were 

clearly observed for PVDF (α1 and α2) and P(VDF-CTFE) copolymers (α1 and αc). 

 

 

Figure 5. Temperature dependence of (a) storage and (b) loss moduli for PVDF and 

P(VDF-CTFE) copolymers at 1 Hz. 

To clarify the process above Tg, tan δ (tan δ = E"/E') was plotted as a function of temperatures 

(Figure 6). Relative to E", three relaxations (α1, αc and α2) can be seen for P(VDF-CTFE) polymers. 
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local conformational rearrangement of the α-crystalline phase, respectively [19]. The αc transition 

was only observed for P(VDF-CTFE) copolymers, therefore the αc transitions are more likely 

associated to the motions within regions of CTFE [27]. This transition will be further elucidated 

along with DRS studies. Interestingly the loss magnitude of the αc was much higher when the CTFE 

content increased, PCTFE20 > PCTFE15 > PCTFE10. This tendency follows a typical motion of 

amorphous chain segments, which indicates that amorphous chains are free from crystal restraints. 

PCTFE20 requires the lowest energy to move because it contains the lowest degree of crystallinity. 

 

Figure 6. tan δ as a function of temperatures for PVDF and P(VDF-CTFE) copolymers at 1 Hz. 
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Figure 7. Temperature dependence of ε"der at 1 Hz for PVDF and P(VDF-CTFE) copolymers. 

To deep investigation, the dielectric relaxation spectroscopy data processing was performed. 

The frequency dependence of ε" at various temperatures was plotted and fit with the appropriate 

empirical Havriliak-Negami equation as shown in Eq 3 [29]: 

         
   

   

           
     

   
  

     
 
                  (3) 

The characteristic relaxation time (τHN) and dielectric relaxation strength (Δε) were obtained by 

fitting with Eq 3. The frequency maximum was calculated from Eq 4 [30]: 

        
 

     
 
    

  

    
 

    
   

    
 
 

   

                         (4) 

where ω is the angular frequency. m and n are the shape parameters. σ0 is the dc conductivity (S/cm), ε0 

is the permittivity of free space and the parameter s relates to the type of conduction process. 
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Figure 8. Temperature dependence of the relaxation times for the β, α1, α2 and αMWS 

processes for PVDF and P(VDF-CTFE) copolymers.  
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investigations
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α-crystalline phase, while P(VDF-CTFE) contains slightly polar β-crystalline phases. This confirms 
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Table 3. Activation energy of the β, α2, and αMWS processes and the strength parameter of 

the α1 process for PVDF and P(VDF-CTFE) copolymers. 

Sample  Ea (β) 

(kJ/mol) 

D (α1) Ea (α2) 

(kJ/mol) 

Ea (αMWS) 

(kJ/mol) 

PVDF 

PCTFE10 

PCTFE15 

PCTFE20 

56.8 

43.2 

43.0 

52.9 

3.2 

3.8 

4.4 

6.5 

86.7  

72.7 

84.9 

90.7 

141.8 

101.2 

129.8 

109.7 

Table 4. Dielectric relaxation strength of the β, α1, and α2 processes at selected 

temperatures for PVDF and P(VDF-CTFE) copolymers. 

Sample ∆ɛ (β) 

(T = −80 
o
C) 

∆ɛ (α1) 

(T = 10 
o
C) 

∆ɛ (α2) 

(T = 40 
o
C) 

PVDF 

PCTFE10 

PCTFE15 

PCTFE20 

0.5 

0.6 

0.8 

1.3 

1.7 

2.6 

3.6 

6.7 

0.8 

1.6 

1.1 

2.1 

As seen in Figure 7, the αc process was observed for P(VDF-CTFE) copolymers but absent for 

neat PVDF, consistent to DMA results. Unfortunately, this process is merging with the α1 relaxation, 

and results to the broadening of the α1 relaxation for PCTFE10 and PCTFE15 but slightly excluded 

for PCTFE20. However, the αc process of PCTFE20 merges with the α1 relaxation when frequency is 

higher than 100 Hz. From the author’s knowledge, this relaxation is first time observed. However, 

unfortunately we are unable to elucidate more information of this relaxation because this weak 

relaxation exhibits at the frequency closed to that of the segmental relaxation. Based on DMA 

results, this relaxation is clearly observed for all P(VDF-CTFE) samples with higher loss modulus 

magnitudes when CTFE increases. This behavior is more likely reflected to the segmental  

relaxation [34]. Therefore, we proposed that the αc process is the molecular motion of CTFE chain 

segments, which is accompanied by VDF segments. 

The αMWS process shows the Arrhenius temperature dependence with the high activation energy 

(Ea > 100 kJ/mol). Due to a high crystallinity in PVDF and P(VDF-CTFE) copolymers, the moving 

of free ions from amorphous phases is blocked by the crystalline phases and causes a strong increase 

in ε' at low frequency and high temperatures. Therefore, the αMWS process was proposed to a 

manifestation of MWS interfacial polarization, arising in multiphase systems. The sharp increase of 

ε" at highest temperatures and low frequency is due to electrode polarization (EP), contributed from 

the accumulation of mobile ions at an electrode interface [19]. 

The strength parameter (D) was obtained from the VFT behavior of the α1 relaxation, which 

represents the topology of potential energy governing the segmental reconfigurations of polymers, 

reflecting the nature of bond interactions and the configurational entropy available to the      

system [19,30]. Typically, D was used to express the fragility of polymers, higher D corresponding to 

lower fragility and higher the configurational entropy available to the system. As seen in Table 3, the 

fragility decreases with increasing CTFE contents because of lower degree of crystallinity (see Table 2) 

and greater entropy of the system. Comparisons of dielectric relaxation strength (Δε) of β, α1, and α2 
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processes, at selected temperatures, are provided in Table 4. The Δε of β, α1, and α2 relaxations 

increases with rising CTFE content. An increment of Δε is mainly influenced by an increase of the 

dipole moment of CTFE structure.  

4. Conclusions 

Neat PVDF had completely nonpolar α-crystalline phases, while P(VDF-CTFE) copolymers 

contained slightly polar β-crystalline phases. Three transition temperatures were observed for all 

samples, which are the glass transition temperature (Tg), the melting temperature (Tm), and the 

conformation disorder in nonpolar α-crystalline phases (Tcd). There were no significant changes on 

the long period, lamellar thickness, amorphous layer thickness and linear degree of crystallinity 

when CTFE was copolymerized with VDF up to 20%. The degrees of crystallinity decreased with 

increasing CTFE contents. At temperatures above Tg, three relaxations (α1, α2 and αc) were clearly 

observed by DMA for P(VDF-CTFE) copolymers. Four relaxation processes were clearly observed 

in DRS spectra for the neat PVDF which are attributed to the local motion of amorphous chains (β), 

the segmental relaxation of amorphous chains (α1), the local conformational rearrangement of the 

TGTGʹ conformation (α2) and the process arising from Maxwell–Wagner–Sillars interfacial 

polarization (αMWS). Other than four relaxations, the extra relaxation was observed for 

P(VDF-CTFE) copolymers, which was more likely associated to the molecular motion of CTFE 

chain segments (αc). P(VDF-CTFE) copolymers are effective on inhibiting viable growth of both S. 

aureus and E. coli up to 73.01 and 70.21%, respectively. The antibacterial effectiveness increased 

with increasing CTFE contents for both S. aureus and E. coli. Chlorine atoms existing in 

fluoropolymers enhanced an antibacterial ability. 
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