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Abstract: The principal goal of the current work is to study the impact of three homogenization
models (Reuss, LRVE, Tamura) on the axial and shear stress of sandwich functionally graded plate
materials subjected on linear and nonlinear thermal loads with static and elastic behavior and it is
simply supported using an integral higher shear deformation theory (HSDT). The governing partial
differential equations are solved in the spatial coordinate by Navier solution. Those Numerous
micromechanical models have been examined to attain the effective material properties of the two-
phase FGM plate. The numerical results are compared with those given by other model existing in
the literature to confirm the accuracy of the (HSDT). The present results are in good agreement with
all models studied of homogenization for all values of the material index and all geometry
configurations of the FG-sandwich plates.
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1. Introduction

Functionally graded materials (FGM) are an advanced composite material class whose vary
gradually and continuously in the composition of microstructure constituents through the dimension
of the material [1-3]. The behavior composition of FGM reduce the structural weight with increasing
its coefficient modulus of stiffness and strength [4—8]. The properties of all constituents can be
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employed, for example, the toughness of a metal can be mated with the refractoriness of a ceramic,
without any compromise in the toughness of the metal side or the refractoriness of the ceramic
side [9-14]. The simple rule of mixture (Voigt law) is used to obtain the effective micromechanics
material properties in the commencement of research papers. But to assess the effect of the
micromechanical models on the structural responses of FG plates several micromechanical models of
FGMs have been studied in [14—16]. Gasik has studied different micromechanical models to obtain
the effective material properties of FGMs with power-law, Sigmoid, and exponential function
distributions of volume fraction across the thickness of the static, buckling, free and forced vibration
analyses for simply-supported FG plates resting on an elastic foundation [17]. Akbarzadeh et al. [18]
have investigated about the influences of different forms of micromechanical models on FGM
pressurized hollow cylinders. They have used the numerical results via finite element method (FEM)
analyses for detailed and homogenized models of functionally graded (FG) carbon nanotube
reinforced composite (CNTRC) beams. The effect of the imposed temperature field on the response
of the FGM plate composed of Metal and Ceramic with the Mori—Tanaka micromechanical method
is discussed [19,20].

Shen et al. [21] have studied the small and large amplitude frequency of vibrations are presented
for a functionally graded rectangular plate resting on a two-parameter elastic foundation with two
kinds of micromechanics models, namely, Voigt model and Mori—Tanaka model. The comparison
studies reveal that the difference between these two models is much less compared to the difference
caused by different solution methodologies and plate theories. In literature there is no available work
treating the impact of the homogenization models on the sandwich FGM plate. In this paper we have
studied the impact of (Reuss, LRVE, Tamura) homogenization or micromechanical models on the
axial and shear stress of sandwich functionally graded materials plate subjected to linear and
nonlinear thermal loads. The static and elastic behavior of the simply supported is considered. Using
an integral higher shear deformation theory (HSDT), the governing partial differential equations are
solved in the Cartesian coordinate via Navier solution method. Those Numerous micromechanical
models have been examined to attain the effective material properties of the two-phase FGM plate
(Metal and ceramic). The numerical results are compared with those given by other model existing in
the literature to confirm the accuracy of the (HSDT). The present results are in good agreement with
all models studied of homogenization for all values of the material index and all geometry
configurations of the FG-sandwich plates.

2. Materials and methods
The geometry domain is assumed as a uniform rectangular plate with thickness “h”, length “a”,

and width “b” as shown in Figure 1. The plate has three layers. The FG-face sheets are made by two
materials metal and ceramic.

AIMS Materials Science Volume 10, Issue 1, 26-39.
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Figure 1. The geometry domain of functionally graded materials plate.

2.1. Materials characteristics

The mechanical and thermal proprieties of Metal (Titanium) are Young modulus E(z)
is 66.2 GPa, thermal expansion coefficients a is 10.3 (10 %K). The mechanical and thermal
proprieties of Ceramic (Zirconia) are Young modulus E(z) is 117 GPa, thermal expansion

coefficients & is 7.11 (10°%K). The Poison coefficient is supposed the same in the metal and the
ceramic (Vv is 1/3). In the following.

Several types of geometries configurations are exanimated depending the thickness of each
layer as shown in Table 1.

Table 1. Configurations of the plate.

Configurations of the plate Geometries with Layers thickness
( 1 _0_ 1 ) 3 SR/ cmmm i m e e o o e
T )
——————————————————————————————————————————————— h1=h2=0
(1_]_1) B3 Sh /2 — e m e e o
R
(1-2-]) B3 2h/2 e mm e mmm e mmommemmmemmmemeeommmeemenmee=n
[ _______________________________ h? =h4
P S E—
——————————————————————————————————————————————— b0
________________________________________________ hl =-h'd
hi=h2 o.o..- B o e e e mcmmmmme-—— oo mmmeemmm==—=-

Continued on next page
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Configurations of the plate Geometries with Layers thickness
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The volumes fraction of the FG- faces sheet are assumed varies as following functions (Eq 1).

V(l):[z_hoj ze[hyh]
v =1 zel[h,h]

k
—h
mz[; hzj - elhyh]
2-"73

Where K is the material index.
A number of micromechanics models have been proposed for the determination of effective
properties of FGMs. K is the material index.

(D)

(1) Voigt model

The Voigt model is relatively simple; this model is frequently used in most FGM analyses
estimates properties of FGMs as:

P(T,z)=P.(T,z)V(z)+P,(T.z\1-V(z)) )

(2) Reuss model

Reuss assumed the stress uniformity through the material and obtained the effective properties
as:
P (T,z)P,(T,z)
P(T.2)(1=V (2))+ P, (T 2)V (2) )

P(T,z)=

(3) Tamura model

The Tamura model uses actually a linear rule of mixtures, introducing one empirical fitting

AIMS Materials Science Volume 10, Issue 1, 26-39.
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parameter known as “stress-to-strain transfer”. For q = 0 correspond to Reuss rule and with g = tooto

the Voigt rule, being invariant to the consideration of with phase is matrix and which is particulate.
The effective property is found as:

(1-V () (T.2)(g ~P(T.2)+V ()R(T.2)(g ~A.(T.)

FTz)= (=7 (g ~R TV R T a-R (1) “)

(4) Description by a representative volume element (LRVE)

The LRVE is developed based on the assumption that the microstructure of the heterogeneous
material is known. The input for the LRVE for the deterministic micromechanical framework is
usually volume average or ensemble average of the descriptors of the microstructures.

The effective property is expressed as follows by the LRVE method:

v (z)
P(T,z)=P,(T.z)| 1+ T : (5)
|_Ba(T.2) )
B (T.z)

2.2. Displacement base field

Based on the same assumptions of the conventional HSDT (with fives variables or more). The
displacement field of the proposed HSDT is only with four unknowns variables and can be written in
a simpler form as:

0
u(x.y.2) =ty (v, ) =2 2k [ 0(x.)ds

0.2 = (5 0) -2 F[ 0y ©)

w(x, ,2) = w (X, )

Where u, (x,3), v, (x,¥),w, (x,»), and §(x,y) are the four-unknown displacement functions of

middle surface of the FG-sandwich plate. f (z) is the warping function and (&, and k,) are

constants.

AIMS Materials Science Volume 10, Issue 1, 26-39.
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In the current research work the proposed combined (exponential/hyperbolic) warping function
ensures the nullity condition of the free surfaces of the FG-sandwich plate (zero transverse shear
stresses at top and the Bottom of the FG-sandwich plate). The present exponential/hyperbolic
warping function f (z) is expressed as:

f(z)= {m(n exp (%D - ((0.1407)(5/6) )cosh(ﬁz)} z (7)

The stresses/strains linear relation of the PFG-sandwich plate can be expressed as:

(n) r (n) (n)

o C11 C]2 0 0 0 & - aT
o c, ¢, 0 0 0 & —aTl
T, = 0 0 CM 0 0 7, (8)
T 0 0 0 C44 0 7.
T | O 0 0 0 CSS | 7.
Where
E(n)( )
cm —cm - z
1~ Y2 - (n)\2
1-(")
() _ | () ()
Cll =V Cll (9)
(n)
= — o E"(2)
44 55 66 (n) >
2(1+v )

The variation of the temperature field across the thicness is assumed to be:
Y(z)

T(x,y,z)=T](x,y)+%Tz(x,y)+ T (x.) (10)
Where
P(z) = %sin(%j (11)

The principle of virtual works of the considered PFG-sandwich plates is expressedas 6 U+ V' =0
where OU is the variation of strain energy; and oV is the variation of the virtual work done by
external load applied to the plate. The governing equations can be obtained as follows:

o, oV,

ou,: =0
ox oy
ON ON
ov,: Y y—2=-0
Ox oy
oMb oM. M) (12)
5w, =42 s S
ox’ oxdy oy’
M, as" as’.
o 0: —kle—k2MS _(klA"i‘sz') Xy "rklA' Xz +sz, = _ 0
/ g Ox0oy ox dy

Based on the Navier method, the following expansions of displacements are

AIMS Materials Science Volume 10, Issue 1, 26-39.
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u, U cos(a x)sin(fS y)
Vo Vsin(ax x)cos(f y)
w, [~ | W sin(e x)sin(g ») (13)
0 X sin(a x)sin(f y)

where (U ,V ,W, X ) are unknown functions to be determined and ¢« =7z /a and f=7/b.

In the present work, the transverse temperature loads T1, T2, and T3 in double sinus series form
as:

sin(a x)sin(f ) (14)

NN N
Il
SN

The closed-form solution can be written as following matrix form:

Sll S12 S13 S14

(15)

\a \hn
< N < C
_,:U L:U I\TO —‘KU

S, S S
Sy Syu Sy
S, S S

24

S
=

S, =-ap (Alz + A66)

S
Sis = a(k B, +k,By, - k A'+ kZB')Bgé'B2)
Sy = (Aeea + Ay B )

16
Sz3 ﬂ( 2218 +Blza +2B66a ) ( )
S = BkBy + KBy = (kd'+ ,B') Biyal’)
Sy = —(D“O! +2(D, +2D66)a2ﬂ2 +D22'B4)
S, =k, (Dilaz +D152ﬁ2)+ 2k A'+ k,B") Dy’ B ~ k, (DSZ'BZ +D1S2a2)

Sy =~k (H\k +Hk,) = (kA4 k,BY Hlo B —k, (Hk + Hok, ) - (kA" d.a” —(k,B") 4,5°

1271 2272

And
P=a(A"T, +B'T, + “B'T,)
P, =p(A'T, +B'T, + °B'T;)
P =—h(a’ + )BT, + D'T, + “D'T,)

P4 :_h(a2 +ﬁ2)(xBT]—I + SDTT'Z‘FXFTT;)

(17)

Where and (L', ‘L',R") are coefficients calculated by integral summation formulations, in which

Z=z/h f(z)=f(z)/ hand @ (z) =w(z)/ h.

AIMS Materials Science Volume 10, Issue 1, 26-39.
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3. Results and discussion
In the following three sections, the results have been presented.
3.1. Comparisons and validation

A comparison has been done to verify the accuracy of the present theory of different models of
homogenization (Reuss, Tamura and LRVE). Results are compared with the mixture model (Voigt)
using by Zankour and Algamidi [22].

The dimensionless transverse and normal stress are expressed as:

_ " (a b hj
O-x:_—zo-x N
a,LEa “\27272

T = I_O—hz'xz [O,Q,Oj
o, E,a 2

with E, =1GPa and «, =10°K .

(18)

Table 2. Axial stresses O, of the FG square plates (T3 = 0).

k  Theory o
1—6—1 1-1-1 1-2-1 2-1-2 2-2-1

0 Zankour Voigt —2.079675000 —-2.079675000  —2.079675000  —2.079675000 —2.079675000
Present ~ Reuss  —2.079675000 —2.079675000 —2.079675000  —2.079675000 —2.079675000
LRVE  -2.079675000 —2.079675000  —2.079675000  —2.079675000 —2.079675000
Tamura -2.079675000 -2.079675000 —2.079675000  —2.079675000 —2.079675000
1 Zenkour Voigt —1.993962994 —2.144483622  —2.262070783  —2.071720141 —2.276270538
Present ~ Reuss  —2.054001279 -2.206426851  —2.319985581  —2.133961897 —2.328859434
LRVE  -2.019721781 —2.170723580  —2.286705796  —2.098127768 —2.298783479
Tamura -2.054001279 —2.206426851  —2.319985581  —2.133961897 —2.328859434
3 Zenkour Voigt —1.764722947 —-1.912070024  —2.065545648  —1.830280890 —2.099358095
Present ~ Reuss  —1.780352582 —1.937106476  —2.093543390  —1.851668884 —2.122979641
LRVE  —-1.772412913 —1.923584710  —2.078438949  —1.840257943 —2.110349605
Tamura —1.780352582 —1.937106476  —2.093543390 —1.851668884 —2.122979641
5 Zenkour Voigt —1.726018586 —1.851951252  —2.008943548  —1.775782946 —2.052753400
Present ~ Reuss  —1.731998461 —1.865654772  —2.025948107  —1.786255940 —2.066835810
LRVE  —-1.729130531 —1.858346729  —2.016889735 —1.780777417 —2.059428200
Tamura —1.731998461 —1.865654772  —2.025948107  —1.786255940 —2.066835810

Table 2 presents the variation of dimensionless axial stress “0,” of the square FG-sandwich
plate subjected to linearly thermal load “7; =0 versus volumes fractions (material index “k ) for
different values of layer thickness ratio. It is remarkable that there is a proportional relationship
between the index “k ” the dimensionless normal stress “ &, ”.

AIMS Materials Science Volume 10, Issue 1, 26-39.



Table 3. Shear stresses 7 of the FGM square plates (T3 =—100).

k Theory z—.xz
1-0-1 1-1-1 1-2-1 2-1-2 2-2-1

0  Zenkour Voigt 0.4146850492 0.4146850448 0.4146850391 0.4146850437 0.4146850439
Present Reuss 0.4146850492 0.4146850448 0.4146850391 0.4146850437 0.4146850439
LRVE 0.4146850492 0.4146850448 0.4146850391 0.4146850437 0.4146850439
Tamura 0.4146850492 0.4146850448 0.4146850391 0.4146850437 0.4146850439
1 Zenkour Voigt 0.5088666494 0.5057769569 0.5120235930 0.5028076163 0.5078946003
Present Reuss 0.5136021296 0.4984428129 0.4996166330 0.4989271190 0.4972491537
LRVE 0.5087063178 0.5006052702 0.5045310781 0.4991788650 0.4946850439
Tamura 0.5136021296 0.4984428129 0.4996166330 0.4989271190 0.4972491537
3 Zenkour Voigt 0.5103204312 0.5033093833 0.5165886526 0.4976909215 0.5100386919
Present Reuss 0.5238780098 0.5054862362 0.5169250930 0.5015862328 0.5102636411
LRVE 0.5156350522 0.5037663327 0.5159615534 0.4988965994 0.5012769094
Tamura 0.5238780098 0.5054862362 0.5169250930 0.5015862328 0.5102636411
5  Zenkour Voigt 0.5212843911 0.4908722755 0.5036863726 0.4852538506 0.5661515630
Present Reuss 0.5357072550 0.4919895199 0.5166537262 0.4878864038 0.5084226158
LRVE 0.5281264494 0.4913047274 0.5153580228 0.4862334163 0.5071304901
Tamura 0.5357072550 0.4919895199 0.5166537262 0.4878864038 0.5084226158

The Table 3 presents the variation of the dimensionless shear stress “7_" of the square FG-
sandwich plate subjected to nonlinearly thermal load “7; =—-100 " versus volumes fractions (material
index “k ) for different values of layer thickness ratio .from the Table 3 the shear stress “7 " and
the index & have direct relation. We can see from the Tables 2 and 3 that the present results are in
good agreement with all models studied of homogenization (Voigt Zenkour et al. [22], Reuss, LRVE

and Tamura) for all values of the material index “% ” and all configurations of the FG-sandwich plate
(1-0-1, 1-1-1, 1-2-1, 2-1-2 and 2-2-1).

3.2. Parametric study

In this section, the parametric studies are presented in the explicit graphs form. Figure 2 plots
the variation of the axial stress “0, " across the total thickness “/4” of FG-sandwich plate (k=1)
under linear thermal loads “7; =0 with different micromechanical models. From the plotted graphs,
it is clear that the compressive stresses are obtained at the top of the plate. We can see that the
present results are in good agreement with different models Voigt, Reuss, LRVE and Tamura for
configurations of the FG-sandwich plate (1-0-1, 1-2-1 and 2-2-1) and the material index k=1 (Figure
2a—c).
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Figure 2. Effect of different micromechanical models on the axial stress ¢, of FG-sandwich.

Figure 3 illustrates the variation of the “7_” through the total thickness of the 1-0-1, 1-2-1 and
2-2-1 FG-sandwich plate under linear thermal loads “7; =0. It is noted that the shear stress “7_" is

parabolically varied through the total thickness of the FG-sandwich plate. We can see that the present
results are in good agreement with different models Voigt, Reuss, LRVE and Tamura for
configurations of the FG-sandwich plate (1-0-1, 1-2-1 and 2-2-1) and the material index k =1(Figure
3a—c).
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Figure 3. Effect of different micromechanical models on the axial stress ¢, of FG-sandwich.

3.3. Effect of the thermal loads on the normal and shear stress

In the present section three types of the temperature distribution across the thickness are
considered. The first one, the temperature is linearly distributed through the thickness 7= zT), in the

second type the temperatures vary nonlinearly across & (I'=zT, +w(z)T;) and the third type is
reserved for a combination of linear and nonlinear distributions 7(z) =7, +(z/ h)T, + (Y(z)/ h)T;.

Figure 4a shows the distributions of the axial stress “ &, ” through the total thickness of the
simply supported 2-2-1 FG-sandwich plate for various values of the thermal load (7, =100), 7, =100
and 7, =100 with (k=1). From the plotted curves, it can be observed that the axial stress “0&,” is ¢
influenced by the values of the thermal load.

Figure 4b plot the variation of the shear stress “7_ ” through the thickness / of the 2-2-1 square
FG-sandwich plate (£ =1). For different values of the thermal load (7, =100), 7, =100 and 7, =100. It
can be noted from the graphs that the shear stress “7_" has a parabolic variation through the
thickness. The maximal values of the shear stress “7_ " are obtained at the mid-plane axis “z=07

And it is clearly influenced by the values of the thermal load.

AIMS Materials Science Volume 10, Issue 1, 26-39.
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Figure 4. Effect of the thermal load T1, T2 and T3 on the axial and transvers stress (0,
7_ ) of the (2-2-1) FG-sandwich plate (k = 1) for Voigt model.

4. Conclusions

In this investigation, the impact of (Reuss, LRVE, Tamura) homogenization or micromechanical
models on the axial and shear stress of sandwich functionally graded materials plate subjected to
linear and nonlinear thermal loads have studied. The static and elastic behavior of the simply
supported is considered. Using an integral higher shear deformation theory (HSDT), the governing
partial differential equations are solved in the Cartesian coordinate via Navier solution method.
Those Numerous micromechanical models have been examined to attain the effective material
properties of the two-phase FGM plate (Metal and ceramic). The numerical results are compared
with those given by other model existing in the literature to confirm the accuracy of the (HSDT). The
present results are in good agreement with all models studied of homogenization for all values of the
material index and all geometry configurations of the FG-sandwich plates.
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