
R

 

http://www.a

 

Research a

Contrib

the axia

subjecte

Rebai Bille

Faculty of S
Khenchela,

* Corresp

Abstract: 
models (Re
materials su
simply supp
differential 
micromech
phase FGM
the literatur
all models
configuratio

Keywords:

 

1. Introd

Functi
gradually a
of the mate
its coeffici

aimspress.co

article 

bution to

al and sh

ed on lin

el* 

Sciences & 
, Algeria 

ondence: E

The princip
euss, LRVE
ubjected on
ported usin
equations 

hanical mod
M plate. The
re to confirm
 studied o
ons of the F

: micromech

duction  

ionally grad
and continuo
erial [1–3]. T
ent modulu

om/journal/M

o study t

hear str

ear and 

Technology

Email: billel

pal goal of 
E, Tamura) o
n linear and
ng an integr

are solved
dels have be
e numerical
m the accur

of homogen
FG-sandwic

hanics; sand

ded materia
ously in the
The behavio
us of stiffn

Materials 

the effec

ress of sa

nonlinea

y, Civil Eng

lrebai@yaho

f the curren
on the axial
d nonlinear 
ral higher sh
d in the sp
een examine
l results are
racy of the (
nization for
ch plates. 

dwich FG p

als (FGM) 
e compositio
or composit
ess and str

 

t of (Re

andwich

ar therm

gineering D

oo.fr. 

t work is t
l and shear 
thermal loa

hear deform
atial coord
ed to attain
e compared 
(HSDT). Th
r all value

plate; stress;

are an adv
on of micro
tion of FGM
rength [4–8

AIM

DOI

Rec

Rev

Acc

Pub

uss, LRV

h FGM p

mal loads

epartment, U

o study the
stress of sa

ads with sta
mation theor
dinate by N
n the effectiv

with those
he present r

es of the m

; thermal lo

vanced com
ostructure c
M reduce the

]. The prop

MS Materials

I: 10.3934/m

ceived: 19 Au

vised: 09 Oct

cepted: 18 Oc

blished: 24 N

VE, Tam

plate (Ti

s 

University 

e impact of
andwich fun
atic and ela
ry (HSDT).

Navier solut
ve material
 given by o
results are in
material ind

ads 

mposite mate
onstituents 
e structural 
perties of a

s Science, 10

matersci.2023

ugust 2022 

tober 2022 

ctober 2022 

November 202

mura) m

i–6A1–4

of Abbes La

f three hom
nctionally g
astic behavi
. The gover
tion. Those
l properties 
other model
n good agre
dex and al

erial class 
through the
weight with

all constitu

0(1): 26–39. 

3002 

22 

models on

V/ZrO2)

aghrour 

mogenization
graded plate
ior and it is
rning partia
e Numerous

of the two
l existing in
eement with
ll geometry

whose vary
e dimension
h increasing
ents can be

n 

) 

n 
e 
s 

al 
s 
-
n 
h 
y 

y 
n 
g 
e 



27 

AIMS Materials Science  Volume 10, Issue 1, 26–39. 

employed, for example, the toughness of a metal can be mated with the refractoriness of a ceramic, 
without any compromise in the toughness of the metal side or the refractoriness of the ceramic     
side [9–14]. The simple rule of mixture (Voigt law) is used to obtain the effective micromechanics 
material properties in the commencement of research papers. But to assess the effect of the 
micromechanical models on the structural responses of FG plates several micromechanical models of 
FGMs have been studied in [14–16]. Gasik has studied different micromechanical models to obtain 
the effective material properties of FGMs with power-law, Sigmoid, and exponential function 
distributions of volume fraction across the thickness of the static, buckling, free and forced vibration 
analyses for simply-supported FG plates resting on an elastic foundation [17]. Akbarzadeh et al. [18] 
have investigated about the influences of different forms of micromechanical models on FGM 
pressurized hollow cylinders. They have used the numerical results via finite element method (FEM) 
analyses for detailed and homogenized models of functionally graded (FG) carbon nanotube 
reinforced composite (CNTRC) beams. The effect of the imposed temperature field on the response 
of the FGM plate composed of Metal and Ceramic with the Mori–Tanaka micromechanical method 
is discussed [19,20].  

Shen et al. [21] have studied the small and large amplitude frequency of vibrations are presented 
for a functionally graded rectangular plate resting on a two-parameter elastic foundation with two 
kinds of micromechanics models, namely, Voigt model and Mori–Tanaka model. The comparison 
studies reveal that the difference between these two models is much less compared to the difference 
caused by different solution methodologies and plate theories. In literature there is no available work 
treating the impact of the homogenization models on the sandwich FGM plate. In this paper we have 
studied the impact of (Reuss, LRVE, Tamura) homogenization or micromechanical models on the 
axial and shear stress of sandwich functionally graded materials plate subjected to linear and 
nonlinear thermal loads. The static and elastic behavior of the simply supported is considered. Using 
an integral higher shear deformation theory (HSDT), the governing partial differential equations are 
solved in the Cartesian coordinate via Navier solution method. Those Numerous micromechanical 
models have been examined to attain the effective material properties of the two-phase FGM plate 
(Metal and ceramic). The numerical results are compared with those given by other model existing in 
the literature to confirm the accuracy of the (HSDT). The present results are in good agreement with 
all models studied of homogenization for all values of the material index and all geometry 
configurations of the FG-sandwich plates. 

2. Materials and methods 

The geometry domain is assumed as a uniform rectangular plate with thickness “h”, length “a”, 
and width “b” as shown in Figure 1. The plate has three layers. The FG-face sheets are made by two 
materials metal and ceramic. 



AAIMS Materia

2.1. Materi

The m

is 66.2 GP

proprieties 

coefficients
ceramic (

Severa
layer as sho

Configura

(1-0-1) 

(1-1-1) 

(1-2-1) 

 

als Science 

Figure

ials charact

mechanical 

Pa, thermal

of Ceram

s   is 7.11
 is 1/3). In t

al types of 
own in Tabl

ations of the 

 1. The geo

teristics  

and therm

l expansion

mic (Zircon

 (10−6/K). T
the followin
geometries

le 1.  

T

plate 

 

metry doma

mal proprie

n coefficien

nia) are Yo

The Poison
ng. 
s configura

Table 1. Con

Geometries

ain of funct

eties of Me

nts   is 1

oung modu

n coefficient

ations are e

nfigurations

s with Layer

tionally grad

etal (Titani

0.3 (10−6/K

ulus  E z  i

t is suppos

exanimated 

s of the plate

rs thickness 

ded materia

ium) are Y

K). The me

is 117 GP

ed the sam

depending 

e. 

Volume 10, I

 

als plate. 

Young mod

echanical a

Pa, thermal

me in the me

the thickn

 

Continued 

28

Issue 1, 26–39

dulus  E z

and therma

l expansion

etal and the

ness of each

 

 
on next page 

8 

9. 

              

al 

n 

e 

h 



29 

AIMS Materials Science  Volume 10, Issue 1, 26–39. 

 
Configurations of the plate  Geometries with Layers thickness 

(2-1-2) 

 
(2-2-1) 

 

The volumes fraction of the FG- faces sheet are assumed varies as following functions (Eq 1). 
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Where K is the material index. 
A number of micromechanics models have been proposed for the determination of effective 

properties of FGMs. K is the material index. 

(1) Voigt model 

The Voigt model is relatively simple; this model is frequently used in most FGM analyses 
estimates properties of FGMs as: 

          , , , 1c mP T z P T z V z P T z V z    (2) 

(2) Reuss model 

Reuss assumed the stress uniformity through the material and obtained the effective properties 
as: 

     
        

, ,
,

, 1 ,
c m

c m

P T z P T z
P T z

P T z V z P T z V z


 
 (3) 

(3) Tamura model 

The Tamura model uses actually a linear rule of mixtures, introducing one empirical fitting 
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parameter known as “stress-to-strain transfer”. For q = 0 correspond to Reuss rule and with q   to 

the Voigt rule, being invariant to the consideration of with phase is matrix and which is particulate. 
The effective property is found as:  

 
              
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   


   
 with 

1 2

1 2

q
 
 





 

(4) 

(4) Description by a representative volume element (LRVE) 

The LRVE is developed based on the assumption that the microstructure of the heterogeneous 
material is known. The input for the LRVE for the deterministic micromechanical framework is 
usually volume average or ensemble average of the descriptors of the microstructures. 

The effective property is expressed as follows by the LRVE method: 

 

(5) 

2.2. Displacement base field 

Based on the same assumptions of the conventional HSDT (with fives variables or more). The 
displacement field of the proposed HSDT is only with four unknowns variables and can be written in 
a simpler form as: 

 

(6) 

Where  0 ,u x y ,  0 ,v x y ,  0 ,w x y , and  ,x y  are the four-unknown displacement functions of 

middle surface of the FG-sandwich plate.  f z  is the warping function and ( 1k  and 2k ) are 

constants. 
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In the current research work the proposed combined (exponential/hyperbolic) warping function 
ensures the nullity condition of the free surfaces of the FG-sandwich plate (zero transverse shear 
stresses at top and the Bottom of the FG-sandwich plate). The present exponential/hyperbolic 
warping function  f z  is expressed as:  

      5/61
ln exp (0.1407) cosh

20
f z z z 

       
   

  (7) 

The stresses/strains linear relation of the PFG-sandwich plate can be expressed as: 
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 (8) 

Where  

 

(9) 

The variation of the temperature field across the thicness is assumed to be: 

 
(10) 

Where 

 
(11) 

The principle of virtual works of the considered PFG-sandwich plates is expressed as   0U V    

where U is the variation of strain energy; and V  is the variation of the virtual work done by 
external load applied to the plate. The governing equations can be obtained as follows: 
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(13) 

where (U ,V ,W , X ) are unknown functions to be determined and / a   and / b  . 

In the present work, the transverse temperature loads T1, T2, and T3 in double sinus series form 
as: 

 

(14) 

The closed-form solution can be written as following matrix form: 
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3. Results and discussion 

In the following three sections, the results have been presented.  

3.1. Comparisons and validation  

A comparison has been done to verify the accuracy of the present theory of different models of 
homogenization (Reuss, Tamura and LRVE). Results are compared with the mixture model (Voigt) 
using by Zankour and Algamidi [22].  

The dimensionless transverse and normal stress are expressed as:  

 

(18) 

with 0 1E GPa  and 6
0 10 K  . 

Table 2. Axial stresses x of the FG square plates (T3 = 0). 

k Theory 
x  

1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 

0 Zankour  Voigt −2.079675000 −2.079675000 −2.079675000 −2.079675000 −2.079675000 

Present Reuss −2.079675000 −2.079675000 −2.079675000 −2.079675000 −2.079675000 

LRVE −2.079675000 −2.079675000 −2.079675000 −2.079675000 −2.079675000 

Tamura  −2.079675000 −2.079675000 −2.079675000 −2.079675000 −2.079675000 

1 Zenkour  Voigt −1.993962994 −2.144483622 −2.262070783 −2.071720141 −2.276270538 

Present Reuss −2.054001279 −2.206426851 −2.319985581 −2.133961897 −2.328859434 

LRVE −2.019721781 −2.170723580 −2.286705796 −2.098127768 −2.298783479 

Tamura  −2.054001279 −2.206426851 −2.319985581 −2.133961897 −2.328859434 

3 Zenkour Voigt −1.764722947 −1.912070024 −2.065545648 −1.830280890 −2.099358095 

Present Reuss −1.780352582 −1.937106476 −2.093543390 −1.851668884 −2.122979641 

LRVE −1.772412913 −1.923584710 −2.078438949 −1.840257943 −2.110349605 

Tamura  −1.780352582 −1.937106476 −2.093543390 −1.851668884 −2.122979641 

5 Zenkour  Voigt −1.726018586 −1.851951252 −2.008943548 −1.775782946 −2.052753400 

Present Reuss −1.731998461 −1.865654772 −2.025948107 −1.786255940 −2.066835810 

LRVE −1.729130531 −1.858346729 −2.016889735 −1.780777417 −2.059428200 

Tamura  −1.731998461 −1.865654772 −2.025948107 −1.786255940 −2.066835810 

Table 2 presents the variation of dimensionless axial stress “ x ” of the square FG-sandwich 

plate subjected to linearly thermal load “ 3 0T  ” versus volumes fractions (material index “ k ”) for 

different values of layer thickness ratio. It is remarkable that there is a proportional relationship 
between the index “ k ” the dimensionless normal stress “ x ”.  
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Table 3. Shear stresses xz of the FGM square plates (T3 =−100). 

k Theory 
xz  

1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 

0 Zenkour  Voigt 0.4146850492 0.4146850448 0.4146850391 0.4146850437 0.4146850439 

Present Reuss 0.4146850492 0.4146850448 0.4146850391 0.4146850437 0.4146850439 

LRVE 0.4146850492 0.4146850448 0.4146850391 0.4146850437 0.4146850439 

Tamura  0.4146850492 0.4146850448 0.4146850391 0.4146850437 0.4146850439 

1 Zenkour  Voigt 0.5088666494 0.5057769569 0.5120235930 0.5028076163 0.5078946003 

Present Reuss 0.5136021296 0.4984428129 0.4996166330 0.4989271190 0.4972491537 

LRVE 0.5087063178 0.5006052702 0.5045310781 0.4991788650 0.4946850439 

Tamura  0.5136021296 0.4984428129 0.4996166330 0.4989271190 0.4972491537 

3 Zenkour  Voigt 0.5103204312 0.5033093833 0.5165886526 0.4976909215 0.5100386919 

Present Reuss 0.5238780098 0.5054862362 0.5169250930 0.5015862328 0.5102636411 

LRVE 0.5156350522 0.5037663327 0.5159615534 0.4988965994 0.5012769094 

Tamura  0.5238780098 0.5054862362 0.5169250930 0.5015862328 0.5102636411 

5 Zenkour Voigt 0.5212843911 0.4908722755 0.5036863726 0.4852538506 0.5661515630 

Present Reuss 0.5357072550 0.4919895199 0.5166537262 0.4878864038 0.5084226158 

LRVE 0.5281264494 0.4913047274 0.5153580228 0.4862334163 0.5071304901 

Tamura  0.5357072550 0.4919895199 0.5166537262 0.4878864038 0.5084226158 

The Table 3 presents the variation of the dimensionless shear stress “ xz ” of the square FG-

sandwich plate subjected to nonlinearly thermal load “ 3 100T   ” versus volumes fractions (material 

index “ k ”) for different values of layer thickness ratio .from the Table 3 the shear stress “ xz ” and 

the index k  have direct relation. We can see from the Tables 2 and 3 that the present results are in 
good agreement with all models studied of homogenization (Voigt Zenkour et al. [22], Reuss, LRVE 
and Tamura) for all values of the material index “ k ” and all configurations of the FG-sandwich plate 
(1-0-1, 1-1-1, 1-2-1, 2-1-2 and 2-2-1). 

3.2. Parametric study 

In this section, the parametric studies are presented in the explicit graphs form. Figure 2 plots 
the variation of the axial stress “ x ” across the total thickness “ h ” of FG-sandwich plate ( 1k  ) 

under linear thermal loads “ 3 0T  ” with different micromechanical models. From the plotted graphs, 

it is clear that the compressive stresses are obtained at the top of the plate. We can see that the 
present results are in good agreement with different models Voigt, Reuss, LRVE and Tamura for 
configurations of the FG-sandwich plate (1-0-1, 1-2-1 and 2-2-1) and the material index 1k   (Figure 
2a–c). 
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Figure 2. Effect of different micromechanical models on the axial stress xx  of FG-sandwich. 

Figure 3 illustrates the variation of the “ xz ” through the total thickness of the 1-0-1, 1-2-1 and 

2-2-1 FG-sandwich plate under linear thermal loads “ 3 0T  ”. It is noted that the shear stress “ xz ” is 

parabolically varied through the total thickness of the FG-sandwich plate. We can see that the present 
results are in good agreement with different models Voigt, Reuss, LRVE and Tamura for 
configurations of the FG-sandwich plate (1-0-1, 1-2-1 and 2-2-1) and the material index 1k  (Figure 
3a–c). 
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Figure 3. Effect of different micromechanical models on the axial stress xx  of FG-sandwich. 

3.3. Effect of the thermal loads on the normal and shear stress  

In the present section three types of the temperature distribution across the thickness are 
considered. The first one, the temperature is linearly distributed through the thickness 2T zT , in the 

second type the temperatures vary nonlinearly across h  ( 2 3( )T zT z T  ) and the third type is 

reserved for a combination of linear and nonlinear distributions 1 2 3( ) ( / ) ( ( ) / )T z T z h T z h T    .  

Figure 4a shows the distributions of the axial stress “ x ” through the total thickness of the 

simply supported 2-2-1 FG-sandwich plate for various values of the thermal load ( 1 100T  ), 2 100T   

and 3 100T   with ( 1k  ). From the plotted curves, it can be observed that the axial stress “ x ” is c 

influenced by the values of the thermal load. 
Figure 4b plot the variation of the shear stress “ xz ” through the thickness h  of the 2-2-1 square 

FG-sandwich plate ( 1k  ). For different values of the thermal load ( 1 100T  ), 2 100T   and 3 100T  . It 

can be noted from the graphs that the shear stress “ xz ” has a parabolic variation through the 

thickness. The maximal values of the shear stress “ xz ” are obtained at the mid-plane axis “ 0z  ”. 

And it is clearly influenced by the values of the thermal load. 



37 

AIMS Materials Science  Volume 10, Issue 1, 26–39. 

 

Figure 4. Effect of the thermal load T1, T2 and T3 on the axial and transvers stress ( xx ,

xz ) of the (2-2-1) FG-sandwich plate (k = 1) for Voigt model. 

4. Conclusions 

In this investigation, the impact of (Reuss, LRVE, Tamura) homogenization or micromechanical 
models on the axial and shear stress of sandwich functionally graded materials plate subjected to 
linear and nonlinear thermal loads have studied. The static and elastic behavior of the simply 
supported is considered. Using an integral higher shear deformation theory (HSDT), the governing 
partial differential equations are solved in the Cartesian coordinate via Navier solution method. 
Those Numerous micromechanical models have been examined to attain the effective material 
properties of the two-phase FGM plate (Metal and ceramic). The numerical results are compared 
with those given by other model existing in the literature to confirm the accuracy of the (HSDT). The 
present results are in good agreement with all models studied of homogenization for all values of the 
material index and all geometry configurations of the FG-sandwich plates. 
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