

AIMS Materials Science, 7(5): 581–582. DOI: 10.3934/matersci.2020.5.581 Received: 31 July 2020 Accepted: 22 August 2020 Published: 28 August 2020

http://www.aimspress.com/journal/Materials

Correction

Correction: An experimental and analytical study of the effect of cold

compression on the thermophysical properties of a granular medium

Mohamed Filali¹, Kacim Hadjadj^{2,3,*},Lakhdar Hachani², Ahmed Mechraoui⁴, Mohamed El-Amine Slimani^{5,*} and Mounir Sakmeche³

- ¹ National School of Architecture, Rabat, Crd, Morocco
- ² Laboratory of Materials Physics, Amar Telidji University. Laghouat, Algeria
- ³ Laboratory of Saharan natural resources, Department of hydrocarbons and renewable energies, Faculty of Science and Technology, Ahmed Draya University. 01000 Adrar, Algeria
- ⁴ Department of Chemical Engineering and CERSIM, University of Laval, Quebec City, Canada
- ⁵ Department of Energetic and Fluid Mechanics, Faculty of Physics, University of Science and Technology Houari Boumediene (USTHB), 16111, Algiers, Algeria
- * **Correspondance:** Email: kacim.hadjadj@univ-adrar.dz, mslimani@usthb.dz.

A correction on

An experimental and analytical study of the effect of cold compression on the thermophysical properties of a granular medium

By Kacim Hadjadj, Lakhdar Hachani, Ahmed Mechraoui, Mohamed El-Amine Slimani, Mounir Sakmeche. AIMS Materials Science, 2020, 7(1): 116–129. doi: 10.3934/matersci.2020.1.116

We would like to illustrate the following correction to our published article [1], consequent to inaccurate information in the relative errors and appreciation section due to authors' error (Part of Experimental data). Correct declarations are provided below:

1. Author and authors' affiliation have been updated.

We have added the first author Mohamed Filali, because when we got this problem (We had a suspicion that the experimental device was set with a bad parameters), he confirmed all the results, from reformatting and confirming the results from his lab.

Mohamed Filali¹, Kacim Hadjadj^{2,3,*},Lakhdar Hachani², Ahmed Mechraoui⁴, Mohamed El-Amine Slimani^{5,*} and Mounir Sakmeche³

- ¹ National School of Architecture, Rabat, Crd, Morocco
- ² Laboratory of Materials Physics, Amar Telidji University. Laghouat, Algeria
- ³ Laboratory of Saharan natural resources, Department of hydrocarbons and renewable energies, Faculty of Science and Technology, Ahmed Draya University. 01000 Adrar, Algeria
- ⁴ Department of Chemical Engineering and CERSIM, University of Laval, Quebec City, Canada
- ⁵ Department of Energetic and Fluid Mechanics, Faculty of Physics, University of Science and Technology Houari Boumediene (USTHB), 16111, Algiers, Algeria
 - 2. Microcrystalline steel powder has been updated.

Galvanized steel–Thermal conductivity, $K = 0.095 \pm 0.004$ W/(m K). Type A2 steel–Thermal conductivity, $K = 0.216 \pm 0.003$ W/(m K). ASTMA A36 steel–Thermal conductivity, $K = 0.231 \pm 0.011$ W/(m K).

Conflict of interests

All authors declare no conflicts of interest in this paper.

References

1. Hadjadj K, Hachani L, Mechraoui A, et al. (2020) An experimental and analytical study of the effect of cold compression on the thermophysical properties of a granular medium. *AIMS Mater Sci* 7: 116–129.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)