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Abstract: This paper is dealing the modified Ohm’s law, including the temperature gradient and 
charge thickness impacts, and the generalized Fourier’s law, including the current density impact, the 
conditions of generalized thermo-viscoelasticity for a thermally, isotropic and electrically leading 

unbounded body with a spherical cavity is given. The detailing is applied to the generalized thermo 

elasticity dependent on Green–Naghdi (G-N II) and (G-N III) theory, where there is an underlying 
magnetic field corresponding to the plane limit, because of the utilization of the magnetic field, it 

results an incited magnetic and electric fields in the medium. The state space investigation is applied 

to acquire the temperature, displacement, stresses, induced electric field, instigated magnetic field 
and current density. Application is utilized to our concern to get the arrangement in the total structure. 

The considered variables are introduced graphically and discussions are made. 

Keywords: generalized thermoelasticity; viscosity; magnetic field; spherical cavity; modified Ohm’s 
and Fourier’s laws 
 

Abbreviations: ߣ௘,  :ܭ ;ா: Specific heat at constant strainܥ ;Density :ߩ ;௘: Lame elastic constantsߤ
Thermal conductivity; ߙ௧ : Coefficient of linear thermal expansion; ߛ௘ : ሺ3ߣ௘ ൅ ௧ߙ௘ሻߤ2 ௢ߛ ; : 
ሺ3ߣ௘ߙ௢ ൅ ௧ߙଵሻߙ௘ߤ2 ⁄௘ߛ ,௢ߙ ;  ௜: Components of heat fluxݍ ;Time :ݐ ;ଵ: Viscoelastic relaxation timeߙ
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vector; ߪ௜௝ : Components of stress tensor; ݁௜௝ : Components of strain tensor; ݑ௜ : Components of 

displacement vector; ௢ܶ: Reference temperature;ߠ: Temperature increment; ߜ௜௝: Kronicker delta; ݁: 

Cubical dilatation; ܴ: Radius of the shell; ߤ௢: Magnetic permittivity; ܧ: Electric displacement vector; 

 :௢ܪ ;Total magnetic intensity vector; ݄: Induced magnetic field vector :ܪ ;Current density vector :ܬ

Initial uniform magnetic field; ܨ௜: Components of Lorentz body force; ߨ௢: Coefficient connecting the 
current density with the heat flow density; ݇௢: Coefficient connecting the temperature gradient and 
electric current density 

1. Introduction 

The traditional uncoupled hypothesis of thermo elasticity predicts two marvels not good with 
physical perceptions. In the first place, the condition of heat conduction of this hypothesis doesn’t 

contain any elastic terms; second, the heat condition is of an parabolic kind, anticipating unending 

paces of spread for heat waves.  
Biot [1] presented the hypothesis of coupled thermo elasticity to conquer the principal weakness. 

The overseeing conditions for this hypothesis are coupled, dispensing with the main oddity of the old 

style hypothesis. In any case, the two hypotheses share the second inadequacy since the heat 
equation for the coupled hypothesis is likewise parabolic.  

Two generalizations to the coupled hypothesis were presented. The first is because of Lord and 

Shulman [2], who acquired a wave-type heat equation by proposing another law of heat equation to 
supplant the old style Fourier's law. Since the heat equation of this hypothesis is of the wave type, it 

consequently guarantees limited velocities of spread for heat and elastic waves. The staying 

administering equations for this hypothesis, to be specific, the equations of motion and constitutive 
relations, continue as before as those for the coupled and the uncoupled speculations. The second 

speculation to the coupled hypothesis of elasticity is what is known as the hypothesis of thermo 

elasticity with two relaxation times or the hypothesis of temperature-rate-dependent thermo elasticity. 
Müller [3], in a survey of the thermodynamics of thermo elasticity solids, proposed an entropy 

creation imbalance, with the assistance of which he thought about limitations on a class of 

constitutive equations. A generalization of this imbalance was proposed by Green and Laws [4]. 
Green and Lindsay got an express form of the constitutive equations in [5]. These equations were 

additionally gotten autonomously by Shuhubi [6] has acquired the fundamental solution for this 

hypothesis. This hypothesis contains two constants that go about as relaxation times and alter all the 
equation of the coupled hypothesis, not just the heat equation. The old style Fourier’s law of heat 

equation isn’t disregarded if the medium viable has a focal point of balance.  

Later Green and Naghdi [7–9] proposed three hypotheses of generalized thermo elasticity. The 
primary model (G-N I) is actually equivalent to Biot’s hypothesis [1]. The second and third models 

are named as G-N II and G-N III model. In G-N II and G-N III models, the thermal wave engenders 

with limited rates which concur with physical circumstances. A significant component of G-N II 
hypothesis is that this hypothesis doesn’t suits dissipation of thermal energy though G-N III 

hypothesis obliges dissemination of dissipation of thermal energy. 

With the quick advancement of polymer science and plastic industry, just as the wide utilization 
of materials under high temperature in present day innovation and use of science and topography in 
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designing, the hypothetical examination and applications in viscoelastic material has become a 

significant errand for strong mechanics.  
The hypothesis of thermo-viscoelasticity and the solutions of some boundary value problems of 

thermo-viscoelasticity were researched by Illyushin's and Pobedria [10]. Crafted by Biot [11,12], 

Morland and Lee [13] and Tanner [14] mate extraordinary walks in the most recent decade in 
discovering answers for limit esteem issues for linear viscoelasticity materials including temperature 

varieties for both semi static and dynamic issues. Drozdov [15] inferred a constitutive model in 

thermo-viscoelasticity which represents changes in elastic moduli and relaxation times. Tasteless [16] 
connected the arrangement of linear viscoelasticity issues to comparing linear elastic solutions.    

Lion [17] studied the large deformation behavior of reinforced rubber at different temperatures. 

Thermo-viscoelastic experimental characterization and numerical modelling of VHB polymer were 
induced by Liao et al. [18]. 

The hypothesis of electro-magneto-thermo-viscoelasticity has stimulated a lot of enthusiasm for 

some mechanical applications especially in atomic gadget. Where there exists an essential magnetic 
field. Different examinations have been completed by thinking about the connection between 

attractive, magnetic, thermal and strain fields. Examinations of such issue additionally impact 

different applications in biomedical building just as in various geometric investigations. Fish et al. [19] 
has studied modeling and simulation of nonlinear electro-thermo-mechanical continua with 

application to shape memory polymeric medical devices.  
Numerous applications of state space approach created for various sort of issues in electro-

magneto-thermo-viscoelasticity [20–34]. 

2. Basic governing equation 

We shall consider a homogeneous isotropic thermo-viscoelastic medium occupying the region 

ܴ ≪ ݎ ൏ ∞ of a perfect electrically conductivity permeated by an initial constant magnetic field ܪ௢, 
where ܴ is the radius of the shell. 

 

Figure 1. Show the spherical symmetry of the shell. 
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Due to the effect of this magnetic field there arises in the conducting medium an induced 

magnetic field ݄ and induced electric field ܧ. Also, there arises a force ܨ (the Lorentz Force). Due to 
the effect of this force, points of the medium undergo a displacement	ݑ , which gives rise to a 
temperature. 

The linearized equations of electromagnetism for slowly moving media are: 

curl	݄	 ൌ 	ܬ	 ൅ ௢ߝ	
డா

డ௧
                                                          (1) 

curl	ܧ	 ൌ 	െߤ௢
డா

డ௧
                                                            (2) 

	ܤ ൌ  (3)                                                                ܪ௢ߤ	

div	ܤ	 ൌ 	0                                                               (4) 

The above field equations are supplemented by constitutive equations which consist first of modified 

ohm’s law: 

	ܧ ൌ 	െߤ௢
డ௨

డ௧
	ൈ ௢ܪ	 	൅	݇௢݃݀ܽݎ	(5)                                              ߠ 

The second constitutive equation is the one for the Lorenz force which is  

ܨ ൌ ܬ ൈ  (6)                                                                  ܤ

The third constitutive equation is the stress-displacement-temperature relation for viscoelastic 

medium of Kelvin–Voigt type: 

௜௝ߪ 	ൌ ௘ߤ2	 ቀ1	 ൅	ߙଵ
డ

డ௧
ቁ ݁௜௝ 	൅ ௘ߣ	 ቀ1	 ൅	ߙ௢

డ

డ௧
ቁ ௜௝ߜ݁ 	െ	ߛ௘ ቀ1	 ൅	ߛ௢

డ

డ௧
ቁ 	௜௝         (7)ߜߠ

The equation of motion is given by: 

ߩ	 డమ௨೔
డమ௧

ൌ ൬2ߤ௘ ቀ1 ൅ ଵߙ
డ

డ௧
ቁ ൅ ௘ߣ ቀ1 ൅ ௢ߙ

డ

డ௧
ቁ൰ ௝,௜௝ݑ െ ௘ߛ ቀ1 ൅ ௢ߛ

డ

డ௧
ቁ ௜,ߠ ൅ ܬ௢ሺߤ ൈ  ௢ሻ    (8)ܪ

The generalized heat conduction equation is given by 

௜௜,ߠܭ ൅ పపሶ,ߠ∗ܭ ൌ ߠாܥߩ ൅ሷ ௘ߛ ௢ܶ ቀ1 ൅ ௢ߛ
డ

డ௧
ቁ ሷ݁ ൅ 	(9)                       ܬ	ݒ௢݀݅ߨ

The strain displacement relation is given by 

		݁௜௝ ൌ
ଵ

ଶ
൫ݑ௜,௝ ൅  ௝,௜൯                                                    (10)ݑ

Together with the previous equations, constitute a complete system of generalized-magneto-thermo-
viscoelasticity equations for a medium with a perfect conductivity. 
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Let ሺݎ, ߰, ߶ሻ denote the radial coordinates, the co-latitude, and the longitude of a spherical 
coordinates system, respectively. Due to spherical symmetry, all the considered function will be 

functions of ݎ and ݐ only. 
The components of the displacement vector will be taken the form: 

௥ݑ ൌ ,ݎሺݑ టݑ,ሻݐ ൌ థݑ ൌ 0                                                  (11) 

The strain tensor components are thus given by 

݁௥௥ ൌ
డ௨

డ௥
, ݁టట ൌ ݁థథ ൌ

௨

௥
, ݁௥థ ൌ ݁థట ൌ 0                                    (12)	

݁ ൌ డ௨

డ௥
൅ ଶ௨

௥
ൌ ଵ

௥మ
డ൫௥మ௨൯

డ௥
                                                 (13)	

From Eq 7 we obtain the components of the stress tensor as 

௥௥ߪ ൌ ௘ߤ2 ቀ1 ൅ ଵߙ
డ

డ௧
ቁ డ௨
డ௥
൅ ௘ߣ ቀ1 ൅ ௢ߙ

డ

డ௧
ቁ ݁ െ ௘ߛ ቀ1 ൅ ௢ߛ

డ

డ௧
ቁ  (14)                    ߠ

థథߪ ൌ టటߪ ൌ ௘ߤ2 ቀ1 ൅ ଵߙ
డ

డ௧
ቁ ௨
௥
൅ ௘ߣ ቀ1 ൅ ௢ߙ

డ

డ௧
ቁ ݁ െ ௘ߛ ቀ1 ൅ ௢ߛ

డ

డ௧
ቁ  (15)             ߠ

௥థߪ ൌ ௥టߪ ൌ టథߪ ൌ 0                                                   (16) 

Assume now that the initial magnetic field acts in the ߶ -direction and has the 
componentsሺ0, 0,  ,௢ሻ. The induced magnetic field h will have one component h in the ߶-directionܪ	

while the induced electric field E will have one component E in the ߰-direction. 
Then, Eqs 1, 2 and 5 yield  

ܬ ൌ ௢ܪ
డ௘

డ௥
൅ ௞೚

ఓ೚

డఏ

డ௥
	                                                      (17) 

݄ ൌ െܪ௢ ቀ
డ௨

డ௥
൅ ௨

௥
ቁ െ ௞೚

ఓ೚

డఏ

డ௥
	                                            (18) 

ܧ ൌ ௢ܪ௢ߤ
డ௨

డ௧
൅ ݇௢

డఏ

డ௥
                                                  (19) 

From Eqs 17 and 6, we get that the Lorentz force has only one component ܨ௥ in the ݎ-direction: 

௥ܨ ൌ ௢ଶܪ௢ߤ
డ௘

డ௥
൅ ݇௢ܪ௢

డఏ

డ௥
                                              (20) 

Also, we arrived at  

ߩ డమ௨

డ௧మ
ൌ ቀ2ߤ௘ ቀ1 ൅ ଵߙ

డ

డ௧
ቁ ൅ ௘ߣ2 ቀ1 ൅ ௢ߙ

డ

డ௧
ቁ ൅ ௢ଶቁܪ௢ߤ

డ௘

డ௥
െ ௘ߛ ቀ1 ൅ ௢ߛ

డ

డ௧
ቁ డ௘
డ௥
൅ ݇௢ܪ௢

డఏ

డ௥
  (21) 

Equation 21 is to be supplemented by the constitutive Eq 13 and the heat conduction equation 
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ߠଶ׏ܭ ൅ ሶߠଶ׏∗ܭ ൌ ሷߠாܥߩ ൅ ௘ߛ ௢ܶ ቀ1 ൅ ௢ߛ
డ

డ௧
ቁ ሷ݁ ൅  (22)                             ܬ	ݒ௢݀݅ߨ

Where ׏ଶ is Laplaces operator in spherical coordinates which is given by 

ଶൌ׏ ଵ

௥మ
డ

డ௥
ቀݎଶ డ

డ௥
ቁ ൅ ଵ

௥మ௦௜௡ట
ቀ߰݊݅ݏ డ

డట
ቁ ൅ ଵ

௥మ௦௜௡మట

డమ

డథమ
                            (23) 

In case of dependence on r only, this reduce to 

ଶൌ׏ ଵ

௥మ
డ

డ௥
ቀݎଶ డ

డ௥
ቁ                                                           (24) 

Now, we shall use the following non dimensional variables: 

ݎ́ ൌ ,ݎߟଵܥ ݑ́ ൌ ,ݑߟଵܥ ݐ́ ൌ ଵܥ
ଶݐߟ, ௢́ߛ ൌ ଵܥ

ଶߛߟ௢,	ߙ௢́ ൌ ଵܥ
ଶߙߟ௢, ଵ́ߙ ൌ ଵܥ

ଶߙߟଵ,	 

పఫ́ߪ ൌ
ఙ೔ೕ
ఓ೐
, ሖߠ ൌ ఏ

೚்
	 , ሖ݄ ൌ ௛

ு೚
	 , ሖܧ ൌ ா

ఓ೚ு೚஼భ
	 , ሖܬ ൌ ௃

ఎு೚஼భ
                                (25) 

Equations 14–19, 21 and 22 take the following form (dropping the primes for convenience). 

ܬ ൌ డ௘

డ௥
൅ ܣ డఏ

డ௥
                                                                    (26) 

݄ ൌ െቀడ௨
డ௥
൅ ௨

௥
ቁ െ ܣ డఏ

డ௥
                                                           (27) 

ܧ ൌ డ௨

డ௧
൅ ܣ డఏ

డ௥
                                                                 (28) 

௥௥ߪ ൌ
ଶఓ೐

ఒ೐ାଶఓ೐
ቀ1 ൅ ଵߙ

డ

డ௧
ቁ డ௨
డ௥
൅ ఒ೐

ఒ೐ାଶఓ೐
ቀ1 ൅ ௢ߙ

డ

డ௧
ቁ ݁ ఊ೐ఏ೚

ఒ೐ାଶఓ೐
ቀ1 ൅ ௢ߛ

డ

డ௧
ቁ  (29)               ߠ

థథߪ ൌ టటߪ ൌ ଶఓ೐
ఒ೐ାଶఓ೐

ቀ1 ൅ ଵߙ
డ

డ௧
ቁ ௨
௥
൅ ఒ೐

ఒ೐ାଶఓ೐
ቀ1 ൅ ௢ߙ

డ

డ௧
ቁ ݁-

ఊ೐ఏ೚
ఒ೐ାଶఓ೐

ቀ1 ൅ ௢ߛ
డ

డ௧
ቁ  (30)         ߠ

௥థߪ	 ൌ ௥టߪ ൌ థటߪ ൌ 0                                                         (31) 

డమ௨

డ௧మ
ൌ ቀ1 ൅ ܣ ൅ ௢ଶܪ௢ߤ ൅

ఒ೐ఈ೚ାଶఓ೐ఈభ
ఘ஼భ

మ
డ

డ௧
ቁ డ௘
డ௥
െ ఊ೐ఏ೚

ఘ஼భ
మ ቀ1 ൅ ܣ ൅ ௢ߛ

డ

డ௧
ቁ డఏ
డ௥

              (32) 

ߠଶ׏ ൅ ௄∗஼భ
మఎ

௄
ሶߠଶ׏ ൌ ଵܥߟ

ଶߠሷ ൅ ఊ೐஼భ
మ

௄
ቀ1 ൅ ௢ߛ

డ

డ௧
ቁ ሷ݁                                  (33) 

Where, ߟ ൌ ఘ஼ಶ
௄
, ଵܥ

ଶ ൌ ఒ೐ାଶఓ೐
ఘ

ܣ	, ൌ ௞೚
ఓ೚ு೚

.  

Equation 32 can be written in the form: 

݁ ൌሷ ቀ1 ൅ ܣ ൅ ௢ଶܪ௢ߤ ൅
ఒ೐ఈ೚ାଶఓ೐ఈభ

ఘ஼భ
మ

డ

డ௧
ቁ ଶ݁׏ െ ఊ೐ఏ೚

ఘ஼భ
మ ቀ1 ൅ ܣ ൅ ௢ߛ

డ

డ௧
ቁ  (34)          ߠଶ׏
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3. Laplace transform domain 

Taking the Laplace transform of Eqs 26–31, 33 and 34 by using homogeneous initial conditions, 

defined and denoted as 

݂ሺ̅ݏሻ ׬ ݁ି௦௧݂ሺݐሻ݀ݐ
ஶ
଴ 							 , ݏ ൐ 0                                               (35) 

We obtain 

ܬ ̅ ൌ ௗ௘̅

ௗ௥
൅ ܣ ௗఏഥ

ௗ௥
                                                           (36) 

ത݄ ൌ െ ቀௗ௨
ഥ

ௗ௥
൅ ௨ഥ

௥
ቁ െ ܣ ௗఏഥ

ௗ௥
                                                   (37) 

തܧ	 ൌ ܣ	+തݑݏ ௗఏഥ

ௗ௥
                                                         (38) 

ߠଶ̅׏ ൌ ߠଵ̅ܮ ൅  ଵ݁̅                                                     (39)ܮ

ത௥௥ߪ	 ൌ ܽଵ
ௗ௨ഥ

ௗ௥
൅ ܽଶ݁̅ െ ܽଷ̅(40)                                              ߠ 

തథథߪ ൌ തఏఏߪ ൌ ܽଵ
௨ഥ

௥
൅ ܽଶ݁̅ െ ܽଷ̅(41)                                         ߠ 

ଶ݁̅׏ ൌ ߠଵ̅ܯ ൅  ଵ݁̅                                                  (42)ܯ

where  

ଵܮ ൌ
௄ఎ஼భ

మ௦మ

௄ା஺ା௄∗ఎ஼భ
మ௦మ
		 , ݈ଶ ൌ

ఊ೐஼భ
మሺଵାఊ೚௦ሻ௦మ

௄ା஺ା௄∗ఎ஼భ
మ௦మ
		 , ܽଵ ൌ

ଶఓ೐
ఒ೐ାଶఓ೐

ሺ1 ൅ ܣ ൅ ܽଶ	ሻ,ݏଵߙ ൌ
ఒ೐

ఒ೐ାଶఓ೐
ሺ1 ൅ ܣ ൅  ,ሻݏ௢ߙ

ܽଷ ൌ
ఊ೐ఏ೚

ఒ೐ାଶఓ೐
ሺ1 ൅ ܣ ൅ ଵܯ,	ሻݏ௢ߛ ൌ

ఊ೐ఏ೚ሺଵା஺ାఊ೚௦ሻ௅భ
ఓ೚ு೚

మఘ஼భ
మାఘ஼భ

మାሺఒ೐ఈ೚ାଶఓ೐ఈభሻ௦
ଵܯ ,	 ൌ

ఘ஼భ
మ௦మାఊ೐ఏ೚ሺଵା஺ାఊ೚௦ሻ௅మ

ఓ೚ு೚
మఘ஼భ

మାఘ஼భ
మାሺఒ೐ఈ೚ାଶఓ೐ఈభሻ௦

. 

4. State space formulation 

Choosing as state variables the temperature of heat conduction ̅ߠand the strain components ݁̅ 
then Eqs 35 and 38 can be written in the matrix form 

,ݎଶܸሺ׏ ሻݏ ൌ ሻݏሺܣ തܸሺݎ,  ሻ                                                 (43)ݏ

where തܸሺݎ, ሻݏ ൌ ൤̅ߠ
ሺݎ, ሻݏ
݁̅ሺݎ, ሻݏ

൨	 , ሻݏሺܣ ൌ ൤
ଵܮ ଶܮ
ଵܯ ଶܯ

൨. 

The formal solution of Eq 43 can be written in the form 

തܸሺݎ, ሻݏ ൌ ܥ ௘షඥಲሺೞሻೝ

௥
൅ ܤ ௘షඥಲሺೞሻೝ

௥
                                           (44) 
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For bounded solution with large ݎ, we have canceled the exponential part has positive power. And at 

ݎ ൌ ܴ the value of ܥ is given by ܥ ൌ ܴ തܸሺܴ,  ሻ݁ඥ஺ሺ௦ሻோ, then Eq 44 reduces toݏ

തܸሺݎ, ሻݏ ൌ ோ

௥
തܸሺܴ, ,ሻ݁ିඥ஺ሺ௦ሻோݏ ݎ ≫ ܴ                                              (45) 

We will use the will-known Cayley–Hamiltonian theorem to find the form of the matrix 

݌ݔ݁ ൬െඥܣሺݏሻሺݎ െ ܴሻ൰. The characteristic equation of the matrix ܣሺݏሻ can be written as 

݇ଶ െ ሺܮଵ ൅ ଶሻ݇ܯ ൅ ሺܮଵܯଶ െ  ଵሻ                                      (46)ܯଶܮ

The roots of this equation namely ݇ଵ and ݇ଶ satisfy the relations 

݇ଵ ൅ ݇ଶ ൌ ଵܮ ൅  ଶ                                                         (47)ܯ

	݇ଵ݇ଶ ൌ ଶܯଵܮ െ  ଵ                                                      (48)ܯଶܮ

The Tailor’s series expansion for the matrix exponential of ݁݌ݔ ൬െඥܣሺݏሻሺݎ െ ܴሻ൰	 is given by 

݌ݔ݁ ൬െඥܣሺݏሻሺݎ െ ܴሻ൰ ൌ ∑
ቂିඥ஺ሺ௦ሻሺ௥ିோሻቃ

೙

௡!
ஶ
௡ୀ଴                            (49) 

Using Cayley–Hamiltonian theorem, we can express ܣଶ and higher orders of the matrix ܣ in terms of 
 .is the unit matrix of second order ܫ where ܣ and ܫ

Thus, the infinite series in Eq 49 can be reduced to 

݌ݔ݁ ൬െඥܣሺݏሻሺݎ െ ܴሻ൰ ൌ ܾ௢ሺݎ, ܫሻݏ ൅ ܾଵሺݎ,  (50)                       ܣሻݏ

where ܾ௢ and ܾଵ are some coefficients depending on ݏ and ݎ. 
By Cayley–Hamiltonian theorem, the characteristic roots ݇ଵ and ݇ଶ of the matrix ܣ must satisfy 

Eq 50, thus we have 

݌ݔ݁ ቀെඥ݇ଵሺݎ െ ܴሻቁ ൌ ܾ௢ ൅ ܾଵ݇ଵ	                                       (51) 

݌ݔ݁ ቀെඥ݇ଶሺݎ െ ܴሻቁ ൌ ܾ௢ ൅ ܾଵ݇ଶ                                        (52) 

Solving the above linear system of equations, we get 

ܾ௢ ൌ
௞భ௘షඥೖమ

ሺೝషೃሻି௞మ௘షඥೖభ
ሺೝషೃሻ

௞భି௞మ
                                           (53) 

ܾଵ ൌ
௘షඥೖభሺೝషೃሻି௘షඥೖమሺೝషೃሻ

௞భି௞మ
                                                (54) 
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Hence, we have 

݌ݔ݁ ൬െඥܣሺݏሻሺݎ െ ܴሻ൰ ൌ ,ݎ௜௝ሺܮ ,݅			,ሻݏ ݆ ൌ 1,2                             (55) 

where 

ଵଵܮ ൌ
௘షඥೖమሺೝషೃሻሺ௞భି௅భሻା௘షඥೖభ

ሺೝషೃሻሺ௅భି௞మሻ

௞భି௞మ
                                       (56) 

ଵଶܮ ൌ
௅మ௘షඥೖభ

ሺೝషೃሻି௅భ௘షඥೖమ
ሺೝషೃሻ

௞భି௞మ
                                                (57) 

ଶଵܮ ൌ
ெభ௘షඥೖభ

ሺೝషೃሻିெమ௘షඥೖభ
ሺೝషೃሻ

௞భି௞మ
                                               (58) 

ଶଶܮ ൌ
௘షඥೖభሺೝషೃሻሺெమି௞మሻା௘షඥೖమ

ሺೝషೃሻሺ௞భିெమሻ

௞భି௞మ
                                      (59) 

5. Applications 

In order to evaluate the unknown parameters	ߠഥ௢ሺݎ, ,ݎഥ݁௢ሺ	and	ሻݏ  ሻ, we shall use the boundaryݏ
conditions on the internal surface of the shell, ݎ ൌ ܴ which are given by: 

(I) Thermal boundary condition at r ൌ R, θሺR, tሻ ൌ θ୭ 

Taking the Laplace transform, this is defined as following: 

,ݎ௢ሺߠ̅ ሻݏ ൌ
ఏ೚
௦

                                                                 (60) 

(II) Mechanical boundary condition 

The internal surface ݎ ൌ ܴ has a rigid foundation, which is rigid enough to prevent any strain 

݁ሺܴ, ሻݐ ൌ 0. Taking the Laplace transform, this is defined as following: 

݁̅ሺܴ, ሻݏ ൌ ݁̅௢ ൌ 0                                                            (61) 

Using the Eq 60 and 61 into Eq 45 and using Eqs 56–59, we get 

,ݎሺߠ̅ ሻݏ ൌ ோఏ೚
௦ሺ௞భି௞మሻ௥

ቂሺ݇ଵ െ ଶሻ݁ିඥ௞మܮ
ሺ௥ିோሻ ൅ ሺ݇ଶ െ ଵሻ݁ିඥ௞మܮ

ሺ௥ିோሻቃ             (62) 

݁̅ሺݎ, ሻݏ ൌ ோெభఏ೚
௦ሺ௞భି௞మሻ௥

ቂሺ݇ଶ െ ଵሻ݁ିඥ௞భܮ
ሺ௥ିோሻ ൅ ሺ݇ଵ െ ଶሻ݁ିඥ௞మܮ

ሺ௥ିோሻቃ             (63) 

To find the displacement, taking Laplace transform for Eq 32 using Eqs 62 and 63, we get 

,ݎതሺݑ ሻݏ ൌ ோఏ೚
௦௥మሺ௞భି௞మሻ௥

൬ቀ൫1 ൅ ଵܮହሺܤඥ݇ଵ൯൫ݎ െ ݇ଶሻ൯ െ ଵቁܯସܤ ݁ିඥ௞భ
ሺ௥ିோሻ ൅ ቀ൫1 ൅ ଵܯସܤඥ݇ଶ൯൫ݎ ൅

ହሺ݇ଵܤ െ ଵሻ൯ቁܮ ݁ିඥ௞మ
ሺ௥ିோሻ൰                                                         (64) 

To find the radial stress, from Eq 40 and Eqs 62–64 we get 
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ത௥௥ߪ ൌ
ோఏ೚

௦௥మሺ௞భି௞మሻ௥
ቄ݁ିඥ௞భሺ௥ିோሻ ൬ܯଵሺܤଵ ൅ ଶݎଷሻܤ ൅ ଵ൫1ܯସܤଵܤ2 ൅ ඥ݇ଵ൯ݎ െ ሺܮଵ െ ݇ଶሻ ቀܤଷݎଶ ൅

ହ൫1ܤଵܤ2 ൅ ඥ݇ଵ൯ቁ൰ݎ ൅ ݁ିඥ௞మሺ௥ିோሻ ቀെܯଵሺܤଵ ൅ ଶݎଶሻܤ െ ଵ൫1ܯସܤଵܤ2 ൅ ඥ݇ଵ൯ݎ ൅ ሺܮଵ െ ݇ଶሻ ቀܤଷݎଶ ൅

ହ൫1ܤଵܤ2 ൅ ඥ݇ଶ൯ቁݎ ൅ቁቅ                                                  (65) 

where ܤସ ൌ
ଵ

௦మ
൅ ఒ೐ఈ೚ାଶఓ೐ఈభ

ఘ஼భ
మ௦మ

ହܤ , ൌ
ఊ೐ఏ೚ሺଵାఊ೚௦ሻ

ఘ஼భ
మ௦మ

. 

6. Numerical inversion of Laplace transforms 

In order to invert the Laplace transforms in the above equations we shall use a numerical 

technique based on Fourier expansions of functions. Let ݃̅ሺݏሻ be the Laplace transform of a given 

function ݃ሺݐሻ. The inversion formula of Laplace transforms states that 

݃ሺݐሻ ൌ ଵ

ଶగ௜
׬ ݁௦௧݃̅ሺݏሻ݀ݏ
ௗା௜ஶ
ௗି௜ஶ                                                (66) 

where d is an arbitrary positive constant greater than all the real parts of the singularities of ݃̅ሺݏሻ. 
Taking sൌ ݀ ൅   we get ,ݕ݅

݃ሺݐሻ ൌ ௘೏೟

ଶగ
׬ ݁௜௞௬݃̅ሺ݀ ൅ ݕሻ݀ݕ݅
ஶ
ିஶ                                           (67) 

This integral can be approximated by 

݃ሺݐሻ ൌ ௘೏೟

ଶగ
∑ ݁௜௞௧∆௬݃̅ሺ݀ ൅ ஶݕ∆ሻݕ∆݇݅
௞ୀିஶ                                     (68) 

Taking ∆ݕ ൌ గ

௧భ
	we obtain: 

݃ሺݐሻ ൌ ௘೏೟

௧భ
൬
ଵ

ଶ
݃̅ሺ݀ሻ ൅ ܴ݁ ቀ∑ ݁௜௞௧గ ௧భ⁄ஶ

௞ୀଵ ݃̅ሺ݀ ൅ ߨ݇݅ ⁄ଵݐ ሻቁ൰                  (69) 

For numerical purposes this is approximated by the function 

݃ேሺݐሻ ൌ
௘೏೟

௧భ
൬
ଵ

ଶ
݃̅ሺ݀ሻ ൅ ܴ݁ ቀ∑ ݁௜௞௧గ ௧భ⁄ே

௞ୀଵ ݃̅ሺ݀ ൅ ߨ݇݅ ⁄ଵݐ ሻቁ൰                   (70) 

where ܰ is a sufficiently large integer chosen such that 

௘೏೟

௧భ
ܴ݁ ቀ݁௜ேగ௧ ௧భ⁄ ݃̅ሺ݀ ൅ ߨܰ݅ ⁄ଵݐ ሻቁ ൏  (71)                                        ߟ

where ߟ  is a reselected small positive number that corresponds to the degree of accuracy to be 

achieved Eq 69 is the numerical inversion formula valid for	0 ൑ ݐ ൑ ݐଵ. In particular, we chooseݐ ൌ
 ଵ, gettingݐ
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݃ேሺݐሻ ൌ
௘೏೟

௧భ
൬
ଵ

ଶ
݃̅ሺ݀ሻ ൅ ܴ݁ቀ∑ ሺെ1ሻ௞ே

௞ୀଵ ݃̅ሺ݀ ൅ ߨ݇݅ ⁄ଵݐ ሻቁ൰                     (72) 

7. Numerical results and discussions 

The copper material was chosen for purposes of numerical evaluations and constants of the 

problem were taken as following (35) in SI units: ܭ ൌ 386ܰ ⁄ݏܭ , ௧ߙ ൌ 17.8ሺ10ሻିହ	ିܭଵ, ாܥ	 ൌ
383.1݉ଶ ⁄ܭ , ௢ܶ ൌ ,	ܭ293 ߩ ൌ 8954݇݃ ݉ଶ⁄ ௘ߤ , ൌ 3.86ሺ10ሻଵ଴ ܰ ݉ଶ⁄ , ௘ߣ ൌ 7,76ሺ10ሻଵ଴ ܰ ݉ଶ⁄ ,
ଵߙ ൌ 3.25ሺ10ሻିଶ, ௢ߙ	 ൌ 3.25ሺ10ሻିଶ, ܴ ൌ 1	, ௢ߠ	 ൌ 1. 

In order to study the effect of time t and study the comparison between two models on 

temperature, radial stress, shear stress, displacement and strain, we now present our results in the 
form of graphs (Figures 2–9). 

Green and Naghdi [7–9] proposed three new thermoelastic theories based on entropy equality 

rather than the usual entropy inequality. The constitutive assumptions for the heat flux vector are 
different in each theory. Thus, they obtained three theories they called thermoelasticity of type I, 

thermoelasticity of type II and thermoelasticity of type III. When the type I theory is linearized we 

obtain the classical system of thermo-elasticity. The type II theory (is a limiting case of type III) does 
not admit energy dissipation. 

Figure 2 is plotted to show the variation of temperature ߠ against ݎ	for wide range of ݎ ሺ1 ൑
ݎ ൑ 3ሻ at small time	ሺݐ ൌ 0.07ሻ for two theories (G-N III) and (G-N II). It is observed from this 
figure the magnitude of the temperature is greater for (G-N III) model than (G-N II). It can be noted 

that the speed of propagation of temperature is finite and coincide with the physical behavior of 

viscoelastic material. Also, we can see from this figure that the boundary condition (60) is satisfied.  

 

Figure 2. Variation of temperature θ with distance r for two theoris. 

Figure 3 shows variation of temperature ߠ for the coefficient of Ohm and Fourier laws. It is 
noticed that the modified Fourier and Ohm laws influence is significant, the temperature in the 

modified model records value higher than these in the old model. 
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Figure 3. Variation of temperature θ with distance r for the coefficient of Ohm and Fourier laws. 

Figure 4 is plotted to show the variation of the radial stress ߪ௥௥  against ݎ	for wide range of 

ሺ1	ݎ ൑ ݎ ൑ 10ሻ, at small time	ሺݐ ൌ 0.07ሻ, for two theories (G-N III) and (G-N II). It is observed 
from this figure the magnitude of the radial stress is greater for (G-N III) model than (G-N II). It can 

be noted that the speed of propagation of stress is finite and coincide with the physical behavior of 

viscoelastic material. 

 

Figure 4. Variation of radial stress σrr with distance r for two theories. 

Figure 5 shows variation of radial stress for the coefficient of Ohm and Fourier laws. It is 
noticed that the modified Fourier's and Ohm's model effects on the radial stress by increasing their 

values. 
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Figure 5. Variation of radial stress σrr with distance r for the coefficient of Ohm and Fourier laws. 

Figure 6 is plotted to show the variation of strain ݁	against ݎ	for wide range ofሺ1 ൑ ݎ ൑ 3ሻ, at 
small timeሺݐ ൌ 0.07ሻ, for two theories (G-N III) and (G-N II). It is observed from this figure the 
magnitude of the strain is greater for (G-N III) model than (G-N II). It can be noted that the speed of 

propagation of strain is finite and coincide with the physical behavior of viscoelastic material. Also, 
we can see from this figure that the boundary condition (61) is satisfied.  

 

Figure 6. Variation of strain e with distance r for two theories. 

Figure 7 shows variation of strain ݁ for the coefficient of Ohm and Fourier laws. It is noticed 
that the modified Fourier and Ohm laws influence is significant, the strain in the modified model 

records value higher than these in the old model. 
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Figure 7. Variation of strain e with distance r for the coefficient of Ohm and Fourier laws. 

Figure 8 is plotted to show the variation of displacement ݑ	against ݎ	for wide range of	ሺ1 ൑ ݎ ൑
3ሻ, at small timeሺݐ ൌ 0.07ሻ, for two theories (G-N III) and (G-N II). It is observed from this figure 
the magnitude of the displacement is greater for (G-N III) model than (G-N II). It can be noted that 

the speed of propagation of displacement is finite and coincide with the physical behavior of 
viscoelastic material. 

 

Figure 8. Variation of displacement u with distance r for two theories. 

Figure 9 shows the variation of displacement ݑ	against ݎ	for wide range ofݎ ሺ1 ൑ ݎ ൑ 3ሻ, for 

different values of time ሺݐ ൌ 0.0, ݐ ൌ 0.5, ݐ ൌ 0.1ሻ . And we have noticed that, the time ݐ	 has 

significant effects on displacementݑ. The increasing of the value of ݐ	causes increasing of the value 
of displacement ݑ, and displacement ݑ	vanishes more rapidly. 
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Figure 9. Variation of displacement u with distance r for different value of time t. 

8. Conclusion 

Green and Naghdi [7–9] developed a generalized theory of thermoelasticity which involves 

thermal displacement gradient as one of the constitutive variables in contrast to the classical coupled 
thermoelasticity which includes temperature gradient as one of the constitutive variables. An 

important feature of this theory is that it does not accommodate dissipation of thermal energy. On 

this theory the characterization of material response to a thermal phenomenon is based on three types 
of constitutive response functions. The nature of those three types of constitutive response functions 

is such that when the respective theories are linearized, type I is same as classical heat conduction 

equation (based on Fourier’s law), whereas type II, the internal rate of production of entropy is taken 
to be identically zero, implying no dissipation of thermal energy. This model is known as the theory 

of thermoelasticity without energy dissipation. Type III involves the previous two models as special 

cases, and admits dissipation of energy in general, in this model, introducing the temperature 
gradient and thermal displacement gradient as the constitutive variables. 

From the above discussion, one can reason that the new model of generalized magneto-thermo-

viscoelasticity predicts new qualities for the temperature, displacement, stresses and strain. The 
impact of the temperature gradient at adequately low temperature may cause new sorts of magneto-

thermo-viscoelastic wave with explicit stability properties. The expansion in the estimations of 

temperature might be clarified as the lost heat producing from the development of electric flow; this 
heat might be the fundamental motivation behind why the deformation of the medium will in general 

be ordinary and the magnetic field records esteems more prominent than the qualities in the old 

model. As indicated by this work, numerous specialists in the field of generalized thermo elasticity 
have applied Green–Naghdi hypothesis (III-II) for thermo elastic problem and not many of them can 

effectively applied for magneto thermo Viscoelastic issue. Right now conclude that the greatness of 

the every single physical amount is more noteworthy for (G-N III) model than (G-N II). It very well 
may be noticed that the speed of spread of every single physical amount is limited and match with 

the physical conduct of Viscoelastic material. 
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