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Abstract: The formation of aggregates is commonly observed in soft matter such as globular protein
solutions and colloidal suspensions. A lively debated issue concerns the possibility to discriminate
between a generic intermediate-range order taking place in the fluid, as contrasted with the more
specific presence of a clustered state. Recently, we have predicted by Monte Carlo simulations of
a standard colloidal model — spherical particles interacting via a short-range attraction followed
by a screened electrostatic repulsion at larger distances — the existence of a tiny structural change
occurring in the pair structure. This change consists in a reversal of trend affecting a portion of the
local density as the attractive strength increases, that is shown to take place precisely at the clustering
threshold. Here, we address the same issue by refined thermodynamically self-consistent integral
equation theories of the liquid state. We document how such theoretical schemes positively account for
the observed phenomenology, highlighting their accuracy to finely describe the aggregation processes
in model fluids with microscopic competing interactions.

Keywords: colloidal suspensions, cluster formation process, competing interactions, clustering
threshold, simulation, integral equation theories

1. Introduction

It is well established that the breadth of equilibrium fluid phases exhibited by relevant soft matter,
such as globular protein solutions and colloidal suspensions, extends well beyond a macroscopic liquid-
vapor phase separation, giving rise to inhomogeneous fluids phases composed of clusters or patterned
morphologies [1].
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At the microscopic level, the origin of such structures is commonly ascribed to the presence of
competing interactions acting on different length scales: the propensity to form equilibrium clusters
phases — heralding the development of patterned morphologies — stems from the competition
between a short-range attraction, favouring aggregation, and a long-range repulsion, frustrating a
complete phase separation [2]. Model potentials of this kind are usually referred to as SALR
(Short-range Attractive and Long-range Repulsive) interactions [3].

A flourishing literature clarified many aspects of the physics of SALR models (see e.g. [4-17]),
including a broad assessment of their accuracy in describing general aspects of structure and
thermodynamics of real protein solutions and colloidal suspensions, see e.g. [18-23]. The large
interest on this topic is witnessed by several recent reviews [24-27].

At the structural level, a ubiquitous indication to detect the presence of aggregates is provided by a
peak in the static structure factor S (g), located at a wavenumber g. well below the position of the main
diffraction peak, see e.g. [28-31]. Nonetheless, a live debate concerns the correct relationship between
such a low-g peak and the effective microscopic arrangement taking place in the fluid. Initially, this
feature was related to the specific existence of equilibrium clusters, as observed both in colloid-polymer
mixtures and in protein solutions [28]. However, the presence of such clusters was questioned by
other experiments on similar systems [32-34]. Later on, a series of coupled dynamical and structural
experiments on lysozyme solutions suggested the low-g peak in S(g) to arise from the formation of
a generic Intermediate-Range Order (IRO) taking place in the fluid [21-23]. Such a situation, to be
contrasted with the more specific formation of clusters, corresponds to a less distinct, locally non-
homogeneous microscopic arrangement characterized by the presence of aggregates with sizes ranging
from dimers, trimers on, with a fast decrease of associated probability distribution [35,36]. This picture
turns back to prior conclusions about the onset of a “medium-range order” in models for covalently-
bonded non-crystalline materials [37,38]. Therein, the presence of the low-g peak was ascribed to
a local icosahedral order in the fluid. The original investigations in [21-23] prompted most recent
studies, investigating dynamical properties of SALR fluids [39,40].

Two different criteria, based on the property of the low-g peak, were proposed to discriminate
between IRO and genuine clustering in model SALR fluids. In the first scheme [36], it is argued that
clusters (at low density) or cluster-percolated states (at higher densities), are signaled by a height of the
low-g peak rising over ~ 2.7. This empirical observation closely recalls the Hansen-Verlet criterion for
the freezing of simple fluids [41]. As for the second criterion, it is argued in [42] that clustering occurs
as far as the thermal correlation length encoded in S (g.) becomes larger than the typical length-scale
associated with the long-range repulsion. Recently, we addressed the same issue by using Monte Carlo
simulation for a common SALR model, focusing on correlations in the real space, as described by
the local density p(r) [43,44]. We have shown that, as the attractive strength increases, a threshold
is crossed, whereupon a portion of p(r) experiences, at long distance, a tiny peculiar rearrangement,
consisting in a reversal of trend. In coincidence, S (q.) rapidly rises, in such a way that it goes almost
discontinuously well over the threshold S (¢g.)~ 2.7 (in agreement with the criterion of [36]), with the
simultaneous appearance of a shoulder in the cluster-size distribution. Based on all such evidence, we
argued that modifications observed in real-space correlation and onset of clustering are tightly linked.

In this work, we extend our previous investigation [43, 44], to ascertain the worth of Integral
Equation Theories (IETs) of the liquid state to study the onset of clustering. The possibility to
discriminate on the basis of purely structural indicators the underlying arrangement of SALR fluids,
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coupled with the use of effective theoretical tools, turns to be especially advantageous in all those
cases in which microscopic data are not readily available. Theoretical tools are also beneficial for a
wide investigation of clustering conditions in different SALR models upon disparate thermodynamic
conditions, a task prohibitively costly to bear by simulations only. We have organized the paper as
follows: after introducing our SALR model and IETs (Section 2), we present and discuss our main
findings in Section 3. Concluding remarks and perspectives follow in Section 4.

2. Model and theory

Theoretical calculations concern a standard SALR model, constituted by hard spheres of diameter
o interacting via a potential formed by the sum of two Yukawa contributions of opposite sign (hard-
sphere two-Yukawa, HS2Y). Hence, the total interaction between a pair of spheres, v(x) — with x =
r/o as the (reduced) interparticle distance — reads:

00 forx <1

PO=) peplab oDl exploae = DLy Y
X X

where 8 = 1/kgT, with T and kg as the temperature and the Boltzmann constant, respectively. Positive
parameters € and A determine the strength of attractive and repulsive contributions respectively, while
Z, and z; (with z, > z), determine their corresponding ranges. We focus on a particular set of HS2Y
parameters, widely adopted in previous studies [2, 8,9, 15,45]: we have fixedz, = 1,z =0.5,A = 0.5
and let &€ move from 0.9 to 1.6. Within our choice, the Mean Spherical Approximation predicts the
occurrence of a microphase separation [2], the liquid-vapor coexistence taking over only for € > 5.

We carry out our study at fixed reduced density po® = 0.6, while the temperature is included in the
definition of v(x), see Eq 1. Our choice for such a relatively high density allows the fluid to develop
spatial correlations extending over relatively large distances. In this way, we observe under optimal
conditions the tiny structural rearrangements at the heart of our findings, to be discussed in the next
section.

We determine the pair structure of our model by means of two thermodynamically self-consistent
integral equations, namely the hybrid mean spherical approximation (HMSA), derived by Zerah and
Hansen [46], and the Self-Consistent Integral Equation (SCIE) derived by two of us [47-49]. Both
approaches provide a closure to the Ornstein—Zernike equation [1], relating the pair correlation
function g(x) to the direct correlation function c¢(x). Thermodynamically self-consistency is ensured
by enforcing the equality of compressibilities obtained by two different routes from structure to
thermodynamics [1], thank to the mixing parameter f, i.e.:

-1
p@rn=[rww{fdxﬁf4 ~ S(qg=0), @)

where y1 = —1/p (0P/dp)~! is the isothermal compressibility and P is the pressure calculated via the
virial theorem [1]. In order to calculate the total correlation function A(x) = g(x) — 1 and the structure
factor S (g), both theories are solved numerically by the iterative Newton—Raphson method [50], over
an extended grid of 2'* points with a fine mesh of Ax = 0.005. Convergence is assumed when a
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difference smaller than 1072 is reached between two consecutive iterations. The mixing parameter f is
determined so that Eq 2 is satisfied to within less than one percent.

We also study the onset of clustering in terms of the entropy of the fluid [51]. An approximation for
such a property is provided by the pair entropy s,, which involves only g(x):

$2

o = o ’ f [¢(x) In g(x) — g(x) + 1]x*dx 3)
B 0

This expression derives from the expansion of the configurational entropy in terms of multi-body
correlations involving two, three and successively more particles [52-54]. In simple fluids, the
leading term s, is generally found to account for about 90% of the configurational entropy [54-56].

3. Results and discussion

In Figure 1, we show SCIE structural predictions for two different attractive strengths, namely
e = 09 and 1.6. A low-g peak is visible in the S(g) (A) and becomes more and more pronounced
as ¢ increases. According to [36], an IRO state takes place for € = 0.9 [where S(g.) =~ 0.2], while a
more ordered clustered state occurs for € = 1.6 [where S(g.) > 10]. As for g(x), in Figure 1B, the
amplitude of the first four coordination shells — and apparently of the fifth one — increases with ¢,
while the corresponding position shifts to slightly lower distances. In contrast, for € = 1.6, g(x) no
longer oscillates around one below x = 5 and, as shown in the large view in the inset, next distant
neighbors eventually merge into a single oscillation of wavelength ~ 9¢.
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Figure 1. SCIE S(g) (A) and g(x) (B) for € = 0.9 (full lines) and & = 1.6 (dashed lines).
Inset: overview of g(x) at intermediate/long interparticle separations: as € increases, a long-
wavelength oscillation rises.

Since SCIE correctly predicts the typical structural features we documented by MC [43], the
question naturally arises so as to whether IETs are able to discriminate — on the basis of local,
real-space properties — between a generic intermediate-range order and the more specific onset of
clustering. To this purpose, we examine now in detail the structural modifications undergone by /A(x),
as predicted by SCIE and HMSA, for intermediate attractive strengths. We recall that in [43] we
identified the MC clustering threshold as falling at &, = 1.47. In Figures 2A and 2B we focus on the
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amplitude of the fifth neighbor peak of A(x), denoted as h(xs); therein, we see that the behavior of
h(xs) contrasts with that of the first four coordination shells in that it does not monotonically increases
with &. Specifically, in Figure 2A SCIE predicts that (i) h(xs) starts to decrease from positive values as
€ increases till, for € = 1.33 = g, it turns negative and goes on decreasing, pointing to an increase of
inhomogeneity in the fluid; apparently, since the fifth shell of neighbors seems to behave as next ones
do, one may argue that it is about to merge into the heralding long-range oscillation. However, (ii) for
e = 1.545 = g, h(xs) reaches a minimum and starts rising, going over zero for higher & values; in this
way, the fifth coordination shell eventually contributes to the overall stabilization of the structure
formed by the first four shells. This scenario remains unchanged within HMSA in Figure 2B, but for
slightly different gy (1.375) and &, (1.535) and, as shown in Figure 2C, it faithfully reproduces the MC
data [43]; the little anticipation of the MC threshold & = 1.47 does not impair, in our opinion, the
quality of our theoretical predictions.To summarize, whatever the method used, a generic behavior of
h(xs) can be drawn in Figure 2D. Therein, a threshold value &, is identified, whereupon /h(xs) reaches
a minimum, leading to the local property:
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Figure 2. Portion of /(x) corresponding to the fifth coordination shell, for a series of & (see
legends), as obtained from SCIE (A), HMSA (B) and MC [43] (C). Dashed lines are for
£ < g, red lines for € = g, full lines for € > &.. (D) Generic picture of h(xs) vs &: theories
and simulation predict that h(xs) passes through a minimum at € = &,.

The consequences of our findings on the low-wavevector portion of the structure factor can be

AIMS Materials Science Volume 7, Issue 2, 170-181.



175

clearly appraised from Figure 3. In 3A we see that, as € approaches &, the height of the low-g peak,
S(q.), slowly grows, with the fluid initially characterized by an intermediate-range order, then
becoming progressively more structured. At & = &, S(q.) abruptly rises, exactly in correspondence
with the real-space evidence that the fifth coordination shell correlates with the preceding ones. In
agreement with our MC results [43], at this point the nature of the fluid changes, almost
discontinuously, into a clustered state characterized by S(g.) > 2.7 [36]. We see in the Figure that
SCIE and HMSA results closely agree, and appear slightly delayed with respect to the MC
datum [43]; also, theories predict a sharp increase of S(g.) whereas MC shows a more rounded
growth of this property. Since S (¢ = 0) is roughly proportional to S (g.) [8], also this property turns to
discontinuously rise, as visible from Figure 3B; therein we see moreover that both SCIE and HMSA
predict smaller jumps to occur also at &.

4.0 n 0.16
A //' B I
3S[ F |
o g e
I +
30 0.14 +
......................................... , 2rzls
25+ |
. o |
133 | ¥ ~
Z 20F o+ T, 0121
= ,51_,+ k)
B 150 /o EEE n l
¥
o Ik
10+ e mﬂ 0.10 4t
s -
0.5 pRFFO M
ha®
OO 1 1 1 1 1 1 1 008 1 1 1 1 1 1
140 142 144 146 148 150 152 154 1.25 1.30 1.35 1.40 1.45 1.50 1.55
€ €

Figure 3. S(g.) (A) and S(g = 0) (B) vs ¢, as obtained by SCIE (crosses) and HMSA
(squares). In (A) MC data [43] are also shown (circles); the dotted line represents the
clustering threshold according to [35,36]. In (B), arrows indicate €, and &, as predicted
by both theories, whereupon jumps occur, witnessing successive rearrangements within the
fluid as the attractive strength increases.

The moderate increase of compressibility witnesses the development of larger and larger density
fluctuations, as the system progresses within an increasingly inhomogeneous arrangement, heralding
the onset of clustering.

If we recall Eq 2, we conclude that structural rearrangements within the fluid taking place at gy and
& involve corresponding changes in the isothermal compressibility yr. Based on all evidence reported
so far, both in real-space and reciprocal-space, we conclude that the observed atypical reversal of trend
in the pair correlation faithfully witnesses the onset of clustering. The overall phenomenology observed
by MC simulations is positively reproduced by IETs.

In agreement with our MC results [43], refined IETs predict a discontinuity in S(g.) at € = &. At
this stage, an interesting issue concerns the origin, within the theoretical framework, of the observed
discontinuities. Indeed, as seen in Figure 4, successive steps in the gain of inhomogeneity, observed
at gy and g;, are marked by clear-cut jumps in the mixing parameter f. Consequently, it is the very
fulfillment of the thermodynamic consistency condition (Eq 2) — enforced by any refined IET — that
allows us to identify the observed structural changes. In the case f = 1, both SCIE and HMSA reduce
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to the thermodynamically inconsistent HyperNetted chain (HNC) approximation. We refer the reader
to our recent work [44] for an extended analysis of HNC predictions concerning the HS2Y model of
Eq 1 within various parameterizations including the one employed in this work. We simply note here
that, consistently with the assumption of a constant f value, HNC is unable to capture the discontinuous
changes in the structural properties documented by MC [43].
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Figure 4. Mixing parameter f vs & for SCIE (crosses) and HMSA (squares). When clustering
is underway, inherent structural changes, occurring at & and &, are marked by clear-cut
jumps in f. Lines are guides to the eye.

We finally turn to the pair entropy s, of (Eq 3), a global property found to be a fingerprint to
distinguish between liquid-like and solid-like environments on the one hand, and between different
crystal structures on the other hand [57]. More generally, in simple liquids s, decreases as the system
becomes progressively more structured. As seen from Figure 5, this statement holds also for our
model, during the clustering process. In facts, as € increases, the formation of a further coordination
shell contributes to the overall stabilization of the local environment around a given particle, provided
by the existing shells of neighbours; as we have seen, this structural rearrangement abruptly triggers
the clustering process, with the consequence that a drastic reduction of available configurational states
affects all those particles forming aggregates. This mechanism is exactly reflected in the rapid, almost
discontinuous decrease of pair entropy visible in Figure 5. As & increases, both structural
rearrangements affecting 4(x) at £y and & have visible effects on s;: a first discontinuity is followed,
by further increasing the attractive strength, by a second discontinuous jump observed at £ = & to be
ascribed to the entropy change related to the onset of clustering. In a previous study [14], we
identified a possible signature of the arising IRO peak in HS2Y models, as a jump in the entropy,
based on chemical potential calculations [58—61]; therein, we surmised that the loss of available space
within the clusters is tempered by a gain of accessible space between clusters, mitigating overall the
decrease of the total entropy due to the decrease of the main contribution provided by s,. In general,
the search for thermodynamic signatures of clustering could greatly help our understanding of these
systems, favouring as well our capability of experimentally identifying aggregation processes.
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Figure 5. SCIE (crosses) and HMSA (squares) pair entropy. Arrows indicate &, and &, as
predicted by both theories, whereupon jumps occur, witnessing successive rearrangements
within the fluid as the attractive strength increases.

4. Conclusion

Refined thermodynamically self-consistent integral equations are shown to reproduce a
mechanism, previously unearthed by MC [43], governing the clustering process in a model SALR
fluid. Refined IETs, designed a priori for the study of the liquid state, are able to capture the structure
of such a system across the clustering threshold. In a previous study [14], we documented the
existence of small simultaneous discontinuities of several thermodynamic and structural properties of
the same pair potential (but within different parameterizations), under physical conditions close to the
early development of an intermediate-range order in the fluid. In comparison, discontinuities
presently observed when passing from an IRO to a clustered state are neater. We speculate that in
model colloids with competing interactions, the present mechanism is a generic feature intrinsic to the
clustering process.

Possibly due to the fact that the scale at which our effect shows up is rather small, this process
was overlooked in other studies using the same HS2Y model with identical parameters, but for those
we already published [43,44]. As for the experimental side, the pair potential adopted in this work
provides a reasonable description of dispersions of charged colloidal particles in the presence of a
depletant, e.g. non-adsorbing polymer-coils, in which & is proportional to the polymer concentration,
the radius of gyration governs z,, and the parameters entering the long-range repulsion depend on
the electrostatic properties of the mixture [62]. Hence, an experimental realization of our setup, to
gauge our findings against, would consist of a colloidal suspension, where all chemical and physical
conditions are held fixed, but for the concentration of the polymer, so as to control the depletion
potential strength. Similarly to what observed for simulations, also in experiments the process could
be difficult to be traced in the neighborhood of the fifth coordination shell. Nevertheless, this limitation
could be overcome since we have preliminary evidence that, for lower densities, the formation of
clusters is signaled by reversals of trend occurring at shorter distances, making them easier to be
detected.
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