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Abstract: Carbon nano tubes (CNTs), comprising one dimensional (1D) carbon tubes that 
significantly strengthen the base matrix when added as a reinforcement element. It is light in weight 
and very low weight fractions (vol% or wt%) of well-dispersed CNTs enhance mechanical properties 
effectively. Due to its poor wettability during liquid mixing, CNTs reinforced composites are mostly 
prepared by solid-state processing, extrusion, hot pressing, etc. after premixing of the matrix and 
CNTs powders in nano size. Irrespective of the production routes, matrices, and chemical treatments, 
CNTs agglomerate within the matrix structure. That leads to dispersion problem of CNTs in matrix 
materials and weaken the properties of the composites. CNTs produce small clusters/agglomerates 
due to their high affinity and affect the texture of grain boundaries. This review discusses the effect 
of CNTs agglomerations in composites formation for various CNTs reinforced composites. The study 
covers the effect of vol%, wt%, and dispersion medium for reinforcement. 
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1. Introduction  

CNTs have regarded as nano-scale reinforcements elements led to promising results in 
improving a wide spectrum of properties for an engineering problem. Since the discovery of CNTs 
by Iijima [1] in 1991, it is considered ideal reinforcements of various range of composites due to 
their exceptional strength, high Young’s modulus (YS) and low density [2–7]. It is viewed as a 1D 
substance and may arrange in one direction or randomly distributed. Randomly disperse CNTs 
decreases with higher weight/volume fractions owing to the formation of CNT agglomerates [8,9]. 
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This agglomeration is sometimes referring as clustering or bundling effect in many researches. 
Figure 1a shows the CNT pillar regarding the direction of the CNT axis and Figure 1b shows the 
alignment of the 1D CNTs. Randomly orientated, agglomeration/aggregation and in homogeneous 
distributions are influenced by the presence of a chemical substance (chemical treatment), surface 
coatings, post-treatment strongly influences physical properties of CNTs reinforced due to the high 
surface-to-volume ratios of CNTs in the matrix [7,10,11]. 

The matrixes are pertaining to metallic matrices, ceramics matrices, polymer matrices, fiber 
matrices, etc. Researchers are using continuous and discontinuous reinforcements with CNTs to 
enhance the properties of different matrices approximately from the last two decades. Even hybrid 
composites containing CNTs have tried by many research groups for few sophistical purposes. 

 

Figure 1. SEM images of (a) a CNT pillar, showing the direction of the CNT axis, and (b) 
the alignment of the CNTs possible for single dimensional behaviour [8]. 

CNTs/polymer matrix composites, CNTs/metal matrix composites, CNTs/fiber matrix 
composites, CNTs/graphene matrix composites and CNTs/ceramics matrix composites have been 
praised for having extraordinary features like strength, electrical and thermal properties, light weight, 
stiffness, chemical inertness, damping properties, etc. than any other standard composites [12–15]. 
Since the overall electrical performance of CNT reinforced composites dominated by the 
inter-molecular conductive network, the influence of the CNTs entanglement is a critical       
issue [16,17]. The use of CNTs are now not limited with absolute engineering concept, rather has 
been expanded for energy, environmental, and medical branches [18]. CNTs regarded as quasi 1D 
nanomaterials that have a tendency to aggregate in bundles when forming composites [19]. 
Dispersion of CNTs has few health effects and seems that agglomeration likely inspires this. CNTs 
have a more possibility to be aerosolized. CNTs reinforced composites during abrasion released 
protruding CNTs, agglomerates of CNTs, and freestanding CNTs [20–22]. In spite of having 
marvelous properties, CNTs is sometimes avoided due to its agglomeration effect. Another form of 
carbon is becoming popular such as graphene. Graphene is being used to form metal, polymer matrix 
composites [23]. 

The CNTs has now classified as single wall carbon nanotubes (SWCNTs), double wall carbon 
nanotubes (DWCNTs), multiwall carbon nano tubes (MWCNTs) and so forth depending on their 
constructions/microstructure. However, for CNTs reinforced composites microstructure variation, 
damage and agglomeration behavior of CNTs pre-consideration for property improvement [24–26]. 
Any metallic matrix, alloy show cluster of reinforced particles among the grain boundary area 
depending on their vol% or wt%, the porosity of based metals, and grain size [27,28]. CNTs have a 
strong intermolecular attraction called van der Waals force [29,30]. CNTs tube to tube interactions 
also reduced physical properties compared to those in a dispersed state [31]. 
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This force entangles the triangular lattice structure of CNTs and produces bundling effect called 
clustering or agglomeration [32,33]. Even agglomeration exists irrespective of SWCNTs, DWCNTs, 
Amino-modified double wall carbon nanotubes (DWCNTs–NH2), MWCNTs and COOH-modified 
thin multi-wall nanotubes (MWCNTs–COOH) [33]. Agglomeration of CNTs affects the size 
(diameter/length) and distributions of filer materials/particles and overall is likely to decrease the 
aspect ratio, while significant insights have been achieved on various processing techniques, 
post-processing, strengthening, treatment, etc [34]. Many unresolved issues still need to be addressed 
theoretically as well as experimentally to harness the maximum benefit of CNTs reinforced 
composites. Thus, the choice of the matrix for reinforcement, processing route, and the processing 
parameters are very important.  

On the other hand, those are mandatory criteria to provide a uniform distribution of CNTs in the 
base matrix and good matrix-reinforcement interface. The surface of CNTs clusters are highly 
tortuous and considerably influence by processing techniques and chemical treatment solution. A 
good chemical agent can potentially reduce agglomeration tendency even after post processing [35]. 
To proclaim the uniform dispersion of CNTs in the matrix, several methods have been reported based 
on the processing route. They are ball milling, sonication, stirring (mechanical/magnetic), etc. 
followed by post-treatment [36–39]. The post-treatment also contribute for untangling of CNTs 
clusters and must not damage its structure. This clustering or agglomeration behavior is also real for 
any other composites that produce binary phase. The grain boundary becomes the agglomeration 
zone in two-phase CNTs-matrix interface [40,41]. A cluster of catalytic chemical vapor 
deposition-grown multi-wall carbon nanotubes is shown in Figure 2. 

 

(a)                (b) 

Figure 2. SEM images of a cluster of catalytic chemical vapor deposition-grown 
multi-wall carbon nanotubes in (a) 2 µm, and (b) 200 nm. Typical 
lengths/diameters/aspect ratios of the CNT are ~15 µm/15 nm/~1000 [42]. 

CNTs not only form clusters during reinforcement, but it also remains in cluster form when it is 
even pure. Most of the researchers worked with clustered CNTs when received from any company 
irrespective the way they produced [43]. In most of the composites, after a certain amount of CNTs, 
there is no significant additional reinforcing effect due to agglomeration [44]. Even after acidic, 
alcoholic, milling, functionalizing is done to reduce the agglomeration tendency, CNTs agglomerated 
at high contain rate. In this review, we have studied the effect of agglomeration on metal matrix, 
polymer, epoxy resin, ceramic matrix composites. In this work, we have presented some graphical 
and statistical evidence after reviewing numerous research papers. 
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2. Effect on metal matrix composites 

The agglomeration or clustering is a more acute problem for metal matrix composites. It is hard 
to disperse CNTs inside the metal matrix to prevent the formation of large CNTs clusters or 
aggregates due to their electrostatic and van der Waals forces as well as the density difference 
between CNTs and metal matrix composites [45,46]. The agglomeration and poor distribution of 
CNTs as reinforcement particles within a metal matrix depend on many factors such as homogeneity, 
the orientation of CNTs, nanotube matrix adhesion, nanotube aspect ratio, and the volume/weight 
fraction of nanotubes in the matrix [47]. The most common ever tried is Aluminum (Al) matrix. 
Simões et al. [48] worked on the 1.00 vol% of CNTs reinforced in the Al matrix and found enhance 
properties by Powder Metallurgy (PM) route with Sonication techniques for dispersion. However, the 
SEM image in Figure 3 shows the darks spotted region around the grain boundaries and depicted as 
clustering or agglomeration of CNTs. Better dispersion method produces less clustering effect up to 
1.0 vol% of CNTs in Al. The size and cluster increase with vol% of CNTs increase in reinforcement. 
In the same work, the researcher has summarized the clustering effect in an Al/CNTs and Ni/CNT 
composites depending on the grain size presented in Table 1. In their work, the introduction of more 
than 1 vol% CNTs reduce the mechanical properties while enhancing the clustering effect and soften 
the formed composite. This introduction also creates non-uniformed dispersion of CNTs with poor 
texture effect. 

 

Figure 3. SEM image of the Al/CNTs (1.0 vol%) nanocomposite [48]. 

Table 1. Maximum size of CNTs cluster, percentage of porosity, CNT clusters and 
average grain size as a function of CNTs content [48]. 

Composites CNT content 
(vol%) 

Porosity and CNT 
clusters (vol%) 

Maximum size of 
CNT clusters (μm) 

Average grain size 
(μm) 

Al/CNT 0 1.00 - 17 
0.50 4.88 89 16 
0.75 6.53 102 15 
1.00 5.95 78 16 
1.50 7.38 177 16 

Ni/CNT 0 1.05 - 15 
0.50 3.22 83 14 
0.75 3.96 155 13 
1.00 6.67 137 14 
1.50 12.47 310 16 
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Agglomeration not only effects on the mechanical properties but also on the machining 
characteristics. Woo et al. [49] tried an exceptional method of producing Al/CNTs powder by 
cryogenic milling. Al particles have ductility compared to 5 wt% and 10 wt% Al/CNTs composites. 
When sintered, Al particle welding may be more pronounced leading to the large particle 
agglomerates. The change of agglomeration is presented in Raman analysis publicized in Figure 4 
showing the growth of clusters spotted on the surface. These clusters adversely affect the machining 
process and subsequent micro/nano finishing operations. 

In Al/CNTs, CNTs exist in the form of bigger agglomerates and are co-embedded in the matrix. 
Figure 4 shows the comparison of optical microscopy and Raman images of Al powder and Al/CNT 
powder particles milled for different duration of time. The Raman image shows the distribution of 
the integrated intensity (area under the curve) of the CNT Raman signal in the wave number range of 
1320–1420 cm−1 [49]. 

 

Figure 4. Optical microscopy (upper row) and Raman images (bottom row) of (a,d) 
cross-sectioned Al powder particles milled for 9 × 10 min in comparison to (b,e) Al/CNT 
powder particles containing 10 wt% Al/CNT after milling for 3 × 2 min and (c,f) 9 ×   
10 min [49]. 

Powder can rolling technique was successfully implemented in order to get carbon nanotubes 
reinforced aluminum strips and better dispersion of the nanotubes was made possible [50]. Good 
uniform distribution of CNTs without agglomeration of Al matrix reported being found in ultrasonic 
and ball mill attrition [51,52]. Pham et al. [44] observed that CNTs percentage could be increased up 
to 3 wt% for Copper (Cu)/CNTs composite with an effective increase of Brinell hardness as 
presented in Figure 5. An increasing trend of CNTs drops the hardness due to clustering or 
agglomeration of CNTs in a large group. Some research her is suggesting chemical treatment of 
CNTs before composite formation to prevent the clustering effect. However, the dispersion of Cu 
particles can be enhanced by molecular level mixing of Cu particles in functionalized CNTs in a 
solvent. Presence of CNTs clusters in processed composites especially when CNTs are more than   
1 wt%, has often led to a reduction in the properties instead of improvement. For example, the effect 
of CNTs agglomeration on the conductivity of Magnesium (Mg) matrix has been studied by     
Nai et al. [54]. Liu et al. [55] suggested Ultrasonic dispersion to disperse CNTs in Mg alloy (AZ91D) 
and using a dispersion agent due to the strong interface bond between CNTs and Mg alloy matrix.  
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(a)                   (b) 

Figure 5. (a) Dependence of the Brinell Hardness (HB) of the Cu/CNT nanocomposite 
on the mass fraction of the CNTs, and (b) Yield strength and Young modulus of Cu/CNT 
nanocomposites with an increasing volume percentage of CNTs [53]. 

During a review of metal matrix nanocomposites, Malaki et al. [56] emphasized the use of 
dispersing techniques (e.g., melt ultra-sonication) to avoid agglomeration of nanoparticles. However, 
in their work the de-agglomeration of nanoparticle clusters in the matrix is possible but need special 
in-situ observation to develop a dynamic principle. Park et al. [57] attributed the difficulty of 
dispersing the 1–5 wt% CNTs in Mg matrix due to the stickiness of CNTs. This group coated CNTs 
with Silicon (Si) to reduce the agglomeration behavior and sintered the composite. However, the 
results are not as imperative as expected. Thus, they further smash the sintered product using zirconia 
ball (10 mm dia) in a tri-axial vibrating-type ball miller with a rolling rate of 1200 rpm for 12 h in 
presence of argon gas. The resulting uniformed dispersion of MWCNTs is shown in Figure 6. 

 

Figure 6. SEM micrographs of (a) the pristine MWCNTs, and (b) MWCNTs with Si 
coating [57]. 

However, sintering and hot extrusion as the post-treatment process damage CNT structure. Even 
for the successful sintering CNTs agglomerates around the grain boundaries [58]. Researchers are 
continuously working to enhance the interfacial characteristics of CNT in the matrix as 
reinforcement elements. Reinforced Mg–CNTs composites are more adversely affected by the 
clustering effect of CNTs compare to Nickel (Ni) coated Ni/CNTs in Mg matrix. The consequence 
has discussed by Nai et al. [54]. They observed simultaneous enhancements of the micro-hardness, 
ultimate tensile strength and yield strength (0.2%) by 41%, 39%, and 64% respectively for the 
Mg/CNTs (0.3 wt%) composites with Ni coating on CNTs. 

From Figure 7a [54] it is depicted that small clusters of CNTs are formed in some areas of the 
monolithic Mg/CNTs reinforced composites. In these cluster zones, CNTs come into contact directly 
among themselves other rather than with the Mg particles. Thus, effective bonding is hindered 
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between the CNTs and the Mg particles resulting in the associated porosity and low fracture 
toughness. In contrast, the addition of Ni coating on CNTs prevents the clustering of Ni–CNTs 
(Figure 7b) [59]. Yamanaka et al. [60] used laser near-net shape melting processing of Ni/MWCNT 
composites. Physical properties such as thermal conductivity reduce up to half of the original 
conductivity of pure Ni. The reasons are reported to be the presence of a large amount of porosity 
and CNTs degradation into carbides, a large amount of porosity and CNT degradation into carbides 
and agglomerations also mention by other few authors [60–62]. The sintered direction has also the 
influence of thermal conductivity up to 3 vol% and 4 vol% [60]. Beyond this percentage, 
conductivity has reported being decreasing constantly due to large agglomeration phenomenon. The 
large number of CNTs in the Ni matrix caused restriction of CNTs movement and form cluster. For 
Ni/MWCNTs, the 5 vol% MWCNTs SEM image is shown below. The presence of cluster CNTs, as 
in Figure 8, is confirmed in the CNTs concentrated parts of the sample. 

 

(a)                (b) 

Figure 7. Representative SEM micrographs of (a) Mg/0.3 wt% CNT [54], and (b) 
Mg/0.3 wt% Ni–CNT composites, showing the difference in porosity levels and 
clustering [59]. 

 

Figure 8. CNT bundles of Ni/5 vol% CNT composite [60]. 

In 1 vol% Cu/CNT composite formation by Equal Channel Angular Pressing (ECAP), the 
researcher has primarily used ethanol and vibration treatment for an hour with an ultrasonic cleaner 
to isolate agglomerated CNTs powder. Afterward, severe plastic deformation by ECAP techniques 
appears effective in de-agglomerated the CNTs in the Cu matrix for multiple numbers of treatment [63]. 
An increasing number of ECAP passes can effectively break the cluster CNT agglomerates to form 
better dispersion of CNTs in the Cu matrix as shown in Figure 9 [64]. 
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(a)               (b)              (c) 

Figure 9. Scanning electron micrographs of powder ECAP processed CNT–Cu samples 
by (a) 1 pass, (b) 4 passes, and (c) 8 passes [64]. 

In a similar type of work, ball milled Al/CNTs powders have used for bonding Mg sheet. In this 
case, Al/CNTs function as an intermetallic compound containing and occurring CNTs inter-diffusion 
into the Mg sheet. Due to shear flow, CNTs become separated from Al/CNTs bond and eventually 
distributed uniformly in Mg matrix [54,65]. Researcher working on the CNTs agglomeration 
undoubtedly concluded that wt/vol% increase of CNTs as reinforced particles accelerated the 
clustering effect [66]. Akinwekomi et al. [67] attempted to develop Mg/CNTs composite by rapid 
sintering method. The properties improvement remains acceptable up to 3 vol% of CNTs. Increase 
the volume fraction of CNTs to 5 vol% in the composite mixture is not successful, as agglomerates 
of CNTs remain on the alloy powder (dashed circle) in Figure 10b,c. 

 
(a)              (b)              (c) 

Figure 10. (a) CNTs embedded on AZ61 surface after milling for 30 min (AZ61/3 vol% 
CNT), (b) agglomerates of CNTs in AZ61/5 vol% CNT, and (c) persistent agglomerates 
of CNTs after milling (a) for 60 min [67]. 

To reduce the agglomeration and clustering, in AZ61/5 vol% CNT is milled for 60 min. The 
milling of the composite mixture for 60 min does not significantly improve the dispersion of the 
CNTs and some agglomerates can still be seen in Figure 10c. Therefore, further Mg-based AZ61 
matrix is restricted to reinforced with a maximum of 3 vol% of CNTs processing. CNTs 
agglomerations exist irrespective of the processing techniques and found for Mg-based alloy process 
through stir friction process. Magnesium alloy (RZ 5) with Boron Carbide, MWCNTs particles 
reinforcement are founded with no agglomeration effect [68]. Figure 11 shows that Mg particles 
become shattered with no agglomeration effect. However, this research is based on the grain size 
difference of the matrix and reinforcement materials and low contaminations. The density of the 
CNT reinforced composites possibly comparable up to 8 wt% CNTs. Addition of CNTs beyond this 
amount causes a decrease of composite density drastically due to agglomeration and      
clustering [69,70]. Electroless deposition and spark plasma sintering are capable to remove the 
agglomeration problem of the MWCNTs and the grain growth problem of the nanocrystalline Cu 
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matrix [71]. In a similar manner, a lot of researches have done on such a study. A statistical analysis 
is shown in Table 2. 

 

(a)                (b) 

Figure 11. Microstructure achieved at the stir zone after single pass FSP (a) without the 
use of particle reinforcement, and (b) using MWCNT particles [68]. 

Table 2. CNTs/metal matrix composite agglomeration. 

Matrix Reinforcement & strengthening 
method 

CNTs (vol/wt%) Presence of agglomerates & remarks Ref. 

Cu Ultrasonic cleaning + particles 
composite system + spark 
plasma sintering 

5, 10 wt% Yes. CNTs are aggregated into ropes or 
knotted lumps due to strong inter-tube van der 
Waals attraction. 

[6] 

Cuprous oxide Vacuum hot pressing at H2 
atmosphere 

0, 1, 3, 5 wt% Yes, at 5 wt%. Thermal conductivity 
decreases with the increase of the CNTs 
concentration. 

[72] 

Al Ball milling + Sonication 2 wt% Yes. Adverse effects on the properties of final 
composite products due to the increased 
porosity. 

[73] 

2024Al matrix Cold isostatic pressing + Hot 
pressing 

1 wt% Yes, but low. Elastic modulus and the tensile 
strength were enhanced markedly. 

[74] 

Aluminum–silicon 
alloy powders 

Spray drying 5, 10 wt% Yes, 10 wt%. Partial CNT surface damage in 
case of the 10 wt% CNT coating due to CNT 
mesh formation and smaller size of spray dried 
agglomerate. 

[75] 

Al Ball milling 2 wt% Yes. Presence of clusters at the early stage of 
milling which acts as the precipitates results in 
the lower Young’s modulus. 

[76] 

Al Ball milling + Nanodispersion 0.8, 1.6 vol% Yes. Poor dispersion of CNTs in the matrix 
exhibited a non-uniform fracture surface. No 
aggregations in secondary steps are claimed. 

[77] 

Magnesium 
oxychloride + epoxy 

Magnesium oxychloride cement 
pastes were prepared by ratios of 
MgO:MgCl2 = 2.2:1. Then 
coated with epoxy/CNTs 

0, 0.02 wt% Yes. Water consistency value increases by the 
addition of CNTs due to that the additional 
high specific surface area acts as an interface 
for an efficient stress transfer and causes the 
strong tendency of the CNTs to form 
agglomerates. 

[78] 

AZ91 + Mg Melt stirring + high-pressure die 
casting 

0.1, 0.5, 1 wt% Yes, at 1 wt%. Agglomerates of entangled 
MWCNTs with a size of up to 2 µm can be 
observed. 

[79] 

Al Induction melting 0, 0.1, 0.2 vol% No. No cluster or segregation of the nanotubes 
was seen. 

[80] 

Mg Hot isostatic pressing under high 
pressure. 

1, 2 wt% Yes. Homogeneous dispersion of MWCNTs 
in Mg matrix is obtained. 

[81] 

Ag Modified molecular level 
mixing method 

0, 6, 12 vol% Yes, at 12 vol%. Electrical conductivity 
reduces. 

[82] 

Cu Melt stirring 0.1 wt% Yes. The micrograph shows that the raw 
MWCNTs are agglomerated in big bundles. 
This act as defects instead of reinforcements. 

[83] 

Al (AA5XXX) Ball milling + hot isostatic 
pressed + extrusion 

2 wt% Yes. CNTs clusters were dispersed and 
claimed as uniform distribution. 

[84] 
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3. Effect on polymer/epoxy resin/ceramic matrix composites 

Polymer and ceramics have shown well dispersion characteristics than metal matrix composites 
and are being considered since the innovation of CNTs in 1991 [53]. If CNTs disperse in the matrix, 
they can be hardly identified due to their small size, the only agglomerated portion could be 
visualized. This agglomeration can further be promoted by a temperature increase in pre- or 
post-processing of the composites is shown in Figure 12. Thus, before composite formation, the 
cured CNTs is better to keep into the refrigerator to prevent agglomeration growth [42]. The CNTs 
network in epoxy resin is affected by the shear force rates. This shearing force with low shear rates 
(0.001–0.1 s−1) produce CNTs agglomeration while shearing with high shear rates (1–100 s−1) 
destroyed the clusters. The electrical percolation threshold for this type of composites depends on the 
calendered and non-calendered CNT/epoxy suspensions. 

 

Figure 12. Absolute values of the agglomerate build-up and destruction 
velocity-measured in log(agglomerate area%) per time (min)—for various suspension 
temperatures. The suspension consists of 0.05 wt% nanocyl CNT in LY556 epoxy   
resin [42]. 

In a similar type of work, Bisphenol F-based epoxy resin/CNTs were investigated. Beforehand, 
the processed mixture was cured with diethyl toluene diamine. The optical micrographs and Raman 
analysis show reduced agglomeration and a homogeneous distribution of MWCNTs in the epoxy 
matrix. The solvent-free method is the reasons behind this reduced tendency [85]. The better the 
dispersion of CNTs in epoxy resin, the better the electrical conductivity is achievable [85–87].    

Shi et al. [88] and Alian et al. [89] develop an elastic model to analysis the agglomeration behavior 
mathematically. The model was also followed by RAE model which is an analytical micromechanics 
method. Rafiee et al. [90] used RAE method to study the young modulus of CNTs/polymer 
composites. They studied agglomeration, non-uniformed dispersion and wavy pattern of CNTs as 
random parameters by Equivalent fiber theory [91], N3M method [92]. The results concluded are the 
change of Young modulus with single/multilayer CNTs construction, clustering size, etc. in the 
two-phase sphere model. 

Peng et al. [93] develop modeling to create a 2D finite element modeling of nanocomposite with 
polymer nanoparticles. They showed that the degree of clustering has a strong influence on the 
elastic modulus of the nanocomposite. The agglomeration effect can be reduced by using treated 
CNTs in reinforcement. 
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Ma et al. [94] has worked on the amino-functionalization to reduce the clustering effects. The 
clustering effect further forms CNTs ropes and tangle larger. This amino-functionalization has 
proven effective up to 1 wt% of CNTs in epoxy–polymer composites. This can be justified by the 
SEM image is shown in Figure 13. Javadinejad et al. [95] applied numerical FEM to demonstrate the 
clustering effect of CNTs in the composite as shown in Figure 14. Figure 14 shows a 3D view of four 
colonies in different volume fractions of CNTs. The colonization/agglomeration effect increases with 
the increase of vol% of CNTs in epoxy resin is shown in Figure 15. 

 
(a)               (b) 

Figure 13. SEM images of the fracture surface of epoxy-containing 0.5 wt% (a) pristine 
CNTs, and (b) amino-CNTs [94]. 

 

Figure 14. 3D view of the RVE with clustering of CNTs in four colonies in epoxy resin: 
(a) 0.18 wt%, (b) 0.36 wt%, (c) 0.9 wt%, and (d) 1.8 wt% [95]. 

 
(a)                   (b) 

Figure 15. (a) Variation of YS of CNT/epoxy nanocomposite with respect to MWCNT 
volume fraction, and (b) Effect of CNTs agglomeration on YS of CNT/epoxy 
nanocomposite for four colonies model and 1 vol% CNT loading [95]. 
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Polymer/CNT composites, ultrasound and high-speed shearing is a powerful dispersion method. 
They are the simplest and suitable to increase the dispersion of CNTs in a polymer matrix [96]. If the 
dispersion is not worked effectively, it may be leading to many defect sites (agglomerate, bundle 
together and entangle) in the composites and limit the efficiency of CNTs on polymer matrices. 
Nguyen-Tran et al. [97] have found agglomeration for carbon fiber-reinforced 
polyamide-6/polypropylene composites. CNTs of 1.5 wt% significantly introduce agglomeration 
defects and reduce mechanical properties.  

Figure 16 shows the image of a fracture surface also contains agglomerated CNTs that are 
claimed as low fracture toughness. Villoria et al. [98] compute the properties of CNT clusters by 
their developed model as in Eqs 1 and 2. The model could be applied to any type of fiber 
reinforcement where agglomeration of CNTs is present. 

݇ௗ௦௖ 	ൌ 	 ݇௠ 	൅	
ሺ௞೎೗ೠೞ೟೐ೝ	ି	௞೘ሻ஼೎

ଵ	ା	
ೖ೎೗ೠೞ೟೐ೝ	ష	ೖ೘

ೖ೘	శ	
రഋ೘
య

                       (1) 

ௗ௦௖ߤ 		ൌ 	௠ሾ1ߤ	 െ	
ଵହሺଵ	ି	௩೘ሻሺଵ	ି	

ഋ೎೗ೠೞ೟೐ೝ
ഋ೘

ሻ஼೎

଻	ି	ହ௩೘	ା	ଶሺସ	ି	ହ௩೘ሻ
ഋ೎೗ೠೞ೟೐ೝ

ഋ೘

ሿ               (2) 

Where ܥ௖ refers to the volume fraction of agglomerations zone which is related to the overall CNTs 
fraction by ௙ܸ 	ൌ  .௙being the CNT concentration in of a clusterܥ ,௖ܥ௙ܥ	

 

Figure 16. FE-SEM images of (a) CNT agglomeration in the fracture surface of 
CF-reinforced PA6/PP composites (30 wt % PP) with 1.5 wt % CNTs, and (b) its 
enlarged image [97]. 

Li et al. [99] obtained the same effect for CNT-reinforced carbon/carbon composites. As CNTs 
content increases up to 1.2 wt%, inter-laminar shearing strength increases by 30%. But, like the other 
CNTs shearing strength starts to decrease as CNTs content increases up to 1.5 wt%. Agglomeration 
attributed to a lot of CNTs content ends up in the decrease of contacted space between CNTs and 
matrix and reduces the result of resistance to delamination. Hence, inter-laminar shearing strength 
decreases. The SEM image of the failure surface of nanocomposites is given below in the Figure 17. 

Agglomeration of CNTs leads to non-homogenous dispersion with small assemblies of CNT 
reinforcements in certain points throughout the composite. That causes a decrease in the mechanical 
properties [100,101]. Some researchers have proposed degassing the CNTs powder to remove 
moisture from the powders. The moisture content of only 0.1 wt% shows considerable  
agglomeration [102]. Moisture added weight of the composites and act as an interfacial agent of 



768 

AIMS Materials Science  Volume 6, Issue 5, 756–780. 

intermolecular attraction. The dispersion defect and agglomeration are clearly visible for      
Casini et al. [103] experiments. Inadequately scattered CNTs in the polymer matrix appeared by the 
biggest size of agglomerates. Figure 18 displays the representative microscopy images of 
polypropylene compounds containing 0.5 vol% for each kind of CNTs considered are 
non-functionalized, functionalized with amino groups (–NH2), functionalized with carboxyl groups 
(–COOH) [103]. Long CNTs have a diameter of 8 nm, and length of 10–30 μm. Therefore, aspect 
ratio becomes 2500 for long CNTs than the short CNTs. Entangling and agglomeration of CNTs are 
accelerated by this high aspect ratio [104]. Krause et al. [105] worked to gain better electrical 
properties of polycarbonate/CNT composites. These composites required a high degree of CNT 
dispersion within the thermoplastic matrix.  

 
(a)              (b) 

Figure 17. Fracture surface of inter-laminar shearing strength of (a) 1.5 wt%, and (b) 
1.2 wt% CNTs C/C composite [99]. 

 
(a)              (b)              (c) 

Figure 18. Optical micrographs illustrating the state of agglomerate dispersion of 
nanocomposites with a different type of 0.5 vol% MWCNTs: non-functionalized (a) 
functionalized with amino groups, (b) and (c) functionalized with carboxyl groups [103]. 

They observed clustering of CNTs in polycarbonate due to strong interactions between 
neighbored CNTs caused by high van der Waals forces and physical entanglements. The research 
group suggested shortening of CNTs length by ball milling. This suggestion is better to explain by 
Ahn et al. [106] who described that MWCNTs tend to be compacted by the impact of the milling 
balls. Afterward, SEM image shows CNTs form agglomerates with increased size during the ball 
milling process. On the same time, these agglomerated CNTs adversely affect the dispersibility. The 
researcher has simulated the effect of CNTs agglomeration in computer-generated samples. For 
example, Tarlton et al. [107] developed an algorithm called Monte Carlo hopping algorithm showing 
that uniformly disperses decrease conductivity of chae with the sacrifice of mobility and vice versa. 
They found that when the CNTs focus was near the permeation edge, a progressively uniform CNTs 
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dissemination could be accomplished and lead to an improved conductivity.  
Recently it has been shown how bundling or agglomeration of DWCNTs affects the behavior of 

the composite. Dispersion of the CNTs within the polymer matrix plays a key role in the preparation 
of the conducting nanocomposites. TEM and Raman spectroscopy have been used by      
Tishkova et al. [108] to characterize the distribution of the DWCNTs in the polymer matrix. Figure 19 
represents examples of the TEM images of 0.8 wt% DWCNTs/poly (ether-ether-ketone) composite 
(PEEK). Figure 19a shows a DWCNTs agglomerated surrounding by PEEK matrix particles. From 
the images of Figure 19b, it is revealed an inhomogeneous dispersion of CNTs in the polymer matrix 
and most of the nanotubes form large agglomerates. 

 

Figure 19. (a) TEM image of 0.8 wt% DWNTs/PEEK composites, and (b) higher 
magnification view of (a) in the selected area [108]. 

Domínguez et al. [32] show the bundling effect SWCNTs in a polymer matrix by Raman 
analysis as shown in Figure 20. They characterized the dispersion of SWCNTs by X-ray diffraction, 
Raman Spectroscopy, and TEM is shown in Figure 20a,b,c, respectively. Figure 20a indicated 
desegregation because of the bundle’s lattice peaks disappearance [109]. Figure 20b supported the 
de-bundling of SWCNTs due to the radial breathing mode shift displacement [110]. From TEM 
micrographics of Figure 20c, it is clear that individual polymer warps the CNTs and produce bundles 
of 3–4 tubes at a different spot. 

 
(a)                (b)              (c) 

Figure 20. (a) XRD diffractogram, (b) Radial Breathing Mode part of Raman Specter, 
and (c) TEM micrography [32]. 

Again, MWCNTs filled polypropylene (PP) nanocomposites prepared through PP/MWNT 
master-batch dilution process was found with insignificant agglomeration tendency. The 
master-batch dilution assisted with a high shear extruder eliminates significant agglomeration of 
MWCNTs [111]. However, this happens for only 1 wt% of CNTs. Increase in wt% aggregates CNTs 
as clusters clearly visible by SEM images is shown in Figure 21. Kumar et al. [112] describe an 
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express method called Representative Volume Element (RVE) model to incorporate the effects of 
CNTs agglomeration on the elastic behavior of CNTs reinforcement in polymer composites. The 
vertically aligned CNTs–polymer architecture presented by García et al. [8] and Bello et al. [113] has 
described reducing the agglomeration effect. CNTs potentially modify glass–fiber reinforced 
polymer (GFRP) composite laminates. Researches tried to form such composite laminates using 
ultrasonication and the hand lay-up method [114]. CNTs content of 0.75% resin (phr) improves 
interlaminar shear strength and flexural strength 15.7% and 9.2%, respectively. Though 
agglomeration reduces the interlaminar shear strength. 

 

(a)             (b)             (c) 

Figure 21. SEM images of MWCNTs filled polypropylene nanocomposites at (a) 1 wt% 
MWCNTs, (b) 2 wt% MWCNTs, and (c) 3 wt% MWCNTs [111]. 

With further increase of the content of CNTs become easily, induce an agglomeration of CNTs 
is shown in Figure 22. When MWCNTs is epoxidized with polysulfide resin to form CNTs/epoxy 
polysulfide nanocomposites, agglomeration in the nanocomposites with a higher content of 
MWCNTs act as large particles. The clusters then create space/void to contain higher apparent filler 
loading. These agglomerates confine polymer particles in the void space between MWCNTs and 
effectively reduce the volume fraction of the epoxy polysulfide matrix [115,116]. CNTs/polysulfone 
composites with 0.068 wt% CNTs also agglomerate similarly, but CNTs-to-CNTs contact after the 
percolating network increases conductivity for this case [117]. 

 

Figure 22. SEM micrograph of ILSS test showing an agglomeration particle in 0.75 phr 
CNTs/GFRP composite laminates fracture surface [114]. 

In the word of Yurdakul et al. [118] electric field effects on CNTs/vinyl ester has affected by the 
agglomeration of CNTs. Composite formed by vinyl ester matrix containing low content (0.05, 0.1 
and 0.3 wt%) of DWCNTs and MWCNTS with and without amine functional groups brings 
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synergetic effect to reorient the agglomerated CNTs clusters. This synergetic effect modifies the 
distribution of radicals in the resin. In bulk composite (large CNTs contents) due to the synergetic 
effect, field-induced agglomeration and cluster formation occurs. Li et al. [119] studied electrical 
conductivity about the CNTs/polymer composites. As the CNTs concentration increases within the 
composite, the number of the molecular interfaces increases. From Figure 23, we can see that 
dielectric constant increases with increasing MWCNT concentration. When pristine MWCNTS 
reaches 0.06 vol% and oxidized MWCNTs reaches 0.08 vol%, they are at percolation threshold 
energy. More concentration of CNTs beyond this value will agglomerate MWCNTs. CNTs produces 
cluster in cement pastes [120]. MWCNTs (up to 0.5 wt% of cement) with/without surfactant were 
characterized. Composites with surfactant has found with 0.25% increased tensile strength and better 
mechanical properties. In a similar manner, a lot of researches have done on such a study. A 
statistical (Table 3) is given below. 

 
(a)                        (b) 

Figure 23. Dependence of the electrical conductivity and dielectric constant of (a) 
pristine MWCNT/polyvinylidene fluoride composites, and (b) oxidized MWCNT/ 
polyvinylidene fluoride composites on the MWCNT concentration [119]. 

Table 3. CNTs/polymer/epoxy resin/ceramic composite agglomeration. 

Matrix Reinforcement & 
strengthening method 

CNTs vol/wt% Presence of agglomerates & remarks Ref. 

Epoxy system Sonication 0.025, 0.05 wt% Yes. Good dispersion was not achieved. [33] 
- - - Yes. A review paper that has described a lot 

about agglomeration of CNTs in the polymer 
matrix. 

[121] 

Polypropylene Melt mixing 0.5–7.5 wt% Yes. Low agglomeration effect due to melt 
dispersion. Lower matrix viscosity promotes 
secondary agglomeration during the 
compression molding step. 

[122] 

Polyvinyl alcohol Used prepared sample 
to study machining 

1, 2, 4 wt% Yes. CNTs loading beyond 4 wt%, the CNTs 
were observed to form clusters within the 
polymer matrix. 

[123] 

Polystyrene Injection moulding 
process 

20 wt% Yes. Monte Carlo model was used for 
simulation to predict the electrical 
conductivity. The agglomeration has been 
neglected. 

[124] 

Polymer Injection molding 1 wt% Yes. Both partial alignment and MWCNTs 
agglomeration were observed. 

[125] 

Polyvinyl alcohol Solvent method Not mentioned Yes. Substantial agglomerates of nanotubes 
are visible. 

[126] 

Vinyl alcohol Melt mixing 0.1, 0.3, 0.5, 1 wt% Yes. Entanglement of CNTs reduce 
conductivity. 

[127] 

Epoxy Sonication Varying ranges Yes. Varying cluster/aggregate depending 
on the composites. 

[128] 

Vinyl alcohol Gum arabic treatment 2 wt% Yes. Interfere with the tensile properties. [129] 



772 

AIMS Materials Science  Volume 6, Issue 5, 756–780. 

Modelling the behavior of CNTs composites is therefore a long queue of scientific works, both 
theoretical and experimental approaches. Kundalwal et al. [130] worked on the micro-mechanics of 
CNTs/fiber composites and discussed about some theoretical model. Kundalwal also proposed 
SWCNTs/fiber analysis model called Fuzzy model [131]. Typical issue covered by the model is 
agglomeration of CNTs, the misalignment and the difficulty in manufacturing very long CNTs. The 
same model is quite effective for polymer also. Feng et al. [132] used micro and nano approaches to 
elucidates the key factors of CNTs agglomeration, that influence the mechanical properties of formed 
composites. Wernik et al. [133] analyzed agglomeration in embedded nano-reinforced adhesive for 
the case of 3.0 wt% CNT loading. Results shows that composite may begin to degrade for 
agglomeration. They suggested to investigate the effect of CNTs agglomeration. Thus research 
introduces additional parameters related to the size and density of the agglomerates with the 
conclusion of a micro model. Some research made on multiscale model of hybrid composites such as 
Eshelby–Mori–Tanaka model isotropic hybrid material [134,135]. This scheme takes into account the 
agglomeration of the nanoparticles in the CNTs/polymer/fiber laminated composites. 

4. Discussion 

This review on CNTs agglomeration comprises the overview of reinforcement structure, the 
bonding method, dispersion method, and consequences of clustering of CNTs along with their effects. 
The review has retrieved the following outcomes by a sharp understanding of the cited literature. 
They are: 

(a) CNTs remained in aggregated form when prepared due to van der Walls forces. Dispersion 
method can considerably reduce this tendency. However, re-agglomeration is common when 
contamination increases. 

(b) Metal matrix CNTs reinforced composites have more agglomeration than polymer, epoxy, 
ceramics, etc. 

(c) Agglomeration/clustering of CNTs has a direct effect on the thermal, electrical, and 
mechanical properties of composites. They act as a barrier to load transfer among the grains. Thus all 
physical properties are reduced. 

(d) Maximum volumetric/weight percentage addition is limited with a maximum of 20% for 
metal matrix, and 5 % for polymer, epoxy, ceramics etc. However, 2–5% CNTs/metallic matrix and 
0–2% CNTs/polymer, epoxy, ceramics, etc. are recorded common. Agglomeration occurs around the 
grain boundaries. 

(e) Few rare earth/CNTs are available materials, but their production method is the major 
concentrated rather than agglomeration. 
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