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Abstract: A series of CN-terminated alkanethiols were synthesized and used to generate self-

assembled monolayers (SAMs) on gold. The SAMs were characterized using ellipsometry, contact 

angle goniometry, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), 

and X-ray photoelectron spectroscopy (XPS). The SAMs were compared to those derived from a 

series of analogous CH3-terminated alkanethiols. The CN-terminated SAMs exhibited lower film 

thicknesses than the CH3-terminated SAMs, which was largely due to their greater tilt angle on the 

surface. Additionally, the CN-terminated SAMs form well-ordered films on flat gold surfaces with 

relative packing densities being indistinguishable from the CH3-terminated SAMs. The CN-

terminated SAMs exhibited a less hydrophobic character than the SAMs derived from CH3-

terminated adsorbates, which was attributed to the dipole moment of the terminal group as well as 

the lone pair of the nitrogen atom of the CN-terminal group. 
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1. Introduction 

The discovery of self-assembled monolayers (SAMs) in the early 1980s by Nuzzo and Allara 

provided a means in which to fabricate organic surfaces with definite chemical identities and explicit 

interfacial properties [1]. Surfaces generated from functionalized SAMs have been applied for many 

chemical, physical, and biological processes such as: corrosion [2], protein or cell adhesion [3], 

crystal growth [4], DNA loading and releasing [5], wetting [6], friction [7], and so forth. Substantial 

attention has focused on using SAMs as model systems to examine specific surface properties to 

reveal the origin of the interactions of the aforementioned processes occurring at organic  

interfaces [8–10]. SAMs generally consist of a headgroup that binds to the substrate, a tailgroup 

representing the film interface, and a hydrocarbon spacer linking the head and tail groups [8]. The 

molecular structure and packing density of SAMs, in most instances, are established by the 

headgroup-substrate and intermolecular interactions [9,11,12], whereas the tailgroup is largely 

responsible in determining the vast majority of the monolayer’s surface properties [9,10,11,13]. The 

combination of having an enormous array of compatible terminal functionalities along with the 

ability to manipulate the molecular architecture makes SAMs increasingly useful in scientific and 

practical applications [5,14–16]. 

Numerous studies have examined the interfacial, chemical, and structural properties of -

terminated alkanethiolate SAMs on gold substrates [7,10–12], which include -terminated SAMs 

having systematically varied hydrocarbon backbone lengths in an effort to provide further insight 

into the well-known “odd-even” effect [17–19]. Some recent examples include SAMs with a  

phenyl [20] or trifluoromethyl [21] terminal group, all of which exhibit unique “odd-even” effects as 

a result of the orientation of the terminal moiety [18,19]. Taking into account the polarity of 

acetonitrile, the introduction of a nitrile group at the SAM interface generates a surface composed of 

oriented dipoles. The orientation of the dipole should depend on whether the hydrocarbon backbone 

contains an even or odd number of methylene units, similar to the surface dipole found in CF3-

terminated SAMs [21]. Wettability measurements conducted on the CF3-terminated SAMs with polar 

liquids showed a lower advancing contact angle on SAMs having an odd number of methylene units 

and a higher advancing contact angle on SAMs having an even number of methylene units [21]. The 

“odd-even” effect observed in the wettability of CF3-terminated SAMs was attributed to the 

orientation of the dipoles present at the SAM interface [21].  

Nitrile-terminated SAMs have potential applications in microcontact printing (soft lithography), 

a technique based on printing and molding patterns using elastomeric stamps. For example, a mixed 

monolayer can be patterned on a gold surface by two alkanethiols terminated with different 

functionalities; one microprinted from a stamp, while the other post adsorbed from solution [22]. For 

the specific example above, patterns can be made that consist of regions with entirely different 

characteristics based on the interfacial and structural properties of the terminal groups, CH3- and CN-

groups. The patterned surface, can then be used to grow polymer patterns by taking advantage of the 

coordinating ability of Pd(II) to the CN-termini [22]. In addition to serving as microcontact printing 

inks, CN-terminated SAMs also serve as a great candidate for the preparation of patterned surfaces 

for chemical lithography as well as for nanofabrication by electron irradiation [23]. 
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In this study, a series of nitrile-terminated alkanethiols of the form CN(CH2)nSH, where n = 14–

17 (CNCnSH, shown in Figure 1), were synthesized and used to make SAMs. The SAMs formed 

from the nitrile-terminated adsorbates were characterized and compared to those derived from the 

analogous n-alkanethiols by using optical ellipsometry, contact angle goniometry, polarization 

modulation infrared reflection absorption spectroscopy (PM-IRRAS), and X-ray photoelectron 

spectroscopy (XPS). 

 

Figure 1. Adsorbates used in this study: CNCnSH and CH3CnSH, where n = 14–17. 

2. Materials and methods 

2.1. Materials  

Gold shot (99.99%) was purchased from Americana Precious Metals. Chromium rods (99.9%) 

were purchased from R. D. Mathis Company. Single-crystal silicon (100) wafers, which were 

polished on one side, were purchased from North East Silicon Technologies and rinsed with absolute 

ethanol (Aaper Alcohol and Chemical Co.) before use. The liquids used for contact angle 

measurements were of the highest purity available from Aldrich Chemical Co. and were used without 

purification. The n-alkanethiols used to generate SAMs were either commercially available or 

synthesized using established methods. Potassium iodide, acetone, dichloromethane, triethylamine, 

and hexanes were purchased from EM Sciences and used as received. Tetrahydrofuran (THF) (EM 

Sciences) was dried by passage through alumina and distilled to remove butylated hydroxytoluene 

(BHT). Allylmagnesium chloride (1.0 M), 11-bromo-1-undecanol, potassium thioacetate (KSAc), 

2,2’-azobisisobutylnitrile (AIBN), sodium cyanide (NaCN), dimethyl sulfoxide (DMSO), 

triethylamine (NEt3), p-toluenesulfonic acid (PTSA), lithium bromide (LiBr), borane tetrahydrofuran 

(1 M BH3·THF), methanol (MeOH), -pentadecalactone, 16-hexadecanolide, dilithium 

tetraclorocuprate(II) (Li2CuCl4 in THF), and hydrobromic acid (HBr; 33% in acetic acid) were 



174 

AIMS Materials Science                                                         Volume 5, Issue 2, 171–189. 

purchased from Aldrich Chemical Co. and used as received. Oxacyclopentadecan-2-one was 

purchased from 1717CheMall. Methanesulfonyl chloride (MsCl), 3,4-dihydro-2H-pyran (DHP), 

thioacetic acid (AcSH), and potassium carbonate (K2CO3) were purchased from Acros Organics and 

used as received. 10-Bromo-1-decanol and 12-bromo-1-dodecanol were both purchased from TCI 

America and used as received. Lithium aluminum hydride (LAH) and 1,4-dithio-DL-threitol (DTT) 

were purchased from Alfa Aesar and used as received. 11-Bromo-1-undecene was purchased from 

Lancaster and used as received. Thin-layer chromatography (TLC) was carried out using Sorbent 

Technologies silica gelplates with UV254. The eluted TLC plates were analyzed in an iodine 

chamber. Column chromatography was carried out using silica gel (200–300 mesh) purchased from 

Natland International Corp. Nuclear Magnetic Resonance (NMR) spectra were recorded on a General 

Electric QE-300 spectrometer operating at 300 MHz for 
1
H; the data were collected in CDCl3 and 

referenced to  7.26. 

2.2. Methods 

2.2.1. Preparation of SAMs  

Solutions of the CN- and CH3-terminated alkanethiols were prepared in weighing bottles that 

were cleaned previously in piranha solution (7:3 H2SO4/H2O2) for 1 h [Caution: Piranha solution 

reacts violently with organic materials and should be handled carefully]. The weighing bottles were 

then rinsed with deionized water and absolute ethanol. The gold substrates were prepared by resistive 

evaporation of ca. 100 Å of chromium onto the polished surfaces of the silicon wafers, followed by 

the evaporation of ca. 1000 Å of gold; chromium promotes the adhesion of gold onto silicon. 

Deposition pressures were maintained at ca. 1 × 10
−5

 Torr. The freshly prepared gold-coated wafers 

were immediately transferred to Fluoroware containers and stored until used. The wafers were cut 

into slides (ca. 1 cm × 3 cm) with a diamond-tipped stylus. The slides were rinsed with absolute 

ethanol and blown dry with a stream of ultrapure nitrogen. Ellipsometric data for the bare gold were 

collected. The slides were then rinsed with ethanol and immersed in solutions of the respective 

nitrile-terminated alkanethiols (1 mM in ethanol) or n-alkanethiols (1 mM in ethanol). All substrates 

were allowed to equilibrate simultaneously for a period of at least 24 h. The resultant SAMs were 

rinsed with ethanol and blown dry with ultrapure nitrogen before immediate characterization.  

2.2.2. Ellipsometric thicknesses measurements  

The thicknesses of the monolayers were measured using a Rudolph Research Auto EL III 

ellipsometer equipped with a He-Ne laser (632.8 nm) at an incident angle of 70°. The optical 

constants of the bare gold substrates were measured immediately after gold deposition; a refractive 

index of 1.45 was assumed for all films. For a given sample, the data were averaged over three 

separate slides using three spots per slide (an average of nine measurements).  
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2.2.3. Contact angle measurements 

Advancing and receding contact angles were measured using a ramé-hart model 100 contact 

angle goniometer. The contacting liquids, hexadecane (C16H34, HD) and water (H2O, W), were 

dispensed and withdrawn with a Matrix Technologies micro-Electrapette 25. For a given sample, the 

data were averaged over three separate slides using three spots per slide and measuring angles from 

opposite edges of each drop (an average of eighteen measurements). The measurements were 

performed at 293 K with the pipet tip in contact with the drop. 

2.2.4. Surface infrared spectroscopy 

Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) data were 

collected using a Nicolet MAGNA-IR 860 Fourier transform spectrometer equipped with a liquid-

nitrogen-cooled mercury-cadmium-telluride (MCT) detector and a Hinds Instruments PEM-90 

photoelastic modulator. The p-polarized light was incident at 80°. The spectra were collected for 

1000 scans at a spectral resolution of 4 cm
−1

.  

2.2.5. X-ray photoelectron spectroscopy  

X-ray photoelectron spectra were collected using a PHI 5700 X-ray photoelectron spectrometer 

equipped with a monochromatic Al K X-ray source (h = 1486.7 eV) incident at 90° relative to the 

axis of a hemispherical energy analyzer. The spectrometer was operated at high resolution with a 

pass energy of 23.5 eV, a photoelectron takeoff angle of 45° from the surface, and an analyzer spot 

diameter of 1.1 mm. The base pressure in the chamber during measurements was 2 × 10
−9

 Torr, and 

the spectra were collected at room temperature. Ten scans were accumulated to obtain the C 1s and 

N 1s spectra, while five and thirty scans were accumulated to obtain the Au 4f and S 2p spectra, 

respectively. After collecting the data, the binding energies were referenced by setting the Au 4f7/2 

binding energy to 84.0 eV. The peak intensities were quantified by standard curve-fitting software 

using Shirley background subtraction and Gaussian-Lorentzian profiles. 

2.2.6. Synthesis of nitrile-terminated alkanethiols, CNCnSH, where n = 14–17 

The -cyanoalkanethiols, CNCnSH (n = 14–17), were prepared using the strategies outlined in 

Schemes 1, 2, and 3. The three shorter -bromo-1-alkanols were synthesized by the acid-catalyzed 

ring opening of the corresponding lactones followed by reduction of the carboxylic acid functionality 

to the terminal alcohol, as shown in Scheme 1. Scheme 2 outlines the remainder of the synthesis for 

CNCnSH (n = 14–16). Since long-chain bi-functional organic compounds are difficult to find, and if 

available are generally very expensive, the CNC17SH was synthesized using a different route, 

presented in Scheme 3.  
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Scheme 1. Synthesis of -Bromoalcohols from the Corresponding Lactones. 

14-Bromo-1-tetradecanol (1a). To an aliquot of oxacyclopentadecan-2-one (5.0 g, 22 mmol) 

was added HBr (33% in acetic acid, 74 mL) and water (50 mL). The reaction was refluxed at 130 °C 

for 24 h, cooled to room temperature, poured over cold water (250 mL) and then stirred for 1 h. The 

resulting brown precipitate was filtered, washed extensively with water (5 × 100 mL), and 

recrystallized from hexanes to afford pure 14-bromotetradecanoic acid (5.6 g, 83%) as white flakes. 

The resulting acid (5.6 g, 18 mmol) was dissolved in ~250 mL of THF and cooled in an ice-bath to 

0 °C. 24 mL of 1.0 M BH3/THF solution was added to the acid slowly over 20 min and stirred 

vigorously for 1 h. Excess borane was then quenched with a 50/50 water/THF mixture. The aqueous 

layer was extracted with diethyl ether (3 × 100 mL), and the organic phase washed successively with 

NaHCO3 (100 mL), water (100 mL), and brine (100 mL). The organic phase was dried over 

anhydrous MgSO4, filtered, and evaporated to dryness. The crude product was recrystallized from 

hexanes to afford pure 14-bromo-1-tetradecanol (3.3 g, 11 mmol) in 62% yield. 
1
H NMR (300 MHz, 

CDCl3): δ 3.60 (t, J = 5.0 Hz, 2H), 3.41 (t, J = 6.7 Hz, 2H), 1.80–1.90 (m, 2H), 1.52–1.61 (m, 2H), 

1.26 (m, 20H). 

15-Bromo-1-pentadecanol (1b). Compound 1b was synthesized using a procedure analogous to 

that used to synthesize compound 1a: (3.2 g, 10 mmol, 62% yield). 
1
H NMR (300 MHz, CDCl3): δ 

3.61 (t, J = 5.0 Hz, 2 H), 3.40 (t, J = 6.6 Hz, 2 H), 1.90–1.81 (m, 2 H), 1.60–1.52 (m, 2H), 1.26 (m, 

22H).  

16-Bromo-1-hexadecanol (1c). Compound 1c was synthesized using a procedure analogous to 

that used to synthesize compound 1a: (2.9 g, 9.0 mmol, 60% yield). 
1
H NMR (300 MHz, CDCl3): δ 

3.62 (t, J = 5.0 Hz, 2H), 3.42 (t, J = 6.6 Hz, 2H), 1.82–1.90 (m, 2H), 1.51–1.61 (m, 2H), 1.26 (m, 

24H). 

 

Scheme 2. Synthesis of 18-Mercaptooctandecanenitrile (CNC17SH). 
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2-(14-Bromo-tetradecyloxy)-tetrahydropyran (2). A solution of compound 1a (1.5 g; 5.1 mmol) 

and DHP (0.65 g; 7.7 mmol) in 100 mL of dry MeOH containing PTSA (0.13 g; 0.51 mmol) was 

stirred for 4 h at room temperature. Then, the solution was diluted with hexanes (1 × 100 mL) and 

washed once with half-saturated brine (1 × 100 mL) to remove the catalyst. The solution was then 

dried over MgSO4 and the solvent removed by rotary evaporation. 2-(14-Bromo-tetradecyloxy)-

tetrahydropyran (2, 1.83 g, 4.85 mmol) was obtained in 95% yield. 
1
H NMR (300 MHz, CDCl3);  

4.57 (t, J = 4.6 Hz, 1H), 3.83–3.91 (m, 1H), 3.69–3.77 (m, 1H), 3.46–3.53 (m, 1H), 3.39–3.42 (m, 

1H), 3.41 (t, J = 7.2 Hz, 2H), 1.70–1.90 (m, 4H), 1.49–1.61 (m, 6H), 1.22–1.41 (m, 20H). 

2-(Heptadec-16-enyloxy)-tetrahydropyran (3). To a solution of compound 2 (1.8 g; 4.9 mmol) 

in 150 mL anhydrous THF were added 2.4 mL of a 0.1 M solution of Li2CuCl4 in THF (0.2 mmol). 

The mixture was cooled to 0 °C in an ice-bath under argon. Afterwards, a 2.0 M solution of 

allylmagnesium chloride in diethyl ether (4.9 mL; 10 mmol) was added slowly over 5 min, during 

which a color change from orange to dark brown occurred. The reaction mixture was warmed to 

room temperature and refluxed for 14 h. After the addition of 50 mL of a saturated aqueous solution 

of NH4Cl and 50 mL of water, the mixture was extracted with hexanes (3 × 50 mL). The combined 

organic layers were washed with brine (1 × 50 mL), dried with MgSO4, and evaporated to dryness by 

rotary evaporation. 2-(Heptadec-16-enyloxy)-tetrahydropyran (3, 1.4 g, 4.0 mmol) was obtained in 

83% yield. 
1
H NMR (300 MHz, CDCl3);  5.75–5.92 (m, 1H), 4.89–5.02 (m, 2H),  4.58 (t, J =  

4.5 Hz, 1H), 3.84–3.90 (m, 1H), 3.69–3.77 (m, 1H), 3.46–3.55 (m, 1H), 3.34–3.43 (m, 1H), 2.00–

2.07 (m, 2H), 1.75–1.87 (m, 4H), 1.51–1.66 (m, 6H), 1.20–1.39 (m, 22H). 

Heptadec-16-enyl methanesulfonate (4). A solution of compound 3 and PTSA (0.1 g; 0.4 mmol) 

in 100 mL of ethanol was stirred at 55 °C for 3 h. The solvent was then removed by rotary 

evaporation and the residue was chromatographed on silica gel (hexanes/ethyl acetate = 10/1). The 

resulting heptadec-16-en-1-ol was then dissolved in 100 mL of hexanes at room temperature. NEt3 

(1.2 g; 12 mmol) and MsCl (0.92 g; 8.1 mmol) were added while stirring. After stirring for 2 h,  

75 mL of water was added. The phases were separated, the organic layer was washed with water  

(1 × 75 mL) and brine (1 × 75 mL), dried with MgSO4, and the solvent was removed by rotary 

evaporation. Heptadec-16-enyl methanesulfonate (4, 0.94 g, 2.8 mmol) was obtained in 70% yield. 
1
H NMR (300 MHz, CDCl3);  5.75–5.88 (m, 1H), 4.90–5.03 (m, 2H), 4.22 (t, J = 6.5 Hz, 2H), 3.00 

(s, 3H), 2.00–2.07 (m, 2H), 1.70–1.79 (m, 2H), 1.21–1.42 (m, 24H). 

Octadec-17-enenitrile (5). Mesylate 4 (0.94 g, 2.8 mmol) and LiBr (0.73 g, 8.5 mmol) were 

dissolved in reagent grade acetone and refluxed overnight. Afterwards, the solvent was evaporated 

followed by the addition of water (100 mL) and diethyl ether (100 mL). The aqueous layer was then 

extracted with diethyl ether (3 × 100 mL), the combined organic layers were washed with brine  

(100 mL), dried over MgSO4, filtered, and the solvent evaporated to dryness to afford 17-

bromoheptadec-1-ene (0.86 g, 2.7 mmol) in 96% yield which was used in the next step without 

further purification. 

To an aliquot of the bromoalkene (0.86 g, 2.7 mmol) dissolved in DMSO (100 mL) was added 

NaCN (0.27 g, 5.4 mmol). The mixture was heated at 80 °C for 12 h. Dichloromethane (100 mL) 

was added to the mixture and the organic layer was washed with water (100 mL) and brine (100 mL). 

The organic layer was then dried over MgSO4, filtered, and evaporated to dryness. Octadec-17-

enenitrile (5, 0.66 g, 2.5 mmol) was obtained in 92% yield. 
1
H NMR (300 MHz, CDCl3): δ 5.75–5.88 
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(m, 1H), 4.90–5.03 (m, 2H), 2.33 (t, J = 7.2 Hz, 2H), 2.00–2.07 (m, 2H), 1.51–1.70 (m, 4H), 1.17–

1.46 (m, 22H). 

S-17-Cyanoheptadecyl ethanethioate (6). Under argon, an aliquot of compound 5 (0.66 g,  

2.5 mmol), AcSH (0.76 g; 10 mmol), and AIBN (0.016 g; 0.01 mmol) in THF were combined in a 

test tube. The reaction mixture was irradiated for 2 h with a 450 W mercury high pressure lamp at a 

distance of 2 in. An additional equivalent of AIBN was added to the mixture and irradiated for an 

additional 3 h. Afterward, the resulting solution was poured into 100 mL of hexanes. Water (50 mL) 

was added; solid NaHCO3 was then added in portions until the evolution of CO2 ceased. The mixture 

was then extracted with hexane (2 × 100 mL). The organic layers were washed with brine (100 mL), 

dried over MgSO4, filtered, and evaporated to dryness by rotary evaporation. The crude product was 

chromatographed on silica gel using hexanes as the eluent. S-17-Cyanoheptadecyl ethanethioate (6, 

0.52 g, 1.5 mmol) was obtained in 61% yield. 
1
H NMR (300 MHz, CDCl3);  2.88 (t, J = 7.7 Hz, 2H), 

2.33 (t, J = 7.1 Hz, 2H), 2.32 (s, 3H), 1.50–1.70 (m, 4H), 1.21–1.46 (m, 26H). 

18-Mercaptooctadecanenitrile (CNC17SH). A 500-mL round-bottom flask was charged with 

compound 6 (0.52 g, 1.5 mmol), sealed, and then purged with argon. MeOH (150 mL; previously 

degassed) and K2CO3 (0.62 g, 7.53 mmol) were placed in a separate 100-mL round-bottom flask and 

added via cannula to the S-17-cyanoheptadecyl ethanethioate solution; the mixture was stirred 

vigorously at 50 °C for 2 h to give a mixture of CNC17SH and the corresponding disulfide. An 

aliquot of DTT (1.16 g, 7.5 mmol) dissolved in methanol (100 mL; degassed) was added via cannula 

to the crude mixture and stirred at room temperature for 2 h. Following, an aliquot of ~50 mL of a 

1.0 M solution of H2SO4 in MeOH (degassed) was added to the reaction mixture slowly. The mixture 

was then extracted with dichloromethane (3 × 100 mL). The combined organic layers were washed 

with water (100 mL), 0.1 M HCl (100 mL), brine (100 mL), dried over MgSO4, filtered, and the 

solvent evaporated to dryness. The crude product was purified by column chromatography using 

hexanes as the eluent to afford pure 18-mercaptopentadecanenitrile (CNC17SH, 0.32 g, 1.1 mmol) in 

72% yield. 
1
H NMR (300 MHz, CDCl3);  2.55–2.48 (q, J = 7.4 Hz, 2H), 2.33 (t, J = 7.1 Hz, 2H), 

1.70–1.55 (m, 4H), 1.46–1.25 (m, 26H). 
13

C NMR (75 MHz, CDCl3):  119.87, 34.01, 29.53 

(multiple peaks), 29.44, 29.26, 29.04, 28.72, 28.63, 28.35, 25.33, 24.64, 17.11. 

 

Scheme 3. Synthesis of Nitrile-Terminated Alkanethiols, CNCnSH (where n = 14, 15, 

and 16). 

14-Hydroxytetradecanenitrile (7a). To an aliquot of compound 1a (0.98 g, 3.4 mmol) dissolved 

in DMSO (100 mL) was added NaCN (0.33 g, 6.7 mmol). The mixture was heated at 80 °C for 12 h. 

Dichloromethane (100 mL) was added and the organic layer was washed with water (100 mL) and 
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brine (100 mL). The organic layer was then dried over MgSO4, filtered, and evaporated to dryness. 

14-Hydroxytetradecanenitrile (0.77 g, 3.2 mmol) was obtained in 96% yield. 
1
H NMR (300 MHz, 

CDCl3): δ 3.64 (t, J = 6.2 Hz, 2H), 2.61 (s, 1H), 2.33 (t, J = 7.3 Hz, 2H), 1.51–1.70 (m, 4H), 1.17–

1.46 (m, 20H).  

15-Hydroxypentadecanenitrile (7b). Compound 7b was synthesized using a procedure 

analogous to that used to synthesize compound 7a: (0.79 g, 3.1 mmol, 92% yield). 
1
H NMR  

(300 MHz, CDCl3): δ 3.62 (t, J = 6.7 Hz, 2H), 2.61 (s, 1H), 2.33 (t, J = 7.0 Hz, 2H), 1.51–1.70 (m, 

4H), 1.16–1.42 (m, 22H).  

16-Hydroxyhexadecanenitrile (7c). Compound 7c was synthesized using a procedure analogous 

to that used to synthesize compound 7a: (0.73 g, 2.7 mmol, 91% yield). 
1
H NMR (300 MHz, CDCl3): 

δ 3.64 (t, J = 6.7 Hz, 2H), 2.62 (s, 1H), 2.33 (t, J = 7.4 Hz, 2H), 1.51–1.70 (m, 4H), 1.18–1.43 (m, 

24H).  

S-14-Cyanotetradecyl ethanethioate (8a). To an aliquot of compound 7a (0.77g, 3.2 mmol) 

diluted in 50 mL of hexanes was added slowly an aliquot of NEt3 (0.98 g, 9.6 mmol). The reaction 

mixture was left stirring for 30 min at room temperature; the solution was then cooled in an ice-bath, 

and an aliquot of MsCl (0.74 g, 6.4 mmol) was added dropwise. The reaction was left stirring for 4 h 

at room temperature under argon. Excess MsCl was destroyed using water, and the precipitate was 

dissolved with water (100 mL). The aqueous layer was extracted with diethyl ether (3 × 100 mL) and 

the combined organic layers were washed with dilute HCl (100 mL), NaHCO3 (100 mL), and brine 

(300 mL). The organic layer was then dried over MgSO4, filtered, and evaporated to dryness.  

The crude mesylate and LiBr (0.84 g, 9.6 mmol) were dissolved in acetone and refluxed 

overnight. The solvent was evaporated; water (100 mL) and diethyl ether (100 mL) were added to 

dissolve the salts and the product, respectively. The aqueous layer was extracted with diethyl ether (3 

× 100 mL). The combined organic layers were washed with brine (100 mL), dried over MgSO4, and 

evaporated to dryness. The crude bromide was flash chromatographed over silica gel using hexanes 

as the eluent. This product was then dissolved in ethanol (100 mL; degassed by bubbling with argon) 

and an aliquot of potassium thioacetate (0.74 g, 6.4 mmol) dissolved in 100 mL of ethanol (degassed) 

was added. The reaction was refluxed overnight under argon. The solvent was evaporated and the 

crude was redissolved in diethyl ether (100 mL). Water (100 mL) was added to dissolve the salts and 

the aqueous phase was extracted with diethyl ether (3 × 100 mL). The combined organic layers were 

washed with water (100 mL), brine (100 mL), dried over MgSO4, filtered, and evaporated to dryness 

to afford S-14-cyanotetradecyl ethanethioate (8a, 0.75 g, 2.5 mmol) in 78% yield. 
1
H NMR (300 

MHz, CDCl3): δ 2.86 (t, J = 7.7 Hz, 2H), 2.33 (t, J = 7.0 Hz, 2H), 2.32 (s, 3H), 1.50–1.70 (m, 4H), 

1.18–1.46 (m, 20H).  

S-15-Cyanopentadecyl ethanethioate (8b). Compound 8b was synthesized using a procedure 

analogous to that used to synthesize compound 8a: (0.80 g, 2.5 mmol, 83% yield). 
1
H NMR  

(300 MHz, CDCl3): δ 2.86 (t, J = 7.4 Hz, 2H), 2.33 (t, J = 6.8 Hz, 2H), 2.32 (s, 3H), 1.70–1.50 (m, 

4H), 1.46–1.18 (m, 22H).  

S-16-Cyanohexadecyl ethanethioate (8c). Compound 8c was synthesized using a procedure 

analogous to that used to synthesize compound 8a: (0.61 g, 1.9 mmol, 69% yield). 
1
H NMR  

(300 MHz, CDCl3): δ 2.86 (t, J = 7.6 Hz, 2H), 2.33 (t, J = 7.1 Hz, 2H), 2.32 (s, 3H), 1.70–1.50 (m, 

4H), 1.48–1.18 (m, 24H). 
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15-Mercaptopentadecanenitrile (CNC14SH). Compound CNC14SH was synthesized using a 

procedure analogous to that used to synthesize compound CNC17SH: (0.57 g, 2.2 mmol, 89% yield). 
1
H NMR (300 MHz, CDCl3):  2.48–2.55 (q, J = 7.4 Hz, 2H), 2.33 (t, J = 7.1 Hz, 2H), 1.55–1.70 (m, 

4H), 1.25–1.46 (m, 20H). 
13

C NMR (75 MHz, CDCl3):  119.87, 34.01, 29.53 (multiple peaks), 

29.44, 29.26, 29.04, 28.72, 28.63, 28.35, 25.33, 24.64, 17.11.  

16-Mercaptohexadecanenitrile (CNC15SH). Compound CNC15SH was synthesized using a 

procedure analogous to that used to synthesize compound CNC17SH: (0.49 g, 1.8 mmol, 71% yield). 
1
H NMR (300 MHz, CDCl3):  2.48–2.55 (q, J = 7.4 Hz, 2H), 2.33 (t, J = 7.1 Hz, 2H), 1.55–1.70 (m, 

4H), 1.25–1.46 (m, 22H). 
13

C NMR (75 MHz, CDCl3):  119.87, 34.01, 29.58 (multiple peaks), 

29.55, 29.48, 29.26, 29.04, 28.74, 28.63, 28.35, 25.34, 24.65, 17.11.  

17-Mercaptoheptadecanenitrile (CNC16SH). Compound CNC16SH was synthesized using a 

procedure analogous to that used to synthesize compound CNC17SH: (0.37 g, 1.3 mmol, 69% yield). 
1
H NMR (300 MHz, CDCl3):  2.55–2.48 (q, J = 7.4 Hz, 2H), 2.33 (t, J = 7.1 Hz, 2H), 1.70–1.55 (m, 

4H), 1.46–1.25 (m, 24H). 
13

C NMR (75 MHz, CDCl3):  119.87, 34.01, 29.53 (multiple peaks), 

29.44, 29.26, 29.04, 28.72, 28.63, 28.35, 25.33, 24.64, 17.11.  

3. Results and discussion 

3.1. Ellipsometric thicknesses 

Figure 2 shows the ellipsometric thicknesses of the SAMs on evaporated gold formed from the 

-nitrilealkanethiols and the corresponding n-alkanethiols having analogous chain lengths. As the 

number of methylene units increased from 14 to 17 for the CN-terminated adsorbates, the thicknesses 

systematically increased. By calculating the slope of each curve, the length per methylene unit of the 

two SAMs can be estimated. The plot of the CH3-terminated SAMs gives a slope of 1.58 Å per 

methylene unit, whereas the plot for the CN-terminated SAMs gives a slope of 1.36 Å per methylene 

unit. The calculated slope and the observed thicknesses of the CH3-terminated SAMs are consistent 

with the literature [24]. However, a direct comparison of the CH3- and the CN-terminated SAMs 

reveals that the thicknesses of the SAMs derived from the CN-terminated alkanethiols are 

approximately 1.0–1.5 Å lower than the SAMs derived from the n-alkanethiols. Furthermore, the 

thickness of the SAM derived from CNC17SH appears anomalously low. While SAMs derived from 

n-alkanethiols are well-defined and known to have an alkyl chain tilt of ~30° from the surface 

normal [13,25], the obtained thicknesses and the smaller calculated slope of the CN-terminated 

SAMs indicates a larger tilt angle for the chains [26]. Additionally, for the CN-terminated SAMs, the 

terminal CN-groups might influence the structure of the monolayer. For this system, the electrostatic 

interactions between the CN-termini at the interface of the film are likely causing the carbon 

backbone to tilt additionally from the surface normal [26,27]. 
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Figure 2. Ellipsometric thicknesses of SAMs formed from CH3CnSH (red) and 

CNCnSH (blue) on flat gold surfaces. 

3.2. Wettability of the films  

To examine the wettability of the SAMs formed from the -nitrilealkanethiols and n-

alkanethiols, we chose a variety of contacting liquids: water, N,N-dimethylformamide, acetonitrile, 

nitrobenzene, perfluorodecalin, methylformamide, decalin, and squalene in an attempt to observe 

“odd-even” effects that might exist due to the orientational differences of the terminal functional 

groups [19,21]. Unfortunately, only water gave measurable advancing contact angles for the CN-

terminated SAMs (see Figure 3); average values obtained for these SAMs were 75 ± 2°.  

 

Figure 3. Advancing contact angles of water (a
H2O) as a function of chain length for 

SAMs formed from CH3CnSH (red) and CNCnSH (blue) on flat gold surfaces. The 

symbols are larger than the error bars for the data points in which no error bars are visible. 
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Interestingly, no “odd-even” effects were observed for the CN-terminated SAMs or the CH3-

terminated SAMs (see Figure 3); for CH3-terminated SAMs, the absence of odd-even wettability 

effects when using polar protic probe liquids such as water and glycerol has been attributed to the 

fact that these liquids are highly self-associated by hydrogen bonding [18]. Another aspect to note in 

Figure 3, is the decreased hydrophobic character of the CN-terminated SAMs when compared to the 

corresponding CH3-terminated SAMs, which exhibit advancing contact angles of 115 ± 2°. A 

hydrophilic surface is defined as having a contact angle of water that is less than 90° [28]. Given that 

the advancing contact angle of water on our CN-terminated SAMs is ~75° (see Figure 3), it is 

appropriate to describe the surfaces of these SAMs as “hydrophilic”. Furthermore, comparison of our 

CN-terminated SAMs with charged surfaces (i.e., SAMs terminated with SO3
−
, (CH3)3N

+
, and NH3

+
 

groups) reveals water contact angles of ~48°, ~52°, and ~76°, respectively [29–31]. Based upon 

these comparisons, our CN-terminated SAMs are most comparable in wettability to NH3
+
-terminated 

SAMs. The lower water contact angles on the CN-terminated SAMs can be attributed to the presence 

of the dipole associated with the nitrile group, specifically the free lone pair of the nitrogen atom [26]. 

3.3. Analysis of SAMs by PM-IRRAS 

Infrared reflectance spectroscopy is a useful tool that gives insight into the conformation of the 

alkyl chains within a SAM [32–34]. The degree of order for a n-alkanethiol SAM can be evaluated 

by the band position of the antisymmetric C–H stretching vibration of the methylene (νa
CH

2) [33,34]. 

For example, the νa
CH

2 of a highly ordered octadecanethiol SAM appears at ~2919 cm
−1

, while a 

loosely packed SAM exhibits a νa
CH

2 at ~2924 cm
−1

 [33,34]. The PM-IRRAS spectra of the C–H 

region obtained from the CN- and CH3-terminated SAMs are presented in Figure 4. All of the SAMs 

formed from the CH3- and CN-terminated thiols have their νa
CH

2 at ~2918 cm
−1

, which is consistent 

with well-ordered, predominantly all-trans extended alkyl chains [32–34]. Generally, the νa
CH

2 band 

position remains constant at ~2918 cm
−1

 for SAMs generated from n-alkanethiols having 11–21 

carbon atoms in their methylene backbones [33]. According to our results, there is no apparent shift 

in the νa
CH

2 band position from 2918 cm
−1

 for the CH3- or CN-terminated SAMs; instead there is an 

observed increase in the intensity of the νa
CH

2 band with an increase in the number of methylene 

units (see Figure 4). These results are consistent with similar observations in the literature [33]. 

As expected, there were no detectable CH3 vibrational modes in the spectra of the CN-

terminated SAMs due to the absence of CH3 groups in the CN-terminated adsorbates. In order to 

examine the vibration modes of the C–N bond, spectra were also obtained in the lower frequency 

region (2100–2400 cm
−1

). Unfortunately, the C–N stretching vibration, which should arise at 

approximately 2250 cm
−1

, was not detected in the IR spectra of any of the CN-terminated SAMs. 

The lack of C–N stretching vibrations can be explained by the structural features of the SAM and the 

surface selection rules that govern the PM-IRRAS technique. In a study conducted by Frey et al., 

near-edge X-ray absorption fine structure spectroscopy (NEXAFS) was conducted on SAMs derived 

from CNC16SH on Au and estimated the average tilt angle of the alkyl chains at approximately 42° 

from the surface normal [26]; a larger value when compared to n-alkanethiol SAMs of approximately 

30° (vide supra). In addition, the same study found the tilt angles of the CN-moieties to be ~65 ± 5°, 

with respect to the surface normal, suggesting that the terminal CN groups lie predominantly along 
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the surface plane [26]. Hence, the dipole moment arising from the C–N stretch in these SAMs will 

also be along the surface plane and will not be detected by the IR technique, since only vibrations 

with dipole moments that are perpendicular to the substrate will be observed in the spectra. For the 

SAMs derived from CNC15SH and CNC17SH, the CN groups should adopt an orientation more 

perpendicular to the surface, and therefore, the resulting dipole moment should be detected. However, 

there were no detectable peaks attributed to the C–N stretch. The absence of C–N stretches in the 

spectra of the CN-terminated SAMs is indicative of a surface structure that is dominated by the 

strong electrostatic interactions between the terminal CN groups, which possibly forces the CN 

moieties to adopt a planar surface orientation regardless of the methylene spacer length [26].  

Although it might seem contradictory that the CN-terminated SAMs can be both tilted more 

than CH3-terminated SAMs but still have conformationally ordered alkyl tailgroups, it is important to 

remember that SAMs on gold tilt to maximize their chain-chain van der Waals interactions [35]; 

consequently, it is plausible to have densely packed (and conformationally ordered) methylene 

backbones in films that are highly tilted (vide infra).  

 

Figure 4. PM-IRRAS spectra of SAMs formed from CH3CnSH and CNCnSH on flat 

gold surfaces. 

3.4. Analysis of SAMs by XPS 

X-ray photoelectron spectroscopy can provide crucial information such as the chemical 

compositions of the monolayers as well as the nature of the sulfur-gold bond [17,36]. The Au 4f,  

C 1s, N 1s, and S 2p spectra are presented in Figure 5. For all of the SAMs, the Au 4f7/2 peak was set 

to 84.0 eV, as shown in Figure 5A. In Figure 5B, the large peak centered at ~285 eV in the C 1s 

photoelectron region is attributed to the carbon atoms constituting the hydrocarbon backbone; a small 

shoulder is observed at ~286.9 eV, which is assigned to the nitrile carbon (CN) [26]. The carbon 

atom of the nitrile group is directly attached to the more electronegative nitrogen atom causing a shift 
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to a higher binding energy [26]. Additional evidence supporting the presence of the nitrile group 

within the SAMs can be seen in the XPS spectra of the N 1s region, shown in Figure 5C; a peak 

representative of the nitrogen atom of a nitrile group is centered at ~400.1 eV for all of the CN-

terminated SAMs [26,37]. The results obtained from the C 1s and N 1s spectra allows for 

confirmation of the presence of the nitrile moiety within the films analyzed. Furthermore, the binding 

energy of an electron is dependent on the electron density, oxidation state, and the atoms directly 

attached to the atom of interest. In the case of SAMs on gold, an analysis of the S 2p peak binding 

energy can determine the existence of incomplete binding of an adsorbate and/or the presence of any 

oxidized sulfur species. For a bound thiolate, the S 2p peak appears as a doublet at ~163.2 eV  

(S 2p1/2) and ~162 eV (S 2p3/2), respectively [36]. An unbound or oxidized sulfur species appears at 

~163–164 eV and above 166 eV, respectively [36,38,39]. The overall quality of a SAM can be 

determined by carefully examining the indicated regions in the S 2p spectrum. As presented in 

Figure 5D, all of SAMs formed from the CN-terminated adsorbates are mostly bound to the gold 

surfaces, and there are no highly oxidized sulfur species above 166 eV [36,39,40].  

 

Figure 5. X-ray photoelectron spectra of the (A) Au 4f, (B) C 1s, (C) N 1s, and (D) S 2p 

regions of the CN-terminated SAMs with different alkyl chain lengths. 

XPS can also be useful in evaluating the relative atomic composition present in a monolayer 

film [41,42]. Since the experimentally measured intensities of Au are dependent on the thickness of 

the carbon-based adsorbate, a comparison of the relative intensities of Au and C can provide 

information regarding the packing densities of the SAMs on gold [3,42]. An estimate of relative 

adsorbate surface coverage of a SAM by XPS requires a calibration of the photoelectron intensities 

of n-alkanethiol films having a known overlayer thickness. This type of quantitative analysis is 

dependent on the attenuation of the integrated Au 4f peak intensities by the overlaying molecules. 

Since the measured intensities of Au and C depend on the amount of overlying material, adsorbate 

alkyl chain densities can be estimated by comparing the data collected for the CN-terminated SAMs 

with the standard intensities observed for n-alkanethiol films having thicknesses and packing 
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densities that are precisely known [43,44]. An analysis of this sort requires the knowledge of the 

absolute value of the photoelectron attenuation length (λ) [41]. This can be acquired by constructing 

a calibration curve from the natural logarithm of the observed Au 4f intensities versus the number of 

carbon atoms per adsorbate from a series of SAMs generated from n-alkanethiols of increasing chain 

length (n-C10, n-C12, n-C14, n-C16, and n-C18). The attenuated Au 4f signal is described by Eq 1: 

 lnAun =  nd/(λsin) + constant  (1) 

where Aun is the intensity of the Au 4f signal attenuated by an n carbon monolayer, d is the thickness 

of the SAM per methylene unit, λ is the attenuation length, and  is the takeoff angle. We assumed 

that the attenuation by sulfur was equivalent to 1.5 carbon atoms per adsorbate. A least-squares 

analysis of the Au 4f signals attenuated by the overlying n-alkanethiols yielded an attenuation length 

of 41 Å, in close agreement with the value obtained by Bain et al. [41]. We then derived an 

“effective” number of carbon atoms per adsorbate from the calibration curve and the measured 

attenuated gold signal from the CN-terminated SAMs. Then, we compared the “effective” number of 

carbon atoms per adsorbate with the actual stoichiometric number of carbon atoms per adsorbate in 

the CN-terminated SAMs. Alkyl chain densities of the CN-terminated SAMs relative to the 

normalized, densely packed n-alkanethiol SAMs are shown in Table 1; the relative chain densities of 

the CN-terminated series, determined from the Au 4f region, is shown along with the integrated peak 

areas and binding energies in Table 1.  

Table 1. XPS Binding Energies, Integrated Photoelectron Intensities (counts), and 

Relative Packing Densities of SAMs formed from CNC14SH, CNC15SH, CNC16SH, 

and CNC17SH. 

Element CNC14SH CNC15SH CNC16SH CNC17SH 

Au 4f 
count 200340 192620 188600 189320 

BE (eV) 84.0 84.0 84.0 84.0 

C 1s 
count 19160 22280 23500 22500 

BE (eV) 285.1, 286.8 285.0, 286.8 285.0, 286.8 285.0, 286.8 

N 1s 
count 2200 2550 2720 2110 

BE (eV) 400.1 400.2 400.1 400.3 

S 2p 
count 1750 2070 1900 2760 

BE (eV) 161.0 161.0 161.0 161.0 

chain density from  

Au 4f (%) 
97 98 97 90 

S 2p/Au 4f 0.0087 0.011 0.010 0.0146 

Quantitative analysis of the Au 4f peak intensities of SAMs formed from CNC14SH, 

CNC15SH, CNC16SH and CNC17SH revealed that these films possessed 97, 98, 97, and 90%, 

respectively, of alkyl chain density relative to the corresponding n-alkanethiol SAMs normalized to 

100% packing. SAMs generated from CNC14SH, CNC15SH, and CNC16SH suggest that the 

packing densities are nearly identical to the n-alkanethiol SAMs and are consistent throughout the 
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series of chain lengths with the exception of the CNC17SH. The considerably lower packing 

densities observed in the CNC17SH SAMs are peculiar to say the least. The integrated photoelectron 

counts of Au 4f, C 1s, N 1s, and S 2p for CNC17SH show an abnormal relationship with the CN-

terminated series. We would expect the CNC17SH Au 4f photoelectron counts (189320) be 

attenuated more than the CNC16SH SAMs (188600), which have a thinner carbon overlayer above 

the gold substrate. Likewise, we would expect the CNC17SH C 1s integrated photoelectron counts 

(22500) to be higher than the CNC16SH SAMs (23500) given that the CNC17SH SAM has one 

more carbon atom along the hydrocarbon chain. Additionally, the considerably higher S 2p 

integrated photoelectron counts for CNC17SH (2760) are greatly augmented in comparison to 

CNC14SH (1750), CNC15SH (2070), and CNC16SH (1900) SAMs. Moreover, the density of 

surface thiolates, estimated from the S 2p/Au 4f ratios, suggests greater ratios of sulfur containing 

moieties are present within the CNC17SH SAM assembly.  

Taken as a whole, the XPS data help to rationalize the lower observed film thickness of 

CNC17SH SAMs, determined from the ellipsometry data, and the slightly higher advancing contact 

angles of water (a
H2O

) on the SAMs derived from CNC17SH (~3°). We propose that the minor 

anomalies observed for the CNC17SH SAMs are due to the presence of trace amounts of 

dithiothreitol (DTT), which was used in the reduction of the thiol/disulfide mixture to give 

CNC17SH as the final product (see Scheme 2). The presence of trace amounts of DTT can plausibly 

lead to (1) a decrease in the ellipsometric thickness given the short chain length of DTT, (2) an 

increase in the contact angle of water by exposing underlying hydrocarbon groups, which are 

inherently more hydrophobic than CN moieties, and (3) an increase in the S 2p count (and the S/N 

ratio) as measured by XPS. 

4. Conclusions 

A series of CN-terminated alkanethiols having the formula of CN(CH2)nSH (where n = 14–17) 

were synthesized and used to form SAMs on flat gold surfaces to compare with SAMs derived from 

the analogous n-alkanethiols CH3(CH2)nSH (where n = 14–17). The SAMs were characterized using 

ellipsometry, contact angle goniometry, surface IR spectroscopy (PM-IRRAS), and XPS. The 

analyses by PM-IRRAS and XPS found that the conformational order and the packing density, 

respectively, of the CN-terminated SAMs were largely indistinguishable from the SAMs derived 

from n-alkanethiols. Surface IR spectra indicate that CN-terminated alkanethiols generate 

conformationally ordered films; however, the C–N stretch was not observed. Strong electrostatic 

interactions at the surface plausibly perturb the CN group from adopting a terminal conformation that 

is parallel to the substrate, eliminating the ability of the PM-IRRAS technique to detect the C–N 

vibration. However, CN-terminated films generate hydrophilic surfaces that satisfy the four criteria 

used for the generation of inert surfaces that can resist the adsorption and adhesion of biological 

species: (1) high polarity, (2) lack of hydrogen bond donors, (3) presence of hydrogen bond 

acceptors, and (4) they are electrically neutral.  
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