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Abstract: This article addresses the application of grey based fuzzy logic coupled with Taguchi’s 

approach for optimization of multi performance characteristics in ultrasonic machining of WC-Co 

composite material. The Taguchi’s L-36 array has been employed to conduct the experimentation 

and also to observe the influence of different process variables (power rating, cobalt content, tool 

geometry, thickness of work piece, tool material, abrasive grit size) on machining characteristics. 

Grey relational fuzzy grade has been computed by converting the multiple responses, i.e., material 

removal rate and tool wear rate obtained from Taguchi’s approach into a single performance 

characteristic using grey based fuzzy logic. In addition, analysis of variance (ANOVA) has also been 

attempted in a view to identify the significant parameters. Results revealed grit size and power rating 

as leading parameters for optimization of multi performance characteristics. From the microstructure 

analysis, the mode of material deformation has been observed and the critical parameters (i.e., work 

material properties, grit size, and power rating) for the deformation mode have been established.  
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1. Introduction 

Ultrasonic machining (USM) is a contemporary manufacturing method usually employed for 

processing materials with higher hardness/brittleness such as quartz, semiconductor materials, 

ceramics etc. [1]. Ultrasonic machining is also termed as ultrasonic drilling, ultrasonic abrasive 

machining, ultrasonic grinding, ultrasonic cutting, ultrasonic dimension machining, and slurry 

drilling. In USM, tool vibrates along its longitudinal axis at high frequency; usually greater than  

20 kHz with amplitude of 12–50 μm. Abrasive slurry, which is a mixture of abrasive material such as 

silicon carbide, boron carbide and alumina suspended in water or some suitable carrier medium, is 

continuously pumped across the gap between the tool and work. The vibration of the tool causes the 

abrasive particles held in the slurry to impact the work surface, leading to material removal by micro-

chipping. 

Power rating and abrasive grit size are the main significant factors which affect the material 

removal rate (MRR) and tool wear rate (TWR) [2]. Lalchhuanvela et al. [3] presented a study of the 

MRR and surface roughness in machining of ceramics (alumina based). It was reported that the 

higher level of the input parameters gives higher MRR. Surface roughness (SR) was reported to be 

decreased with the reduction in grit size and power rating. Slurry concentration, flow rate of slurry 

and feed rate of tool have less effect on surface roughness. Komaraiah and Reddy [4], Kumar and 

Khamba [5], and Dam et al. [6] assessed the impact of work material properties on machining 

characteristics in ultrasonic machining. Results reported that work materials with higher fracture 

toughness and hardness tend to be machined at higher removal rates. Kataria et al. [7] reported that 

power rating and grit size are the most significant parameters that affect the hole quality in ultrasonic 

machining. Table 1 shows a summary of few studies reported on ultrasonic machining. 

Tungsten carbide-cobalt (WC-Co) composite is classed among the most important metal matrix 

composite materials manufactured by a process called as “powder metallurgy” [8]. Several steps are 

included in the production of WC-Co composite, such as making of tungsten carbide powder, 

consolidation of the powder, sintering in the liquid phase and post-sintering operations. WC-Co 

composite materials are also known as cemented carbide, hard metal and in some cases, cermets [8]. 

WC-Co composite materials possess excellent hardness with toughness, wear resistance, good 

dimensional stability and high mechanical strength. Owing to their superior properties, these 

materials cover a wide range of industrial applications, e.g., manufacturing of wear parts, cutting and 

drilling tools, die and punch manufacturing.  

Many investigators have studied the machinability of WC-Co composite materials using 

conventional and non-conventional techniques other than USM [8–15]. However, these techniques 

have their own limitations, in the perspective of deteriorated surface quality (cracks, heat affected 

zone, recast layer), high cutting forces and alteration of mechanical properties. These defects result 

into decrease in hardness, wear resistance and corrosion resistance of the machined components and 

also affect the product quality. 

Ultrasonic machining could be a potential solution for addressing the problems related to 

machinability of WC-Co material. The process generally does not cause any significance alteration 

in the properties by means of surface damage [7]. Therefore, an attempt has been made to further 

explore the machining efficiency in ultrasonic drilling of WC-Co composites. So, this current article 

is targeted to optimize the process parameters (cobalt content, work material thickness, profile of 

tool, tool material, abrasive grit size, and power rating) in the ultrasonic machining of WC-Co 
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composites using grey-fuzzy logic. Figure 1 presents a graphic representation of the various inputs 

and output characteristics considered for the study.  

Table 1. A summary of few studies reported on ultrasonic machining. 

S. No Investigator Work material Process variables Results/Findings 

1. Ramulu M [16] Silicon carbide, 

Titanium diborid/ 

Silicon carbide 

(TiB2/SiC) 

Abrasive material, 

Grit size 

Over cut and taper increased with an increase in grit 

size for SiC work material. TiB2/SiC has good 

machining characteristics as compare to SiC as work 

material in USM. 

2. Kumar V, Khamba 

JS [17] 

Stellite 6  

(Cobalt alloy) 

Tool material, 

Abrasive, Slurry 

concentration, Grit 

size, Power rating 

Optimized Setting: Titanium (ASTM Gr. 2); 

Abrasive: Al2O3; Slurry concentration: 25%; Grit 

size: 500; Power: 125 W (25%) 

3. Kumar J, Khamba 

JS, Mohapatra SK 

[18] 

Pure Titanium 

(ASTM Grade-I) 

Tool material, 

Abrasive, Grit size, 

Power rating, Slurry 

concentration 

Tool material and power rating affects the rate of 

wear of the tool very significantly. Slurry 

concentration is insignificant parameter. Optimized 

Setting: titanium alloy, alumina, 500, 100 W, 30%.  

4. Hocheng H, Kuo 

KL, Lin JT [19] 

Zirconia 

(Ceramic) 

Static load, 

Amplitude 

An increase in static load caused into decreased tool 

wear and hole clearance. Larger amplitude results in 

larger tool wear. Better surface roughness can be 

obtained when the amplitude is set at the mid-range. 

5. Singh R, Khamba 

JS [20] 

Titanium (ASTM 

Gr. 2) and 

Titanium (ASTM 

Gr. 5) 

Work material, 

Tool material, 

Abrasive, Power 

rating  

An increase in MRR found with power rating. But 

sometimes MRR also decreased because of strain 

hardening of work piece. The best results have been 

obtained with SS tool and boron carbide slurry.  

6. Majeed MA, 

Vijayaraghvan L, 

Malhotra SK, et al. 

[21] 

Al2O3/LaPO4 

composite 

Work material, 

Tool (Solid and 

hollow) 

Higher the hardness of the material, better the 

machining performance. Hollow tool gives more 

MRR as compare to solid tool. AE clearly indicate 

good machinability with 70:30 composite. 

7. Kumar J, Khamba 

JS, Mohapatra SK 

[22] 

Pure Titanium 

(ASTM grade-I) 

Tool material, Grit 

size, Power rating 

For MRR and TWR, all the parameters were found to 

be significant and for SR only grit size was 

significant. Optimized Result For MRR: HCS, 220, 

400 W. Optimized Result For TWR: titanium alloy, 

500, 200 W. Optimized Result For SR: both tool 

material, 500, 300 W. 

8. Dvivedi A, Kumar 

P [23] 

Titanium (ASTM 

Gr. 2) and 

Titanium (ASTM 

Gr. 5) 

Work material, Grit 

size, Slurry 

concentration, 

Power rating, Tool 

material  

Surface roughness was more for ASTM Grade 2 as 

compare to ASTM Grade 5. The percentage 

contributions of significant parameters as: grit size 

(33.90%), slurry concentration (40.38%), and tool 

(4.57%). Optimized Setting: ASTM Gr. 2, 320, 25%, 

40%, HSS. 

9. Komaraiah M, 

Manan MA, Reddy 

PN, et al. [24] 

Glass, Ferrite 

Porcelain, 

Alumina and 

Carbides. 

Work material, 

Tool material  

The material which have higher H/E ratio tends to 

have higher out-of-roundness. The rotary USM is 

more superior to conventional USM. 

10. Kumar J, Khamba 

JS [25] 

Pure Titanium 

(ASTM grade-I) 

Tool material, 

Abrasive, Grit size, 

Power rating 

For TWR, tool material is the most significant 

parameter. For SR, grit size is the most significant 

parameter. Optimized Setting: Titanium alloy (ASTM 

Gr. 5), alumina, 500, 100 W (20%) for both 

response). 

ASTM: American Society for Testing and Materials; SS: stainless steel; SR: surface roughness; HCS: High carbon steel. 
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Figure 1. Process variables and responses of interest. 

2. Materials and methods  

In this article, work materials with the cobalt content of 6 wt% (hardness-1580 HV30) and  

24 wt% (hardness-780 HV30), with 3 mm and 5 mm thickness were selected. The mechanical 

properties are shown in Table 2. The materials used for fabricating are the tools, stainless steel, silver 

steel and nimonic-80A respectively. Tools were designed to have same mass (9 g), the value of 

which was derived to obtain the resonant frequency. Two profiles of tool namely, hollow and solid 

have been fabricated. Boron carbide was used as abrasive, with three levels for mean particle size 

(mesh 200, 320 and 500). The concentration (by weight) of the abrasive slurry was decided to be 

fixed at 25%. Power rating was selected at three discrete levels as 40%, 60% and 80%. Table 3 

shows the details of input parameters considered for the investigation. 

Table 2. WC-Co composite materials and their characteristics. 

  WC-6%Co WC-24%Co 

Chemical 

composition 

WC 94% 76% 

Co 6% 24% 

Mechanical 

properties 

Density (g/cm2) 14.9 12.9 

Hardness, H (HV30) 1580 780 

Elastic modulus, E (GPa) 630 470 

Fracture toughness (MPa·m1/2)  9.6 14.5 

H/E ratio 2.5 1.65 

Thermal conductivity (W/mK) 80 50 

Coefficient of thermal expansion (× 10−6/K) 5.5 7.5 

The experiments were performed on an “AP-450 model” (Sonic-Mill, Albuquerque, USA) 

ultrasonic machine set-up. The different components of USM setup are abrasive slurry supply 

system, transducer, coupler, horn, dial assembly, locking knob, converter and coupler clamp. 

Machining zone containing workpiece, fixture, and tool is depicted in Figure 2. MRR was computed 

by dividing the loss of weight (after machining) with the machining duration for drilling to the 

required depth. The stop watch was used to record the time taken for each experiment. The weight 
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was measured with an electronic balance (CIL, model-CA124), with least count of 0.0001 g. In the 

same way, tool wear rate was computed.  

Table 3. Input parameters considered for the investigation. 

Symbol Parameter Level 1 Level 2 Level 3 

A Cobalt content 6% 24%  

B Thickness of work 3 mm 5 mm  

C Profile of tool Solid Hollow  

D Tool material Stainless steel Silver steel Nimonic-80A 

E Grit size (mesh no.) 200 320 500 

F Power rating 40% (180 W) 60% (270 W) 80% (360 W) 

Constant parameter 

Frequency of vibration 20 kHz Slurry concentration 25% 

Static load 1.63 kg Slurry temperature 25 ℃ 

Amplitude of vibration 25.3–25.8 µm Slurry flow rate 50 × 103 mm3/min 

 

Figure 2. Machining zone. 

3. Experimentation and data collection 

This study makes use of Taguchi’s L-36 OA for design of the experimental plan. There are three 

factors with two levels and remaining factors have three levels. In addition, three interactions (A × D, 

B × D, C × D) are also required to be evaluated. Therefore, the degrees of freedom of L-36 array (35 

DOF) are adequately enough for the problem under consideration (with required DOF being 15). The 

experimental plan is exhibited in Table 4. Two replicates were run for the full experiment, and all of 

the trials were completely randomized to entertain the nuisance factors. Following relations are 

utilized for assessment of the S/N ratio [26]. 

Larger the best 

 
N

S
LB = −10log( 



R

jR 1

1 1

𝑦𝑗
2)        (1) 

Smaller the best 
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 
N

S
SB = −10log( 



R

jR 1

1
𝑦𝑗

2)        (2) 

where 𝑦𝑗
  is the response value recorded in jth observation. Here, for MRR, “larger the best” and for 

TWR, “smaller the best” type S/N ratio were computed. Minitab-16 software has been utilized for 

analyzing the results.   

Table 4. Experimental plan and results. 

Exp 

No. 

Parameters MRR TWR 

A B C D E F Mean S/N ratio Mean S/N ratio 

1 1 1 1 1 1 1 0.0112 −39.04 0.0041 47.72 

2 1 1 1 1 2 2 0.0126 −38.03 0.0030 50.23 

3 1 1 1 1 3 3 0.0124 −38.42 0.0029 50.67 

4 1 2 2 1 1 1 0.0058 −45.42 0.0029 50.88 

5 1 2 2 1 2 2 0.0163 −35.87 0.0040 47.96 

6 1 2 2 1 3 3 0.0138 −37.32 0.0038 48.45 

7 2 1 2 1 1 1 0.0071 −44.10 0.0023 52.90 

8 2 1 2 1 2 2 0.0170 −35.92 0.0046 46.81 

9 2 1 2 1 3 3 0.0140 −37.14 0.0033 49.58 

10 2 2 1 1 1 1 0.0055 −45.43 0.0022 53.18 

11 2 2 1 1 2 2 0.0071 −43.03 0.0019 54.22 

12 2 2 1 1 3 3 0.0071 −43.48 0.0016 55.70 

13 1 1 1 2 1 2 0.0171 −35.38 0.0037 48.50 

14 1 1 1 2 2 3 0.0248 −32.28 0.0050 45.97 

15 1 1 1 2 3 1 0.0032 −51.15 0.0018 55.13 

16 1 2 2 2 1 2 0.0210 −33.59 0.0041 47.81 

17 1 2 2 2 2 3 0.0404 −27.89 0.0062 44.15 

18 1 2 2 2 3 1 0.0046 −46.78 0.0019 54.39 

19 2 1 2 2 1 2 0.0199 −34.01 0.0045 47.00 

20 2 1 2 2 2 3 0.0295 −30.60 0.0055 45.24 

21 2 1 2 2 3 1 0.0031 −50.82 0.0014 56.73 

22 2 2 1 2 1 2 0.0093 −40.81 0.0028 51.10 

23 2 2 1 2 2 3 0.0132 −37.57 0.0027 51.34 

24 2 2 1 2 3 1 0.0027 −52.28 0.0013 57.86 

25 1 1 1 3 1 3 0.0423 −27.58 0.0107 39.37 

26 1 1 1 3 2 1 0.0111 −39.27 0.0026 51.67 

27 1 1 1 3 3 2 0.0056 −45.09 0.0021 53.48 

28 1 2 2 3 1 3 0.0396 −28.12 0.0073 42.73 

29 1 2 2 3 2 1 0.0070 −43.31 0.0019 54.44 

30 1 2 2 3 3 2 0.0173 −35.26 0.0046 46.75 

31 2 1 2 3 1 3 0.0436 −27.28 0.0111 39.10 

32 2 1 2 3 2 1 0.0113 −39.36 0.0024 52.54 

33 2 1 2 3 3 2 0.0070 −43.31 0.0022 53.30 

34 2 2 1 3 1 3 0.0275 −31.24 0.0083 41.54 

35 2 2 1 3 2 1 0.0067 −43.53 0.0025 52.04 

36 2 2 1 3 3 2 0.0040 −48.05 0.0015 56.68 
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4. Multi-response optimization using grey-fuzzy logic approach 

In ultrasonic machining, the MRR and TWR are highly correlated responses. High MRR and 

low TWR cannot be achieved simultaneously for a particular control setting. For industrial 

applications, it is essential to obtain those machining solutions that could optimize the multiple 

responses concurrently. In this regard, grey fuzzy logic is employed for multi-response optimization.  

4.1. GRA method 

Grey relation analysis (GRA) is an effective method used for solving the complicated 

interrelationship among the data when the trends of their development are either homogeneous or 

heterogeneous. The major advantages of GRA method are real data based results, computations are 

simpler and easier to apply. For the problems related to manufacturing technology, the best decisions 

can be made by employing this method [27,28].  

In this approach, the experimental data (MRR and TWR) is scaled and normalized, to fit in a 

range (0 to 1). The relationship between required (or desired) and actual (or experimental data) is 

expressed by computing grey relational coefficient through normalized data. The MRR is considered 

as “higher the best”, while the TWR is considered as “lower the best” type response. The scaled 

values for both the responses are obtained using Eqs 3 and 4. Table 5 shows the normalized value for 

MRR and TWR. 

The MRR (“higher the best” response) has been scaled as follows:  

Zjys =  
Zjyi − minZyi

maxZyi − minZyi
          (3) 

While TWR (“lower the best” response) has been scaled as follows: 

Zjys =  
maxZyi − Zyi

maxZyi − minZyi
          (4) 

where, minZyi = min{Z1yi, Z2yi, …….., Zmyi} and maxZyi = max{Z1yi, Z2yi, …….., Zmyi}. 

The GRC (γjy ) for yth response in jth trial can be computed as: 

γjy =  
Δy

min + ξ Δy
max

Δjy +  ξ Δy
max          (5) 

where, Δjy = │1 −Zjys│, Δy
min = min{Δ1y, Δ2y, ..., Δmy}, Δy

max = max{Δ1y, Δ2y, ..., Δmy} and ξ is 

expressed as distinguishing coefficient (ξ ∈  [0,1]), and usually its value is set as 0.5. It is used for 

modification (expansion/contraction) of the range of grey relation coefficient. 
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Table 5. Results of grey relation analysis and fuzzy grade. 

Exp. 

No. 

Normalized value Grey relation coefficient 
GRFG 

MRR TWR MRR TWR 

1 0.208 0.715 0.706 0.411 0.782 

2 0.242 0.823 0.674 0.378 0.850 

3 0.237 0.834 0.678 0.375 0.850 

4 0.076 0.842 0.868 0.373 0.553 

5 0.333 0.725 0.601 0.408 0.820 

6 0.271 0.747 0.648 0.401 0.847 

7 0.108 0.902 0.823 0.357 0.607 

8 0.350 0.667 0.588 0.428 0.766 

9 0.276 0.795 0.644 0.386 0.850 

10 0.068 0.909 0.880 0.355 0.540 

11 0.108 0.934 0.823 0.349 0.605 

12 0.108 0.968 0.823 0.341 0.602 

13 0.352 0.751 0.587 0.400 0.853 

14 0.540 0.624 0.481 0.445 0.873 

15 0.012 0.954 0.976 0.344 0.500 

16 0.447 0.718 0.528 0.411 0.916 

17 0.922 0.500 0.352 0.500 0.850 

18 0.046 0.939 0.915 0.347 0.500 

19 0.421 0.677 0.543 0.425 0.885 

20 0.655 0.574 0.433 0.465 0.861 

21 0.010 0.985 0.981 0.337 0.500 

22 0.161 0.848 0.756 0.371 0.650 

23 0.257 0.860 0.661 0.368 0.850 

24 0.000 1.000 1.000 0.333 0.500 

25 0.968 0.036 0.341 0.933 0.350 

26 0.205 0.867 0.709 0.366 0.812 

27 0.071 0.917 0.876 0.353 0.546 

28 0.902 0.388 0.357 0.563 0.796 

29 0.105 0.940 0.826 0.347 0.600 

30 0.357 0.664 0.583 0.430 0.760 

31 1.000 0.000 0.333 1.000 0.500 

32 0.210 0.893 0.704 0.359 0.833 

33 0.105 0.912 0.826 0.354 0.602 

34 0.606 0.281 0.452 0.640 0.650 

35 0.098 0.879 0.836 0.363 0.592 

36 0.032 0.983 0.940 0.337 0.500 

4.2. Fuzzy logic optimization 

An imprecision based mathematical approach used to form an intensive relationship across the 

inputs and outputs is termed as “fuzzy logic”. Fuzzy system encompasses of basic components such 

as fuzzy sets, fuzzy inference, fuzzy rules, membership functions and defuzzification. The mapping 

is formulated from the input to output through fuzzy logic, by the process of fuzzy inference. The 

fuzzy logic mechanism has been detailed in Figure 3. 
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Figure 3. Fuzzy logic mechanism. 

In present investigation, “grey relation fuzzy grade” is calculated in a view to optimize the 

considered input variables. The output “grey relation fuzzy grade” is ranged from 0 to 1. 

Optimization of the multiple correlated variables is performed by employing the concept of fuzzy 

logic. The output is aimed on achieving the highest value of GRFG. This work is carried out by 

considering the grey relation coefficient of MRR and TWR as input and GRFG as output in order to 

find out optimal condition. Fuzzy logic system is developed with the help of MATLAB 7.12.0.635 

(Release 2011a). Figure 4 shows the block diagram of fuzzy model containing two variables (MRR 

and TWR) as input and GRFG as output.  

 

Figure 4. Block diagram of fuzzy model for GRFG. 

The input parameters, i.e., grey relation coefficients of MRR and TWR are demonstrated by 

membership functions possessing five levels, very low (VL), low (L), medium (M), high (H) and 

very high (VH) as depicted in Figures 5 and 6. The output parameter (GRFG) is characterized by 

membership functions (MF) possessing seven levels, namely extremely low (EL), very low (VL), 

low (L), medium (M), high (H), very high (VH) and extremely high (EH) as depicted in Figure 7. 

The triangular membership function is chosen for both types of variables. The fuzzy rules form a 

group with two GRC (MRR and TWR), and single output of GRFG. Fuzzy rules (25 in number) are 

obtained on the basis of the fact that largest GRFG is best response. Table 6 shows the fuzzy rules in 

matrix form. 
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Figure 5. MF for MRR. 

 

Figure 6. MF for TWR. 

 

Figure 7. MF for GRFG. 
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Table 6. Fuzzy rules. 

 
GRC (MRR) 

VS S M L VL 

GRC 

(TWR) 

VS EL VL VL L M 

S VL L L M S 

M L M M S VS 

L M S S VS VS 

VL S VS VS ES ES 

In addition, the input provided to fuzzy inference engine’s rule editor is the grey relational 

coefficient of each response variable (MRR and TWR), as shown in Figure 8. Table 5 depicts the de-

fuzzified values of each experimental run obtained through grey-fuzzy system. The response table 

for mean of the output parameter (GRFG) for each level of the input parameters is shown in Table 7. 

Figure 9 depicts the distribution of grey relational fuzzy grade for different experiments. 

Table 7. Response table for GRFG. 

Levels Cobalt content Work thickness Profile of tool Tool material Grit size Power rating 

1. 0.7254 0.7122 0.6614 0.7227 0.6735 0.6099 

2. 0.6607 0.6739 0.7248 0.7282 0.7760 0.7294 

3. - - - 0.6284 0.6298 0.7399 

Max.–Min. 0.0647 0.0383 0.0634 0.0998 0.1462 0.13 

Rank 4 6 5 3 1 2 

 

Figure 8. Rule viewer for GRFG. 
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Figure 9. Distribution of grey relational fuzzy grade against experimental runs. 

To determine the optimal combination, the highest grey relation fuzzy grade (GRFG) is to be 

located among all possible arrangements of the process parameters. Table 7 presents the average 

GRFG for each factor. The numeric terms in each column of factors are the highest GRFG for 

corresponding factor, which also indicates the best level for that factor. The difference between 

maximum and minimum value of GRFG at each levels represents the range for each factor. Highest 

range (max–min) of GRFG is given the first rank and the lower ranges are provided with lower ranks 

correspondingly. Control factor with larger range of GRFG possess more effect in ultrasonic 

machining of WC-Co composite. Abrasive grit size and power rating have strong effect on the 

machining characteristics, as observed from the GRFG analysis. 

As shown in Figure 10, the optimal parametric setting is 6% cobalt in work material; work 

thickness: 3 mm; tool geometry: hollow; material of tool: silver steel; abrasive grit size: 320 (mesh) 

and power rating: 80%. 

 

Figure 10. Mean effect plot for GRFG. 

The ANOVA test has also been carried out for the GRFG and results are presented in Table 8. 

ANOVA results show that abrasive grit size has significant effect on the grey relation fuzzy grade.  
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Table 8. ANOVA results for GRFG. 

Source DOF F P 

A 1 2.04 0.169 

B 1 0.71 0.409 

C 1 1.95 0.178 

D 2 2.04 0.157 

E 2 3.65 0.044* 

F 2 3.38 0.054 

A × D 2 0.40 0.674 

B × D 2 1.11 0.349 

C × D 2 0.24 0.793 

Error 20   

Total 35   

A: cobalt content, B: thickness of work piece, C: tool profile, D: tool 

material, E: grit size, F: power rating. 

* Significant at 95% confidence level. 

The GRFG at optimized setting (A1B1C2D2E2F3) has been predicted using the following 

formula.  

µGRFG = µOA + ∑ (µGRFGo
𝑛

𝑘=1
 −  µOA)                    (6) 

where, µGRFGo is the average value of GRFG for all experimental runs, µOA is the value of GRFG at 

optimal factor levels, 𝑛 is the number of factors. Table 9 shows the predicted and experimental 

results. There is 20% improvement in the GRFG at optimized setting as compared with initial setting. 

At this optimized setting, the value of MRR and TWR are 0.0302 g/min and 0.0071 g/min, as 

compared to 0.0112 g/min and 0.0041 g/min at the initial setting. 

Table 9. Predicted and confirmation experimental results at optimized setting. 

 
Initial setting 

Optimized results 

Predicted Experimental 

A1B1C1D1E1F1 A1B1C2D2E2F3 A1B1C2D2E2F3 

MRR 0.0112 g/min 0.0334 g/min 0.0302 g/min 

TWR 0.0041 g/min 0.0057 g/min 0.0071 g/min 

GRFG 0.782 0.941 - 

5. Microstructure analysis  

Selected machined samples were observed with scanning electron microscope (LEO, model-

435VP) to investigate the surface characteristics. In ultrasonic machining, the surface characteristics 

are mainly affected by the effect of grit size, and power rating [29,30]. 

Figure 11 illustrates the microstructure of WC-Co composite after being machined with USM 

under the experimental conditions corresponding to experiment no. 15, at the magnification of 

5000×. The parametric condition for this experimental run was consisting of fine sized abrasive 

grains and low level of power input. Hence, this corresponds to a condition of lower energy input 
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rate. In the SEM microstructure (Figure 11), there is no clear indication of the brittle fracture mode, 

due to the low energy input rate. 

 

Figure 11. Microstructure for exp. no. 15. 

Figure 12 exemplifies the microstructure of WC-Co composite after being machined with USM 

under the experimental conditions corresponding to experiment no. 23 at the magnification of 5000×. 

The parametric condition for this experimental run was consisting of medium sized abrasive grains 

and high level of power input. When highly energized (medium sized) abrasives make impact over 

the surface of work, few regions of pulled-off WC grains have been observed in the SEM image. A 

mixture of brittle and plastic deformation mode of work material removal has also been observed 

from the SEM image.  

 

Figure 12. Microstructure for exp. no. 23. 

Figure 13 shows the microstructure of WC-Co composite after processed with USM under the 

experimental conditions corresponding to experiment no. 36 at the magnification of 5000×. A huge 

amount of black pits is clearly visible from the microstructure due to the dislodgement of WC grains. 

Some regions have also been observed with the smeared out layers of cobalt binder material. In 

addition, a typical type of brittle fracture has been found for this particular experimental run. 
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Figure 13. Microstructure for exp. no. 36. 

Figure 14 shows the edge of the drilled hole at 200×. Moreover, there is no evidence of any 

micro-cracking. Figure 15 shows the machined sample with holes drilled under different 

experimental runs. The drilled holes have a straight cylindrical profile and the exit side has little 

appearance of chipping due to non uniform wear of the tool face. 

 

Figure 14. Shows the edge quality. 

 

Figure 15. Entrance and exit sides of drilled holes. 
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6. Conclusions 

The current research work has been focused at the application of grey relational analysis based 

fuzzy logic for the purpose of optimization of multiple performance characteristics in ultrasonic 

machining of WC-Co composite. Following conclusions could be drawn from this work: 

• Abrasive grit size and power rating have been observed as most significant parameters for 

GRFG. The optimized setting is cobalt content: 6%; work thickness: 3 mm; tool geometry: 

hollow; material of tool: silver steel; abrasive grit size: 320 (mesh) and power rating: 80%. 

• At optimized setting, an improvement of 20% in the GRFG has been observed at the optimized 

setting, as compared to initial setting. At this optimized setting, the values of MRR and TWR are 

0.0302 g/min and 0.0071 g/min. 

• The mode of material deformation has been observed from microstructure analysis and the 

parameters, i.e., work material properties, grit size, and power rating were revealed as the most 

crucial for on which deformation mode depends. The brittle fracture has been observed as a 

major mode of material deformation.   

• No micro cracking has been observed at the edge of the drilled hole, although minor chipping has 

been observed at the exit face.  
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